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ABSTRACT

Conductivity measurements may give values for (1) the specific con-
ductivity, (2) the concentration or (3) eccentricity of form of the suspended
particles of suspensions such as biological tissues, blood and cream. Matke-
nzat~'cal theory. The following relation is derived: (k/k~ —1)/(k/k~+x) =
p(k2/k~ —1)/(k~/k~+x), where k, kz and k2 are the specific conductivities of the
suspension, the suspending medium and the suspended spheroids, p is the
volume concentration of the suspended spheroids, and x is a function of the
ratio k2/k& and the ratio a/b of the axis of symmetry of the spheroids to the
other axis. For the case of spheres, x=2 and the formula reduces to that
of Lorentz-Lorentz and Clausius-Mossotti. Curves are given showing the
variation of x with k~/k~ for various values of a/b. Comparison with experi-
mental data of Stewart for the conductivity of the blood of a dog (k&=0,
+/b=1/4. 25, x=1.05) shows excellent agreement for concentration from 10
to 90 per cent. Also the observations of Oker-Blom for two suspensions of
sand in salted gelatine, give in each case constant values of x for various con-
centrations.

A. INTRODUCTION

HE present theory has been developed as a basis for experiments
" concerning the electric conductivity and capacity~ of colloids and

biological cell suspensions, like blood for instance, which for sometime
have been carried out in this laboratory. In this paper we shall con-
sider the e1ectric conductivity of a suspension of homogeneous non-

polarizable spheroids; in a second paper, the electric capacity of a
suspension of polarizable homogeneous spheroids for a current of low fre-
quency; and in a third, the conductivity and capacity for any frequency;
of a suspension of spheroids each consisting of a homogeneous interior
surrounded by a thin membrane the conductivity of which is different
from the conductivity of the interior. The last calculation includes the
case of a suspension of homogeneous polarizable spheroids. A series of
measurements illustrating the practical and theoretical applicability of

~A suspension is electrically equivalent to a certain resistance in parallel with a
certain capacity. We refer to this resistance and to this capacity when we speak of the
conductivity and capacity of a suspension.
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the theory will be given in separate papers. Preliminary reports of some
of the measurements have already been presented at meetings of the
American Physical Society.

An investigation of the conductivity of a suspension may serve as a
means of determining the conductivity of the single particles of the sus-

pension. Important knowledge of the state of the suspended particles
may thus be obtained, as in the case of protected metallic colloids, and
especially in the case of suspensions of biological cells the life of which

seems to be associated with the existence of a characteristic semi-perme-

ability of the exterior cell wall and of the different interphases of the
cell interior. In connection with the latter case we may refer to the
researches of Brooks, ' of Crile, Hosmer and Rowland, ' of Osterhout'
and of many other investigators on the changes of the electric conduc-

tivity of bacterial suspensions and of different plant and animal tissues
under varying conditions.

The determination of the conductivity of a suspension may also furnish

a method for obtaining the volume concentration of the suspension when

the specific conductivity of the disperse phase and of the suspending
medium is known. This method is used practically in the determination
of the volume concentration of the red corpuscles of blood. It seems

probable that it may have many other practical applications, as for
instance, the determination of the butter-fat of cream.

Finally, the measurement of the conductivity of a suspension may lead

to a determination of the structural factors of the suspended phase.
This is possible because as we shall see later, for a constant volume con-

centration the conductivity of a suspension is to a certain extent depen-

dent on the form (but not on the size) of the suspended particles. This

is especially marked when the suspended particles are non-conductors,

the condition which is of the most practical interest. This method may,
for instance, find practical application in soil analysis.

B. THEORY OF ELECTRIC CONDUCTIVITY OF SUSPENSION OF

SPHEROIDS

The determination of the electric conductivity of a suspension belongs

to a very important group of physical problems all of which depend on the
solution of Poisson's equation for a two-phase system, including Poisson's

~ J. Brooks, J. Gen. Physiol. 5, 365 (1923); Proc. Soc, Exp. Biol. and Med. , 19,
284 (1922)

~ G. W. Crile, H. R. Hosmer, and A. F. Rowland, Amer. J. Physiol. , 60, 59 (1922)
W. J. V. Osterhout, Injury, Recovery and Death in Relation to Conductivity and

Permeability, Phila. , 1922; (see Bibliography).



CONDUCTIVITY AND CAPACITY OF DISPERSE SYSTEMS 577

theory of induced magnetism, the Clausius-Mossotti theory for the
dielectric constant, the Lorenz-Lorentz theory for the index of refraction,
etc. Applied to the case of electric conductivity, the formula to which

these theories lead, reads
(k/k~) —1 (k./k~) —1

(k/k, )+2 (k2/k, )+2
in which A;, k~ and k~ are the specific conductivities of the suspension, the
suspending and the suspended mediums respectively; and p is the volume
concentration of the suspended medium. This formula is true theoreti-
cally only for the case of a suspension of spheres. The case of a suspension
of infinitely well conducting ellipsoids has been treated theoretically by
Poisson' in his theory of magnetic induction and also by Lampa' in his
theory of the dielectric constant of a crystal.

According to its theoretical derivation as presented hitherto, Eq. (1)
«an be expected to hold only for dilute suspensions. The reason for this is
that in the given theoretical treatment the electric field around any uss-

pended particle due to the electric charges on the other particles in the
suspension is considered 'as equal to the -average value of this field over
the whole space of the suspended medium. For the case of a cubic arrange-
ment of spheres, Lord Rayleigh has shown that the influence of these
charges is represented correctly in Eq. (1) only to the first approximation.
It seems dif6cult theoretically to decide whether the formula holds strictly
for the case of a random distribution of the suspended particles. That
it does is supported by the well known fact that there is usually a very
close agreement' between the values of the refractive index of a liquid.

(or dielectric constant, although the agreement here generally is less
close) 'as determined experimentally and as calculated from formula (1)by
~lieans of the experimental value of the refractive index for its vapor.
Confirmation was obtained for volume concentrations up to 15 per cent
by Millikang from his observations of the dielectric constant of emulsions
of water in benzol-chloroform. In the following presentation, therefore,
we shall take into account the interaction of the suspended particles by
means of the procedure employed in deriving formula (1); that is, we
shall add to the original field the mean value of the forces due to the
charges on the suspended particles throughout the whole space of the

' S. D. Poisson, Mem. Acad. Roy. Sci. Inst. France, 5, 488 (1826)
"' A. Lampa, Sitz. Math. Nat. Klasse Akad. Wiss. Wien. , 104 {IIa),681 (1895)
' Lord Rayleigh, Phil. Mag, 34, 481 (1892)
K. Briihl, Zeits. Phys. Chem. , 7, 1 (1891)

8 P. Lebedew, Wied. Ann, 44, 304 {1891)
' R. A. Millikan, Wied, Ann. 61, 337 (1897)
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suspending medium. The exactness of this method is proven b) ii, i'1

experimental verification'of the formula which we shall derive; to thi»

end we shall in this paper make use of the extensive experimental data
which have been accumulated for the electric conductivity of blood.

We shall consider first the general case of a suspension of homogeneous,
non-polarizable ellipsoids. The suspension is assumed to be 'n an elec-

trolytic cell, the dimensions of which are 1 &&1X1 cm. The potential
between the electrodes is V volts; the current i amperes.

Let us consider a single ellipsoid with half axes a, b, c in this suspension.

We shall, for the moment, consider c to be parallel to the direction of the
electric force. We shall introduce an orthogonal co-ordinate system with
its origin in the center 0 of the ellipsoid and its axes x, y, s parallel to
a, 6 and c (Fig. 1). We shall designate the electric force at an arbitrary

'X

PL,EcTRc)PE

point of the suspending phase as Ii; as stated above, this is composed ot

the original electric force V due to the surface charges on the electrode~
and of the mean value of the forces due to the surface charges on the
suspended particles throughout the whole space of the suspending

medium.
For the purpose of determining the surface charges of the ellipsoid vs

shall introduce confocal co-ordinates defining these for a point x, y, ~

as the three values of 0, ), p and v, which satisfy the equation

g2 p2-+ +u'+0 b'+0 c'+0

The potential due to the force P is
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I'he total potential at a point outside the ellipsoid must be of the form

(a'+p) (a'+v) "
dX

V „,= I' — —Q(a'+) ) +D+(a'+X) — — (2)
(b2 a2) (c2 a2) (a'+X) hX

while at a point inside the e11ipsoid

(a'+i) (a'+~) (a'+~)
(bo a2) (c2 a2)

where 6A= Q(a''+X) (b'+X) (c'+2.), and D and D~ are constants which

are to be determined by the boundary conditions. The boundary con-
fIjitions to be fulfilled are

(1) For X= oo, V„~ must be equal to the potential of the original

fIeM: this condition is fulfilled since the last term becomes zero for
CO',

(2) At the surface of the ellipsoid (X=O), V;„~——V.,&, hence, from

Rqs. (2) and (3),
d)

I&1 ——].+D
(a'+X) bX

D,

(ao+X) ~X

Di —j.—=—I.. .
D

i$ we write I., for the definite integral.
At the surface of the ellipsoid, N«f0~ =N;„& k2, N. ,f, and N;~f, being the

normal forces at the two sides of the surface of the ellipsoid. The equation
indicates that no accumulation of electricity takes place at the surface,
ITsing e for the direction of the normal to the surface of the ell psoid we
have

E..( = —(dU. ../dn)), =o= —(dV..&/dX)~=o . (dh/dm)) -o

'&nd a similar equation for N;„&,.
(.".onsequently our equation of condition becomes

(a'+ p) (a'+ v) 1 DI..+
{b'—a') {c'-—a') 2a 2e

D
k$

a'bc

(a'+~) (a'+o)—+PD1
(b' —a') (c' a') 2a—

by [1+Dr-, 2D/abc] = bo D&. —
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From equations (4) and (5) we obtain:

(1 —ks/ki)D—
2/abc+L. (ks/k, 1)—

2
D1 =—

2+abcL, (ki/ki 1)—
We now obtain fol V'

g

(&'+1 ) (s'+~) (s'+~)
(b' —s') (c' ')s2+sbcL (ks/ki —1)

or, going back to the x, y, s co-ordinate system

2Ix
2+ abc L,( k i/k i 1)— (6)

The values of V; ~ when 6 or c are parallel to the electric field, are derived

by replacing o in Eq. (6) by b or c.
The value of F is determined by the following equation:

fF.deeds+ f z. d*ds = v
ex'

in which I", is the component of the electric force parallel to x and dS an

element of area perpendicular to x, the first integral is taken over the

space outside the ellipsoids, the other over the space inside the ellipsoids.
We obtain, using equation (6) and writing

d) " dX

(b'+X) AX (c'+l)AiX

a=a, b,C 2
v=& (1 ~)+P''pg

2+abc L( k/ s,k—1)

In order to find the conductivity k of the suspension we shall divide
the space between the electrodes (Fig. 1) into an infinite number of

volume elements d5, dx.
By Ohm's law we have

k, f z~ J' r. ds+ k, J' d~ J' F, zs = i = vk,
est

where the first of the two integrals is taken over t»e space inside the
ellipsoids and the other over the space outside the ellipsoids.
equation is evidently equivalent to

k, J'd* J'p, dS+(k, k,)f d~ f L', dS = V—k
all all eel
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in which the first double integral is taken over the whole space between

the electrodes. Ke obtain

Vk, +(k.,—k,) J' dS[(V;.,) .—(V,„,),.] = Vk

2'
Vki+(k, —ki)——— —J'2x dS = Vk

2+abcL, (ki/ki 1)—
2ki(ku/ki —1)F/U

kg+ —- — ——p= k (9)
2+ abc L,(k i/ k i 1)—

p being the volume of the ellipsoids.
This equation corresponds to the case in which c is parallel to the

direction of the original field. The equations which correspond to the
cases in which b and c are parallel to the original field are obtained by
replacing c by b and c.

The equation corresponding to an arbitrary orientation of the ellipsoids
is the sum of three equations like (9)

2(k&/k, —1)F/V
3ki+kipg — —— —= 3k

2+ abc L,(k s/k i 1)—
Combining this equation with equation (7) we obtain

k2 —k

(1—p) (ki —ki)

Introducing this value of F/V into equation (10), we obtain finally

—', p
=~" 2(ks —k)k=ki+ —— (11)

1 —
p 2+abcL, (ki/ki —1)

"lA"e shall now confine ourselves to the case of spheroids, that is b =c.
6/e have the following two integrals in equation (11) to integrate

d) dX

(a2+1 ) +1 (a2+g) 8/2 (b2y1 )0 0

(b'+X) hX

AVe find by partial integration

2I = ——2
ab'

G

The integral

(b2+) ) 2(a2+1 ) i/2
0

d)

(a'+X) '"(b'+Ii) '

B
=M

(a2+ 1 ) 1/2(b2+g) 2

0
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can easily be calculated.

(q ——,
' sin 2q)

M (a(b) = ——cos p
sin p

where cos p= uj'b, and

,V(c&b) =
sin p 2

consequently hy (11),

(:os'p' (1+ sin y')——log (
— —), where cos p = b

sin'q '
E, 1—sin g')

kgpp (k2 —k)
k= kI+—

(1—p) (kg —kg)

or —=Pl

where p = pgj(1+pi)

and
l k2

1+(k2jkg —1)~M 1+(k2jkr —1) (1 —V) kg

-=06
-3.00'

8.80— I LJ —— 580/g

Ia~
b 3

2.80

lI, ,
II 5=2

I /]'///,
////i'

,V~~

4G

20 ————.—— AO~ T
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Fig. 2. Graphical representation of p for the case of the oblate spheroid,

In Figs. 2 and 3 we have plotted P against k2 jk~ (or kq jks) for diAerent

values ofo jb.

The influence of the geometrical factors of the suspended particles i~

expressed in equation (13) solely in P. Therefore we conclude from the

expression for P and from Figs. 3 and 4, that for a constant volume con-

centration, the conductivity of a suspension is independent of the size ot'

the suspended particles and also nearly independent of the form of the
particles when the difference between the conductivities of the suspended

and the suspending phases is not very large. This is especially true for
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suspensions of prolated spheroids which are less conducting than the
;.uspending medium.

Putting
(ks/'k& 1) ——(l~s/k&)P

x
(ks/k& —1)—P

we otjiain from equation {13) the following analogue io equation (1)"
(kjk,) —1 (k,jk,) —1

p
(k/k, )+x (k2/k, ) +x

x is plotted in Figs. 4 and 5.
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&'ig. 3. (.'r'lphical representation of p for the case of the prolate spheroid.

For the case of the sphere, x= 2, making Eq. (14) identical with Eq. (1).
For the case when k2 ——0, Eq. (13)becomes

Pp = Ppi (13)
1 —p

' = —1/(Il+1); ff = —('+1)jx,
~nd I'c, . ('i4'I 4ccomes

p k —kg

X k+ klX

COMPARISON OF I HEORV AVITH EXPERIMHNTAI. DATA

In this section we shall apply the formula which we have derived to
the very accurate and extensive experimental data for the conductivity

"Compare O. Wiener, Abh. IZ. Sachs. Ges. Wiss. Math. Phys. Kl. 32, 509 (1912)
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of blood which have been accumulated by Stewart, "Bugarszky, "Fra-
enckel" and others. According to these investigators for a current of
low frequency the red corpuscles of blood are perfect insulators so that
the ratio of the conductivity of blood to that of its serum is dependent

only on the volume concentration of the red corpuscles but independent ot

the absolute value of the conductivity of the serum. Determinations of
this ratio are made for volume concentrations up to 90 per cent. For the

Fig. 4.
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Graphical representation of x for the case of the oblate spheroid.

same value of the volume concentration, this ratio is very nearly the same

for the blood of man, horse, dog and cow." The most exact methods for
determining the volume concentration have been used by Stewart and

Fraenckel. Stewart has used two independent methods, a colorimetric

and Hoppe-Seyler's chemical method. Fraenckel has used Bleibtreu's
chemical method. The agreement between the results of Stewart and

those of Fraenckel is very good. However, as has been stated also by
Fraenckel, one would expect that Stewart's methods would give the most

exact results. We shall, therefore, restrict ourselves to a comparison oI'

the results of Stewart with those secured by the formula. In Table I

is given a series of measurements made by Stewart (1.c."' p. 369) for the

blood of a dog. The volume concentration of the normal blood was deter-

mined twice by the colorimetric method and twice by Hoppe-Seyler s

method. The results were 41.16, 40.72, 41.52 and 40.99 per cent, the

average ratio being 40.98 per cent. A series of red corpuscle suspensions

of varying volume concentration was made up by concentration or

» G. N. Stewart, J. Physiol. y 24) 356 (1899)
' S. Bugarszky, Zentr. Physiol. , 11, 297 (1897-98)
"P.Fraenckel, Zeits. klin. Med. , 52, 470 (1904}
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dilution of the normal blood. The volume concentration for each of these
suspensions was determined volumetrically using the value of the volume
concentration of the original blood. These volume concentrations are
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Fig. 5. Graphical representation of x for the case of the prolate spheroid.

given in Table I under p (obs. ). The ratio of the conductivity of the
serum to that of the blood is given under k&/k.

In applying our formula, we take k2=0, and assume a/k=1/4. 25;
consequently (see Fig. 2) x=1.05 and P= —1.95, and either (15) or (17)

TABI.E I
Conductivity of blood of dog

15.62
9.08
6. 56
5.06
4. 14
3.51
3.063
2. 726
2. 436
2. 348
2. 225
1.903
1.697
1.539
1.428
1.342
1.232

p(obs. )
(per cent)

90.7
82. 1
74. 5
67. 8
61.6
56. 1
51.0
46.4
42. 2
41.0
38.4
31.9
26. 4
21.8
18.1
15.3
11.4

p(calc. )
(per cent)

88. 2
80.5
74. 0
67. 5
61.6
56. 2
51.4
46.9
42. 3
40. 8
38.5
31.6
26. 3
21.6
18.0
14.9
10.7

Difference
(per cent)

+2.7
+2.0
+0.7
+0.4—0.0—0.2—0.8—1.0—0. 2—0.5—0.4—0.8—0.0
+1.0
+0.5
+2.4
+6.1

may be used to calculate the values of the volume concentration p for
the observed values of k&/k These are given u. nder p (calc.). The devia-
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tions p (obs. ) —p (calc. ) given in the fourth column are probably always
within the experimental errors. *

It may be of interest to apply our formula also to some measurements
of sand suspensions which have been made by Oker-Blom. ' and are often
rited in connection with work on the conductivity of blood. Two different
kinds of sand were used. The suspensions were prepared by adding the
sand to a hot salt solution containing 3 per cent gelatine and cooling this
mixture to gelatination under continuous rotation. No information is

I ABLE II
Conductivity of suspensions of sand

k /k(obs. ) p(obs, ) P
{per cent)

2.488 40.
2.220 36.4
2.075 33.3
1.952 30.8
1.866 28. 6
1.790 26. 7
1,725 25.0
1.6835 23. 5

Average values:

2. 22
2. 14
2. 15
2. 14
2. 17
2. 17
2. 18
2. 22
2. 17

.820

. 876

.870

.876

.854

. 854

. 848

. 820

. 854

given concerning the form of the sand particles except for the statement
that the particles of the sand which were used in the second series of
experiments (Table III) were more nearly spherical than those which

were used in the Iirst series (Table II). Our theory is therefore best

TABLE Il I
Conductivity of suspensions of sand

k g/k (obs. ) p (obs. ) P x
(per cent)

1.190
1.426
1.734
2. 156
2. 715
3.613

10
20
30
40
50
60

Average values:

1.710
1.705
1.7.12
1.732
1.7i5
'.I. 74
1.72

1.410
1,420
1.405
i.367
1.400
1.35
1.392

~The red corpuscles of mammalians according to the most generally accepted data
are biconcave in shape but their dimensions especially in the dog have not been accu-
ra.tely measured. The value 1/4. 25 for a/b which secures the best agreement in the
present case is in good agreement with the observed values for the dimensions. De-
terminations of the conductivity of the blood of different animals with simultaneous
measurements of the dimensions of the red corpuscles will be made in this laboratory;
these investigations will include studies of the blood of different non-mammalian ver-
tebrates in which the red corpuscles are approximately ellipsoids.

"M. Oker-Blom, Arch, Ges. Physiol. , V9, 510 (i.900)



applied by using Oker-Blom's observed values of k&/fr, and p and calcu-
lating the value of x by means of Eq. (i.7) since k~ ——0. Our calculated
results are given in Tables II and III, one for each of the two kinds of
sand used by Oker-Blom The calculated values for x in each case are
constant within experimental errors. It hardly seems probable, however,
that the sand particles could have been as Hat as these values for x would

indicate; it is more probable that the large values for x are due to the fact
that the sand particles became more or less completely orientated by
the rotation. Eq. (14) with a different value for x holds also in this case.
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