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ABSTRACT

Limiting current between concentric spheres; calculation of the function

a =f(r/ro't in the space charge equation i = (4+2/9) Q(e/ns) V'I'/a'. —The co-
efFicients of the first six terms of a series for a were determined, and a~ cal-
culated from this series. The results were checked by an integration method
which was also used to calculate values in the region where the series failed.
For an emitter of radius ro inside a collector of radius r, values of a' when

log (r/ro))6. 4 are given by the equation
~a =0.112 log (log r/ro)+ 3 log (r/ro)+0. 152.

Where the collector is the inside sphere, values of a' for ro/r&9 are given
by the equation (-,'a')'I'=1. 11 (ro/r) —1.64. It is shown that when the col-
lector is the inside sphere the potential distribution near the collector is un-
altered if the emitter is replaced by a non-emitting sphere with a diameter
.677 times the original diameter.

Limiting current between coaxial cylinders and between concentric
spheres. —Equations are derived for the current in terms of the radius of cur-
vature of the emitter, It is shown that at a surface in space four-6fths of the
distance from the emitter to the collector the current density is independent
of the radius of curvature when r/ro OI fo/r(2; and in the case of coaxial
cylinders with the emitter inside this holds true even when r/rp=20.

'HE problem of the calculation of thermionic currents limited by space
charge has to deal with three simple cases, those of parallel planes,

coaxial cylinders, and concentric spheres. These three cases have the
characteristic that when an electron current is flowing, the lines of force
and the paths of the .electrons coincide. Parallel planes' and coaxial
cylinders' have been considered in previous papers, and the equations
have been given for calculating the currents for these surfaces. Although

it is easy to construct apparatus in which the conditions approximate
closely those of the cylindrical case, it is dificult to build devices in which

the heated cathode takes the form of a sphere.
Recently space charge equations have been used in a new line of ex-

perimental work' to measure the intensity of ionization in gaseous dis-

charges in which a positive ion sheath forms around the negatively charged
electrode and the current is limited by space charge. Surfaces of different
shapes have been used for electrodes, and since the sphere has proved

' Langmuir, Phys. Rev. 2, 450 (1913);Phys. Zeits. 15, 348, (1914)
' Langmuir and Blodgett, Phys. Rev. 22, 347 (1923)
' Langmuir, Science, 58, 290 (1923); Gen. Elec. Rev. 26, 731 (1923);Journ. Franklin

Inst. 196, 751 (1923)
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to be particularly suitable, the space charge equations for spherical elec-

trodes have assumed practical importance. The development of these

equations and the calculation of the numerical values of the function a

whjch they involve will be given in this paper. The derivation has been

made with the intention of using the equations to calculate the How of
either electrons or positive ions, and for this reason the general case
has been developed in which the current Rows from an emitter to a
collector without regard to the direction of the voltage between the
electrodes. Thus for calculations on ionization in gaseous discharges the
outer edge of the positive ion. sheath itself is the emitter of ions and the
negative electrode within the sheath is the collector.

.For the case of space charge between concentric spheres Poisson's

equation becomes
1 d ( de

1=4 ~ (&)r' dr E dr)
where U is the potential at a point distant r from the center, and p is the
electron space charge. If i is the total thermionic current, v the velocity
of electrons or ions at the distance r, and e and m the charge and mass of
an electron or ion,

i=4mr2pU. (2)
If we neglect the initial velocities of the particles we have

—',mv2= Ue (3)

where U is measured from the surface of the emitter. Combining Eqs.
(1), (2), and (3) gives

d ( dV& . m
r2 =z

dr i drj 2eV
(4)

e V312

m a2

where a is a function of the ratio of the radii r and ro of the spheres, ro

being the radius of the emitter. It is seen from this equation that the
current is independent of the actual sizes of the spheres since the radii

appear only in a ratio.

CALCULATION OF a

An equation in a can be obtained by substituting Eq. (5) in Eq. (4)
and placing

(6)v = iog(r!r.)

This equation, like the similar equation for coaxial cylinders, probably
cannot be directly integrated, but a result can be obtained in terms of a
series. The Anal solution takes the form
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This gives
d'n (da) ' da

3a +
I

—)+3a—1=0
dv' Edy) dy

(7)

From this equation the values of a can be obtained in terms of a series.
The coefficients of the first six terms of the series were obtained by a
method described in a recent paper, ' which makes use of Maclaurin'~

series in the neighborhood of y=0. The series for a thus calculated is

a =p —0.3y2 10.075'' —,0.0143182y4+0.0021609'' —0.00026791''+ ."(8)

The first three coefficients are exact and the last three are each rounded

off in the last figure.
Case where r/r0)1 (Emitter inside of collector). For values of r/ro up to

5, a could be calculated accurately to three places of decimals from the
series in Eq. (8). For the larger values, however, the six terins were en-

tirely insufficient, and an integration process was used to complete the
calculations. This process was applied to the equation obtained from

Eq. (7) by making the substitution

y = -'a' (9)
which gives

d'y 1 (dy& ' dy
3 ——

)
—)+3——1=0

y Ed'v)
(10)

The method employed was described in the recent paper referred to
above, and consists essentially in substituting approximate values of y
ancl dy/dy in Eq. (10), solving the equation for d'y/dy', and integrating
the values thus obtained for new values of y and dy/dy which will be
more nearly correct than the approximate values substituted at the be-

ginning of the process. These calculations were made with y in the
region y=1.0 to y = 2.2, and the values of y obtained as the result of in-

tegration agreed exactly with those obtained from the series. The process
was then used to calculate y in the range y = 2.2 to y = 26.8 where the series
was insufficient. The results of these calculations are given in Table I;

The following empirical equation was found to fit the calculated values
of y, dy/dy and d'y/dy' with a high degree of accuracy for values of y
greater than 11.8,

y=0. 112 log y+-,'y+0. 152.

The values of y given by this equation have an error of .48 per cent at
y =6.4 and .025 per cent at y = 11.8.

Table lf gives the complete range of values of a' up to r/rp = 100,000.
The values corresponding to r/ro)5 were obtained from interpolations
for a from Table I, using Newton's interpolation formula.
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Case where r/ro(1 (Emitter outside of collector) T. he series in Eq. (g)
that was used to calculate a in the preceding case is also applicable in the
inverted case where the cathode is the outside cylinder, but since y is

now negative the signs of the alternate terms are changed. In this case,
also, the integration process was used to calculate a for the larger values

of y.

TABLE I

2.2
2.4
2;6
2, 8
3.0

3.2
3.4
3.7
4.0
4.3

4.6
9

5.2
5.8
6.4

7.0
7.6
8.2
8.8

11.8

14.8
17.8
20.8
23.8
26, 8

dy/dp

.4512

.4435

.4354

.4275

.419.8

.4126

.4060

.3970

.3891

.3825

.3767

.3720

.3678

.3615

.3569

.3536

.3510

.3493

.3476

.3433

.3410
~ 3397
.3387
.3380
.3375

.8424
, 9319

1.0198
1.1061
1.1908

1.2741
1.3559
1.4763
1.5942
1.7099

1,8238
1.9361
2.0471
2.2658
2, 4812

2.6944
2.9057
3;1157
3.3249
4.3607

5.3867
6.4077
7.4252
8.4402
9.4534

1.2980
1 ' 3652
1.4281
1,4873
1.5432

1.5963
1.6468
1.7183
1,7856
1.8493

1.9099
1.9678
2, 0234
2. 1288
2.2276

2.3214
2.4107
2.4963
2 ' 5787
2.9532

3.2823
3.5799
3.8536
4. 1086
4.3482

The equation which was used in this process was obtained by combin-

ing Eqs. (6) and (10) and placing ro/r= o, which gives'
d'y 1 dye ' 1

3 —— —
i
——=0

do' y da) o' (12)

The results of calculations using the integration process in the range

o =7 to o =22 are given in Table III.
In the neighborhood of o =22, the term 1/o' in Eq. (12) is decreasing

rapidly and has already become only 0.7 per cent of the second term,

so that a solution of the equation neglecting the term 1/o' gives a good
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approximation formula for y which may be used to obtain values of a

in the region beyond o. =22. The complete solution of
d'y 1 (dy~ '—

I
—1=p (13)

d~' y &do)
1s

y~I3 =A ~+8
TABLE II

e' as furIctiorI of radius,
rp=radius of emitter; r=radius at any point P;
a' applies to case where P is outside emitter, W&rp,

(—a)' applies to case where P is inside emitter, rp &r.

(14)

r rp—or-
rp r

1.0
1.05
1.1
1.15
1,2
1.25
1.3
1.35
1.4
1.45

1.5
1.6
1.7
1.8
1.9
2.0
2. 1
2.2
2.3
2.4

2, 5
2..6
2.7
2.8
2.9
3.0
3.2
3.4
3.6
3.8

4, 0
4.2
4 ' 4
4.6
4;8
5.0
5.2
5 4.

5.6
5.8
6, 0

0.0000
~ 0(Q3
.0086
.0180
.0299
.0437
.0591
.0756
.0931
.1114

. 1302

.1688

.208

.248
, 287
~ 326
.364
.402
.438
.474

.509

.543

.576

.608

.639

.669

.727

.783

.836

.886

.934

.979
1.022
1,063
1.103
1.141
1.178
1.213
1.247
1.280
1.311

( —a)p

0.0000
.00/4
.0096
.0213
.0372
.0571
.0809
. 1084
. 1396
.1740

.2118

.2968

.394

.502

.621

.750

.888
1.036
1.193
1.358

1.531
1.712
1.901
2.098
2.302
2.512
2.954
3.421
3.913
4.429

4.968
5.528
6.109
6.712
7.334
7.976
8, 636
9, 315

10.01
10.73
11.46

r rp—or-
rp r

6.5
7.0
7.5
8.0
8.5
9.0
9.5

10
12
14

16
18
20
30
40
50
60
70
80
90

100
120
140
160
180
200
250
300
350
400

500
600
800

1000
1500
2000
5000

10000
30000

100000

1.385
1.453
1.516
1.575
1.630
1.682
1.731
1.777
1.938
2.0,73

2. 189
2.289
2.378
2. 713
2.944
3.120
3.261
3.380
3.482
3.572

3.652
3.788
3.903
4.002
4.089
4. 166
4.329
4.462
4.573
4.669

4.829
4.960
5. 165
5.324
5.610
5.812
6.453
6.933
7.693
8.523

( —~)'

13.35
15.35
17.44
19.62
21.89
24. 25
26. 68
29. 19
39.98
51.86

64. 74
78.56
93.24

178.2
279, 6
395, 3
523.6
663.3
813.7
974. 1

1144
1509
1907
2333
2790
3270
4582
6031
7610
9303

13015
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The values of 2 and 8 were derived from the data in Table I I I, with

the result
y'" = 1.11o—1.64. (15)

Values of y obtained from this equation have an error of 0.5 per cent
at o =9 and 0.025 per cent at o-=18. Table II gives the complete range
of. values of a' for. this case up to ro/r =500. Eq. (15) was used for the.
calculations in the range ro/r = 22 to 500.

TABLE I I I

o =rp/r
7.0
7 ' 5
8.0
8.5
9 ' 0
9.5

10.0
12,
14.
16.
18 '
20.
22 '

dy/do
2.0454
2, 1376
2. 2261
2.3113
2.3935
2.4730
2.5501
2.8379
3.0990
3.3400
3.5646
3.7760
3.9761

y=-', a'
7.675
8.721
9.812

10.947
12.123
13,340
14.596
19.988
25.930
32.371.
39.280
46. 622
54.378

3.918
4. 176
4.430
4.679

5, 165
5.403
6.323
7.201
8.046
8.863
9.656

10.429

Low values of a' for either the direct or inverted case where r/ro or

rq/r (1.4, may be conveniently calculated from Eq. (16) which is derived

in the following manner. Put e=(ro/r) —1 and expand y= —log(ro/r)
into a series in terms of e. Substitute this value of p in the equation ob-
tained by squaring Eq. (8) and as a result

2 77 313
ao ~2 ~3+ ~4 ~5+ (16)

5 300 1100

Logarithmic differentiation of Eq. (5), considering i as constant, gives

86 3 dV
2 ——— (17)

a 2 t/'

Logarithmic differentiation of Eq. (15) combined with Eq. (9) gives

4 de 1.11 do-
(18)

3 a 1.11a—1.64

Combining this with Eq. (17) and substituting a =ro/r,
d U dr f1 1.4771

U r' t r ro ) (19)

In the case of two concentric spheres, neither of which is emitting current,
the voltage at any point of radius r is

('1 1
U=A

gf fy
(20)
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where V is measured with respect to the sphere of radius ri. Logarithmic
differentiation of Eq. (20) gives

dV dr It' 1 1

V r' & r rj
(21)

Comparing Eqs. (19) and (21) we see that they become identical for ail
values of r if we place

rg ——0.677 rp. (22)
Thus when current emitted by a spherical electrode is being collected by
an inner concentric sphere of small diameter, the effect of space charge
is to make the potential distribution near the collector the same as it
would be if the outer sphere were not emitting current and were given a
diameter 67.7 per cent of the original diameter. A similar ratio of di-
ameters for the case of cylinders was given in the previous paper and is
0.707.

COMPARISON OF EQUATIONS FOR PLANES, CYLINDERS AND SPHERES

The equations given in this paper and two preceding papers for
calculating thermionic currents limited by space charge are as follows:
Parallel planes (i, = current per unit area)

V3/2

(23)

Coaxial cylinders (ii ——current per unit length)

2+2
&l

9
Concentric spheres (i = total current)

V3/2

m rP'
(24)

4+2
Z=

9 m a' (25)

If these three equations are written in the same form by substituting
ii/(2nre) i, and i=/(4mro') =i „they. become
for parallel planes,

for coaxial cylinders,

for concentric spheres,

where

s.=D/x'

i,=D/(rorp');

s =D/(r a')e.

(26)

(22)

(28)

e
V3/2

m
(29)
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If i is expressed in amperes per cm, V in volts, x and r in cm, and e

and m are the charge and mass respectively of an electron, D has the value

D = 2.336' &0-6V&~2

If e and m are the charge and mass of an ion,

D = 5 .455 X 10 o V't '/~M
where 5f is the molecular weight of the ions (oxygen atom = 16).

Consider the case of two concentric spheres that are very close together
so that their surfaces are almost parallel. If we put r=(ro+x) and

b=x/ro=(r/ro 1)—we can write a series for a' similar to the series in

Eq. (16) as follows
8 617

a2= b' ——b'+ b' —. ~ .
5 300

(30)

This value of a' may be substituted in Eq. (28) and it is then seen that
when b becomes so small that all the terms in the series except the first
are negligible, the equation becomes identical with Eq. (26) for parallt I

planes.
In the same way a series for P2 can be derived, which is

9 123
P2 —b2 b3+ b4 ~ ~ ~

5 50
(31)

(33)

We now see that the equations for cylinders and spheres in terms of the
total curvature of the emitting surface have the first two terms identical,
By expanding the reciprocal of the series in Eq. (32) we obtain an ex-
pression for 1/(rorp'), in which the second term is +4/5 (xpo) but the

and this can be substituted in Eq. (27) which will also become identical
with the equation for parallel planes when b is very small.

Where the surfaces of cylinders and spheres are farther apart so that
the second and third terms of the series in Eqs. (30) and (31) become
important and the conditions no longer closely approximate those of
parallel planes, these series enable us to obtain equations for the current
in terms of the total curvature of the emitting surfaces. This, total
curvature po in the case of the emitting cylinder is po=1/ro, and for the
sphere is po =2/ro. Combining r = (ro+x) with Eq. (31) and substituting
the value of po for a cylinder, we have

4 33
rorpo= x ]

1 ——xpo+ —x po' —.. .
5 50 ) (32)

Similarly from Eq. (30) we have for spheres

4 617 , ,rooao=xo] 1——xpo+ xopoo —.. . )
5 1200 j
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third term is only —0.02 x'p' which is 3 per cent of the third term in

Eq. (32). Carrying through a similar process for Eq. (33) the third term
becomes 0.126 x'p'. Substituting these values for 1/(rorP') and 1/(ro'a')
in Eqs. (27) and (28) and neglecting the third terms of the expansions,
we have

Q2 e V't' ( 4i.= —
/

1+-xp, [m x2& 5 )
(34)

which is the equation for parallel planes with a first order correction term
for curved surfaces in terms of the curvature of the surface.

But it was arbitrary when defining the current per unit area and the
total curvature to choose the area and curvature of the surface of the
emitter. We may just as well choose the surface of the collector or any
surface between them. We shall consider the general case where the
current is measured per unit area of a surfa'ce of radius r& = (ro+kx) for
which the total curvature is p~ = po/(1+pokx) for a cylinder or pq= po/(1+
-,'pokx) for a sphere.

In this case from Eqs. (27) and (28) the current per unit area of the
new surface is i,=D/[(ro+kx)rP'] for cylinders and i,= D/[(r o+k )x' a]

for spheres. Eqs. (32) and (33) will then become

8
(ro+kx)rP' x' 1=+( k ——[xp&+( k' ——k+—[x'p~'+ ——— (35)

5) & 5 50)
and

( 4) (3 6 617'
(ro+kx)oao=x' 1+( k ——

Ixp~+(
—k' ——k+ [x'p~o+ ——— . (36)

5 ) E4 5 1200i

It now becomes apparent that for k=4/5 the second term in both
series will vanish for all values of xp~, and the coefficients of x'pj' will be
small, having the value .02 for cylinders and .0342 for spheres. This
means that for all values of xp~ that make the third terms negligible, the
current per unit area of a surface four fifths of the dist-ance from the emitter

to the collector is the same as for parallel plane electrodes spaced the same
distance apart as the two curved electrodes.

We have thus determined a surface in space at which the current per
unit area is the same whether the electrodes are plane or curved, provided
that .03x'p&' is small compared to unity. This suggests that it may be
possible to locate such a surface in every instance by properly choosing
the value of k. At this surface, the equations for parallel pl'anes, coaxial
cylinders, and concentric spheres must become identical, and therefore,
substituting (ro+kx) for ro, we have from Eqs. (26) an'd (27)

x'= (ro+ kx)rp' (37)
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from which
x fo

k
rP' x

(38~

Similarly in the case of spheres
x' = (ra+ k x)'a'

from which
(39)

(40)

Since x= (r ro), Eq—s. (38) and (40) may be written with the radii of
the curved surfaces appearing in each case only as a ratio. Values of k

calculated from these equations are given in Table IV.

TABLE IV
values of k as a function of the radar'2

r rp—or-
rp r

1, .0
1.2
1.5
2.0
5.0

10
20

100

Cylinder
r/rp)1
0.8000

.7970

.7932

.7904

.7935

.8090

.8340
;9081

1.0000

Cylinder
r/rpq1

0.8000
.8039
.8093
.8171
.8455
.8677
.8883
.9258

1.0000

Sphere
r/rp &1

0.8000
.7877
.7718
.7513
.6862
.6393
.5959
.5132
.0000

Sphere
r/r0(1
0.8000

.8122

.8268

.8450

.8959

.9260

.9490

.9805
1.000O

Consider the case of two coaxial cylinders where the emitter is the
inner one and has a radius 1 while the collector has a radi'us 20. From
Table IV k =.834, and a surface 83.4 per cent of the distance from the
emitter has a radius r~ ——16.846. The current per unit area of this surface

by Eq. (27) is i, =D/(16. 846rP'). Substituting the value P'=1.0715 when

r/ro=20 we have i,=D/361 for the correct value of the current, which

is the same value as i, =D/(1 )9' for the current between two parallel

planes.
If we had given k the approximate value 0.8 we shouM have had

i.=D/347 2for the current per u.nit area of a surface with radius ri = 16.2.
This diff'ers from the value of current between parallel planes by 4 per
cent, and since this error is (.8x —834x)/(ro+. 8.34x) it is clear that it is
less than the error in k. Thus in this case for a range of ratio of radii
from 1/1 to 1/20 the current per unit area of a surface four-fifths. of the
distantce from the emitter is the same as the current between parallel
planes within an error of 4 per cent, and over half the range the error
is less than 1 per cent.
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On the other hand in the case of coaxial cylinders with the emitter
outside, Table IU shows that k departs much more rapidly from the value

0.8. The error introduced into calculations of current by choosing k =0.8
instead of the exact value k, from the Table is (.Sx —k.x)/(ro+k, x) where
x= (r ro) is—now negative. This error in current is proportional to the
error in k as k, is to (ro/x+k, ), which shows that calculations of current
using k=0.8 may be made with an error less than that of k only up to
ro/r=2. 55, and above that point the error is greater than that of k,
becoming infinitely great as ro/r approaches infinity.

In the case of spheres the value k =0.8 yields an error of 5.6 per cent
for r/ro= 2.0 where the emitter is inside, and 7.9 per cent for ro/r= 2.0
where the emitter is outside. Thus when current is flowing in either
direction between any curved surfaces where the I'adius of the outer
surface is not more than twice the radius of the inner, the amount of
current flowing per unit area of a surface four-fifths of the distance from
the emitter to the collector is very nearly the same as the current between
parallel planes. In the case of coaxial cylinders with the emitter inside
this same rule applies with similar accuracy even when the radius of one
is twenty times the radius of the other.

The writers wish to acknowledge the assistance given by H. M. Mott-
Smith in the mathematical analysis of this problem.
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