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1 his part deals with the quantum theory aspects of the problem, In the
absence of external radiation fields the distortion in the shape of the orbit
is essentially the same in both the classical and quantum theories provided in
the former we retain only one particular term ri, r~, v 3 in the multiple Fourier
expansion of the force 2e'6/3c' on the electron due to its own radiation. The
term to be retained is, of course, the combination overtone asymptotically
connected to the particular quantum tiansition under consideration. Then
the changes b,Ji, d J2, d Jq in the momenta Jp which fix the orbits and which
in the stationary states satisfy the relations Jg =noh, are in the ratios of the
integers r., v&, v3 in both the classical and quantum theories, making the
character of the distortion the same in both even though the speed of the
alterations may differ. One particular term in the classical radiation force
is thus competent to bring an orbit from one stationary state to another.

The correspondence principle is then extended so as to include absorption
as well as the spontaneous emission ordinarily considered. Commencing
ahvays with a given orbit it is possible to pair together the upward and down-
ward transitions in such a way that in each pair the upward and downward
optical frequencies (determined by the hv relation) are nearly equal for large
quantum numbers (usually long wave-lengths). That is, if s denotes the
initial orbit there exist levels r and 5 such that the ratio (W„—W,)/(W, -Wg}
or s„,/s, g approaches unity when the quantum numbers become large. Ke shall
define as the differential absorption the excess of positive absorption due to
the upward transition s-+r, over the negative absorption (induced emission) for
the corresponding downward transition s-+l. It is proved that for large
quantum numbers the classical theory value for the ratio of absorption to
emission approaches asymptotically the quantum theory expression for the
ratio of the differential absorption to the spontaneous emission, Consequently
a correspondence principle which makes the numerical values of the emission
in the two theories agree asymptotically, of necessity achieves a similar
connection for the absorption.

The correspondence principle basis for a dispersion formula proposed by
Kramers, which assumes the dispersion to be due not to the actual orbits but
to Slater's "virtual" or "ghost" oscillators having the spectroscopic rather
than orbital frequencies, is then presented. Kramers' formula has both
positive and negative terms and the differential dispersion may be defined in a
manner analogous to the differential absorption. It is shown that the quantum
differential dispersion approaches asymptotically the dispersion which on the
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classical theory would come from the actual multiply periodic orbit found in

the stationary states. This asymptotic connection for the general non-degen-
erate multiply periodic orbit must be regarded as an important argument for
Kramers' formula.

j.. INTRODUCTION

CCORDING to the first postulate of the Bohr theory of atomic
structure the electrons can move only in certain particular quantized

non-radiating orbits or stationary states. In order that the quantum
conditions may be applicable it is necessary for the motion to be of the
so-called "multiply periodic" type, which can be represented by multiple

Fourier series of the form

x = ZnrstaX(rl&ri&ri) cos [21I (Tlkpl + riG&2 + racos)t + Y~ vari~ i]

with similar expansions by y and s. The constants cv», co2, co3 are the
intrinsic orbital frequencies, and the summation is to be extended over all

possible positive and negative integral values of the integers 7.», 7~, ~3

subject to the restriction that v»cv»+v ~~2+r3~3 be positive. For simplicity
in notation we have assumed that there are only three ~'s, but in general
the number of such frequencies can be equal to or less than the number of
degrees of freedom of the atomic system to which the electron under
consideration beiongs. (The slight modifications necessary to extend
the results of the present paper to systems with more than three frequen. -

cies will be discussed in section 17). We shall also suppose that the
system is "non-degenerate" so that the number of degrees of freedom is

equal to rather than greater than the number of frequencies. This means
that in the case of three co's, the problem may be thought of as one of a
single electron moving in an asymmetrical three-dimensional static force
field. It will also be assumed that the orbits conform to the classical
mechanics and that all solutions of the differential equations of motion
can be represented by series of the form (1), thus making the complete
dynamical system multiply periodic, rather than merely certain particular
families of orbits.

The quantum conditions for determining the size of the stationary
states consist in equating to integral multiples of k a set of orbital con-
stants J», Jm, Je defined by the relations

oui = BWjBJi(k = 1,2,3); 22' = &~i+ J'i~u+ Ja~i,'

where W'is the total energy and l is the average kinetic energy. %'e ca»i
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therefore set J),——n),h (k =1, 2, 3), where r)„n~, n~ are the integers or quan-
tum numbers characteristic of a stationary state. '

According to the second postulate of the Bohr theory an electron may
pass from one allowed orbit to another. The frequency v„, of the quantum
of light thus radiated or absorbed is determined by the familiar relation

hv, ., = H/"„— t/V, , (3)

where W, denotes the energy of the stationary state r (with r = r, s, etc. ).
In the case of emission, r is the initial state and s the final state, while for
absorption the significance of these symbols is just reversed, as r repre-

sents the higher energy level.

Considerable information concerning the probabilities of the various
transitions between different orbits is furnished by Einstein's derivation'
of the Planck radiation formula, p(v) = 8~v'hc '/(e""/ —1), for the
speci6c energy density of black body radiation. Einstein assumed:

(I) The number of atoms X, in the state r is given by the statistical
mechanics formula

Qs—I(vr) /) r/g, r w(r) /v, r—
where N is the total number of atoms, and the sum is to be extended over
all possible states. '

(II) The amount of energy emitted in a time At by transitions from

the state r to the state s is represented by a formula of the type

++~s = hvrs +r [+r~s + +r~s p(vrs)]+t ..

(III) The amount of energy absorbed by transitions from the state s

to the state r is given by

/).E,~„= hv„ 1V,B,~, p(v„)Dt .

(IV) There is to be statistical equilibrium (i.e. &K,=&&, , ) when

the energy density has the characteristic black body distribution given by
the Planck formula. Using Eqs. (3) and (4), one can verify that this
equilibrium condition will be ful611ed provided the probability coefhcients

~ The quantum conditions have been stated above in what may be termed the corre-
spondence principle form. Some readers may be more familiar with the formulation
used by Sommerfeld and others, which consists in equating certain phase or "quantum"
tntegrals to integral multiples of h, but the two methods can readily be shown to yield
the same results in non-degenerate systems. See, for instance, appendix 7 of Sommer-
feld's "Atombau. "

' Einstein„phys. Zeit. 1S, 121 (1917)
' The "a priori probabilities" p, which ordinarily appear in front of the exponentials

in Eq. (4) have been omitted, as we are concerned with non-degenerate systems where
all states have the same a priori probabilities, making the p, 's in numerator and de-
nominator cancel.
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„B„„andB,~„, which are independent nf the temperature and

energy density, satisfy the relations

B,~, = B,~, = (c'(Ss he„,')A „~, . (7)

Einstein s criterion of statistical equilibrium under black body radia-
tion thus tells us how emission and absorption vary with the density,
Eqs. (5) and (6), and how they are related to each other, Eq. (7), but still

leaves undetermined the magnitude of the coefficient A„, in (7). To
evaluate approximately the latter it is customary to resort to the corres-

pondence principle, as explained below.

It is well known that according to classical electrodynamics an acceler-
ated electron radiates energy continuously and that if in particular the
orbit is of the form (I) then the light thus emitted should be resolved by
spectroscopes into frequencies which are combination overtones v&co&+

~2~&+ F 3~3 of the orbital frequencies co&, co&, cv3. According to the quantum
relation (3) there is, however, no such immediate connection between the
spectroscopic frequency and actual frequencies of motion, but it can
easily be proved that if the quantum numbers n&, n2, n3 of the states r

and s differ from each other by r&, v.2, v3 units respectively, so that
AJ&=r&k, then in the region of high quantum numbers (usually also

long wave-lengths) the optical frequency v approaches asymptotically
the combination overtone 7.

Ior &+ r2co2+ 7.~co3. Since the classical and
quantum mechanisms thus then give nearly the same numerical values
for optical frequencies even though irreconcilably different in character,
it is natural to assume that they give in' the case of high quantum numbers
the same numerical results for the relative intensities of different spectral
lines, at least when there is no radiation field (i.e. p(v) =0). It is, however,
to be clearly understood that the asymptotic connection of frequencies is
a necessary mathematical consequence of the quantum conditions, and
is hence, following Ehrenfest, best termed the correspondence theorem for
frequencies. ' On the other hand the existence of an analogous relation for
the intense es of lines radiated when p(v) = 0 must be regarded as an addi-
tional hypothesis, which we shall'call the correspondence principle for
emission. The latter is generally accepted not only because of its in-
herent reasonableness but also because of its excellent experimental veri-
hcation in the "selection principle" and in the researches of Kramers and
others on the intensities of Stark effect components.

4 To prove the correspondence theorem for frequencies we need simply note that
hv„, = W„—W, =b,W. Nearly consecutive orbits of large quantum numbers differ but
little from each other in relative size and we can then without great error replace the
.increment d, Wof the energy by the differential dW=Z'I, (bW/8 Jp)h Jp. Using Eq. E,

'2) and
the relation DJt;= rgh, we thus get the result that in the limit s j(~IcuI+vgarq+aog) =1.



To formulate analytically the correspondence principle for emission
we need simply note that from the classical expression (2e'/3c')fte for the
rate of radiation from an electron having a vector acceleration, it
follows that the amount of energy radiated as light of frequency eicosa +
72co2+v303 in the time interval N ls

~~ = (16 "'/3") ( + ~ + ~ )'[D(, ~, )]'~1 (3)
whereO' = X'+ V'+ Z'. lf we multiply by N„ to take into account the
radiation from N„electrons, then on comparing this classical expression

with the quantum Eq. (5) for p(v)=0, and using the approximation

V = 7'yGDy+72G0Q+73G03, we see that the correspondence principle for emission

requires that for high quantum numbers the probability coefficient A,
must have a value close to

A„~, = (16s' e v „,/3hc ) [D"(rq, re, re)] (9)
where D" denotes D evaluated for an orbit of the same size and shape as
that found in the stationary state r.

An equation of the precise form (9) can be expected to hold only

asymptotically. At ordinary wave-lengths it is more probable that
A„,depends not on the orbital frequencies and amplitudes evaluated for

one particular stationary state but instead involves these quantities
averaged in some manner or other over the continuous succession of
"dis-allowed" orbits intermediate between the initial and 6nal states, We
might still have (9) valid in the limit if we assume, for instance, that a
more exact expression is (10)

1

A, ,—(16 e /3hc')
~

( + +re(ve) [D(rg, re, re)]+'dX ])
Here m is some integer, while ) is an auxiliary parameter such that
J'e ——(ne+ rqX)h, where rcpt and nv, +re (h = 1, 2, 3) denote respectively the

quantum numbers of the states s and r. Either the + or —sign must be

consistently used throughout. Ordinarily the + sign is taken, and then

the special cases of m =0,4 have been studied in some detail by F.C.Hoyt. '

2. A CORRESPONDENCE PRINCIPLE FOR ORBITAL DISTORTIONS

In the review of the correspondence principle for emission given in

section 1 it-must be remembered that actually a classical electron radiates

simultaneously all the combination overtones in the multiple Fourier

For simplicity in printing, the arguments ri, vg, vie of the amplitudes X, Y, Z, D
will often be omitted; also the subscripts are often dropped from s„~.

' F. C. Hoyt, Phil. Mag. 46, 135 (1923);4T, 826 (1924). Eq. (10),of course, gives by
no means all the possible expressions for A(,~,). In fact from certain viewpoints the
best arguments appear to be for a certain type of logarithmic average first introduced

by Kramers (The Intensities of Spectral Lines, Dan. Acad. Memoires, 1919, p. 330)
and also studied by Hoyt. Only two out of six formulas studied by Hoyt are included

in Eq. (10).
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expansion rather than just one harmonic vibration component xi~i+
7~~~+r3or~. One can, however, formally avoid this difficulty by intro-

ducing what we shall term an "abridged" radiation force obtained by
retaining only the one term xi, v 2, v3, in the multiple Fourier expansion
of the complete radiation force 2e~8/3c'. It can then be verified that the
total radiation is on the average given by Eq. 8. Ke can then imagine the
emitted light in the classical theory to be monochromatic, and its fre-

quency will approach asymptotically the optical frequency v in the
quantum theory, while an asymptotic connection of the average rates of
spontaneous radiation can be secured by using some such equation as (10).

A question which naturally arises at this point is whether the abridged
radiation force with only one term produces just the same distortion in

the size and shape of the orbit in the classical theory as the electron ex-

periences in the quantum theory when it passes from one stationary state
to another. In the classical theory an orbit having originally the same
size and shape as the initial quantized stationary state will obviously
after a properly chosen lapse of time be sufficiently damped by the
abridged radiation force to make the energy the same as that of the final

stationary state in the quantum theory. However, we cannot imme-

diately infer that after this interval of time has expired the classical orbit
will have the same shape as the final quantized orbit unless the system has
only one degree of freedom, for then only does the energy determine
uniquely the shape of the orbit, In the case, for instance, of an elliptical
trajectory modified by a relativity precession to make the system non-

degenerate (in two dimensions) the classical and quantum orbits might
have initially the same semi-major axis and eccentricity; but when the
classical orbit has been sufficiently damped by the abridged radiation
force to make its energy (and hence approximately the semi-major axis)
the same as that of another smaller stationary state, we cannot predict
off-hand that then its eccentricity will become identical with that of the
latter.

The writer is not aware of any specific statement in the literature as
to whether these orbital distortions are the same in the two theories,
except for a brief allusion to this question in an interesting article by
H. A. Senftleben, which has just appeared. s However, an examination

' The average value of the work —Fvdd done in the time bt against the abridged
radiation force F has the value (8) even though the complete expansion of e (but not
of 8 in F) is retained, for "cross-terms" involving products of diferent combination
overtones cancel out on the time average. For greater detail see section 16 of part II.' H. A. Senftleben, Zeit. f. Phys. 22, 127 (1924). Following Eq. (50) of his article
Senftleben states the necessity of having the average time rate of change of the J's
approach each other asymptotically in the two theories, and this implies an asymptotic
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of this point 1s not diAlcul. t.. 10 a system with 3 dcgrccs of f1ccdom thc s1zc

and shape of the orbit are completely determined if we know the values
of the expressions Ji, J2, Ja defined in (2), for the other arbitrary con-

stants enter only as epoch angles. Now in the quantum theory the J's
always change by integral multiples of h, and their alterations in going
from one state to another are in the ratio

AJ1 '. AJAR .'AJ3 = V1'. Vg .' Vg .
On the other hand it is proved in section 16 of part II that if in the

classical radiation force we keep only the term involving the combination
overtone v&~1+F2 ~2+7.3~3, then the J's are also, in the classical theory,
altered in the ratio given above for all time intervals. Therefore by
including only the abridged, force in the classical theory, the distortion is

the same in the two theories. Another way of saying this is that one

particular term in the classical radiation force damps the orbit in such a
way that if at the start it coincides with a given quantized stationary
state it tends to pass through a succession of stationary states of smaller

energy, whose quantum numbers differ from those of the initial state by
m~1, me 2, m73 units respectively, where m is an integer.

The results quoted in Eq. (11) hold even at ordinary wave-lengths

(small quantum numbers) for it is shown in section 16 that according to
the classical theory the J's always tend to change instantaneously in the

ratio (11). Consequently the hJ's are in the ratio of integers even

though the abridged radiation force be acting for such a long time that
the alterations in the J's are of the order of magnitude of their initial

values, making the radiated energy comparable with the total energy.
The relations are also valid for systems with more than three J's (see

section 17).
If we form a three-dimensional space for plotting values of J1, J~, J3,

the deformations of the orbit produced by one particular term in the
classical radiation force may be represented by a straight line (neglecting

small periodic fluctuations which cancel out on the average). The equa-

tions of these lines may be written JI,=J~'+Arch, where X is a parameter.

connection of the orbital distortions. No detailed proof of this, however, is contained
in part I of Senftleben s article (the only part available at time of writing) but an in-

dication is given of how it might be obtained from an asymptotic connection of the rates
of radiation of angular momentum and ener'gy in the two theories provided the system
has only one electron. Both the method of proof and interpretation of the result {reached
independently) in the present paper differ in many respects from the above, especially
the ability to generalize the results to atoms with more than one electron (section 17),
and the emphasis on the validity of the relation 6J1.5Jg.h J'= r1.r2.'v g at ordinary wave-

lengths.
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Consequently the present considerations give a semi-theoretical basis for
determining the probability coefficient A~, by averaging some function
of the amplitudes and orbital combination frequencies along a straight line
in the three dimensional space connecting the points corresponding to the
initial and final states. This procedure, illustrated in Eq. (10), was
adopted by Kramers and by Hoyt, but it is not apparent from the articles
of these investigators whether they realized they were actually aver-
aging along a path which would be traversed by the orbit under the
inHuence of the abridged radiation forces. The various methods which
have been suggested for determining'„~, by averaging over the straight
line path mentioned above are such as to make the mean free time in the
initial state different from the actual time of transit between the two
states under the inHuence of the abridged radiation force, except, of
course, for an asymptotic connection of the two times for high quantum
numbers. Neglecting higher powers of 1/c', the quantum mean free time
and the classical time of transit can be shown to be identical at ordinary
wave-lengths or small quantum numbers provided in Eq. (10) we take
the —sign in both exponents and take the integer m= —3.9 This result
seems worth noting, but it is questionable how much signi6cance should
be attached to this method of procedure for there is no obvious reason why
the two times should be exactly equal rather than asymptotically con-
nected. "

3. INSUFFICIENCY OF A CORRESPONDENCE PRINCIPLE RELATINQ ONLY

TO EMISSION

The correspondence principle for emission reviewed in section 1,cannot
in a certain sense be regarded as entirely adequate because it establishes
(or rather postulates) an asymptotic numerical connection of the classical

' To get the result quoted we need simply integrate Eq. (8} between ) =0 and P = 1,
noting that dE = (v.100&+v2cv2+v3a»)Mx by Eq. {2}. This gives the classical transit
time. The quantum mean free time is on the other hand simply the reciprocal of A„~,.'" lt is interesting to note that the classical time of transit from a 33 to a 2~ orbit in
hydrogen works out as 1.04X10-' sec. VA'en's canal ray experiments indicate a mean
free time for. Ha of 1.85X10—~ sec. (Ann. der Phys. 73, 485, 1924), The latter, %Vien
shows, is almost exactly the reciprocal (1.87X10-' sec.) of the logarithmic decre-
ment for a linear oscillator of frequency v (not an actual orbit), but this very
close agreement is probably only a coincidence. On the other hand the. value
1.04 X10-ll sec. must be corrected to allow for the transitions 3g~21, 31~2', which also
contribute to Ha and have longer mean free times than 33~2g,—'

the 31 state is, in fact,
almost metastable —thus making the effective mean free time much larger. The agree-
ment is as good as can be expected, for the correct formula for A,~, probably does not
make the quantum mean free time exactly equal to the classical time of transit, but
instead involves a different kind of average of amplitudes and frequencies than that
obtained by putting m= —3 in Eq. (10).
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and qua, ntum theory for intensity only in the special case that there is no
radiation field (i.e. p(v) =0). The term present in Eq. (5) when p(v) =0
we shall call the spontaneous emission (Einstein's "Ausstrahlung"),
while the second or remaining term proportional to the energy density
we shall call the induced emission, although it is sometimes called the
"negative absorption" in distinction from the true or positive absorption
given by Eq. (6). The correspondence principle for emission. correlates
quantum theory spontaneous emission with classical theory emission due
to' the radiation force 2e'v/3c'. On the other hand an electron can accord-
ing to the classical theory absorb energy from a radiation field, and there
must be some kind of an asymptotic connection between this absorption
in the classical electrodynamics and the induced emission and absorption
in the quantum theory. This will be discussed in sections 4 and 5. There
can be no question of a correlation of the classical and positive quantum
absorptions alone, as this would leave the induced emission unexplained.
The existence of the induced emission term in the quantum theory may at
first sight appear strange, but it is well known that this is qualitatively
explained in that with the proper phase relations a classical electric wave

may receive energy' from an atomic system although on the average
(i.e. integrating over all possible phase relations) it contributes more than
it receives in exchange. It is therefore the excess of positive absorption
over the induced emission which one must expect to find asymptotically
connected to the net absorption in the classical theory.

4. CORRESPONDENCE PRINCIPLE FOR ABSORPTION 'FOR A LINEAR

OSCILLATOR

Before seeking to develop a correspondence principle for absorption for
the general case of an arbitrary multiply periodic orbit, we shall first

for simplicity and clarity confine our attention to a one-dimensional

linear oscillator. Here the multiple Fourier expansion reduces to

x = D cos (2iridt + y), (y = s = 0).
As there is only one degree of freedom, there is just one quantum number

n, and this can by the correspondence principle only change by one unit,
as there are no harmonics of the fundamental frequency co in the Fourier
expansion. Now the energy W' of a linear oscillator of amplitude D,
mass m, and frequency e is in general 2m'~'mD'. Furthermore it is well

known that for a linear oscillator the quantum conditions require that
the energy 8"„of a state of quantum number n have the value nb~.
Therefore the amplitude D„of an orbit of quantum number n is given by

D„' = vth / (2~'vvw). (12)
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In writing (12) we have utilized the familiar fact that for a linear oscilla-
tor v =co, as here the spectroscopic and orbital frequencies are identical. "
We can now apply the correspondence principle for emission, as embodied
in Eq. (9), to determine the approximate value of the probability coefII-

cient A, . Using the fact that in the present notation D (r&,re, r(&) is

nothing but D„, while v„ is simply v, and taking r as an n quantum state,
s as an (n 1) quan—tum state, we thus get A„, 87r=me'v'n/(3c'nt) Fr.om

(t) it then follows that

B»-»(» &&
= B(»»~» = n&re' / (3hrnv) . (12a)

Hence by Eq. (6) we 'ee that in a time t( t the energy which is removed
from a radiation field of density p(v) by the positive absorption of quanta
by N oscillators all in (n 1)—quantum states is

AE(» »~» = »-n&re rn ' Np(v)ht . (13)

On the other hand it is well known that according to the classical
theory the average rate at which a linear oscillator absorbs energy in a
6eld of radiation is independent of the amplitude and is given" by
—', &re'rn 'p(v). Consequently in the interval At, N oscillators should

absorb the energy

AB.(,. = »&(e'rn ' Np(v)ht . (14)

Because of the presence of the factor n, the quantum theory expression
(13) for the positive absorption differs increasingly from (14) as the
quantum number becomes larger. This discrepancy is not surprising, for
we have not taken into account the fact that oscillators in the state
(n-1) may in the presence of a radiation field be induced to emit energy
and pass to the state (n —2) at a more rapid rate than when p(v) =0 and
there are only spontaneous transitions. " Each of these excess or induced
transitions may be thought of as returning to the ether or light wave the
energy hv, ~, a sort of regenerative effect. Hence we can take as the Net

absorption of energy in the time t&, t by N oscillators in the state (n —1)
the expression

tst = lB&»—»~» —B&»—»-+&»—e&] hv Np(v) At .
"The result j = ~ is obvious from an inspection of Eq. (3), as in the present case

8'„=rheo, de=+1.
"Cf. Flanch, %'armestrahlung, 4th Ed., Eqs. {260) and (159)"If the electrons are in the orbit of lowest quantum number there can be only

positive absorption because there are no still lower energy levels to which induced
emission may take p1ace. This case ha, s been considered by Ladenburg (Zeit. f. Phys.
4, 451, 1921); also by Ladenburg and Reiche (Naturwissenschaften, 27, 584, 1923).
These writers note the necessity of having the factor e in comparing the classical and
positive quantum absorption.
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This way of measuring absorption we shall term the differential rate of
s.bsorption in contrast to the true positive rate given by Eq. (13). Now by
(12a)we have, on lowering the integernby one unit, the result B(„—])~(g r) =
(n 1)ss'/—(3mhv), and hence 2 F=hZ~, . We thus see that in the limiting

case of large quantum nt&mbers, where Eq. (12a) is valid, the classical
value {14)for the rate of absorption of energy is nothing but the differen-

tial rate of absorption in the quantum theory. This connection of the
classical and quantum differential absorption we shall term the corres-

pondence principle for absorption; it is a purely mathematical conse-

quence of the correspondence principle for emission, which was used in

deriving (12a). Another way of stating the results is that because of
Eqs. (9) and (12a) the ratio (B(„g)~„—B(„g)~(, g)) p{p)/A(„x~(„,) of the

differential absorption to the spontaneous emission for any given orbit
has for large n very nearly the classical value c'p(v)/(16s'mD„V) for

the ratio of absorption to emission. '4

5. GENERALIZATION OF THE CORRESPONDENCE PRINCIPLE

FOR ABSORPTION TO AN ARBITRARY NON-DEGENERATE

MULTIPLY PERIODIC SYSTEM

We must now seek to examine whether an analogous correspondence

principle for absorption holds for an arbitrary non-degenerate multiply

periodic system, whose orbits are given by Eq. (1) and which represent

essentially the most general type of motion amenable to present quantum

theory methods. Here we can no longer enjoy such simplihcations as the

existence of a single quantum number and the results An= +1, v=~
characteristic of a linear oscillator.

Let us consider a state s of quantum numbers nj, e2, ri3." Then when a
quantum of energy is absorbed by an orbit of this type the electron will

pass to some other state of quantum numbers n~+7~, n2+v2, 03+v.d.
"

Starting with the state s (not r) there is no emissive transition to a state
t such that the frequency ~, & of the light thus emitted is.just equal to the

frequency v„of that absorbed on passage to the state r (This amou. nts

'4 Reference should be made while on the present subject to the discussion in section
158 of Planck's "Ka*rmestrahlung" (4th Ed.),which establishes an asymptotic connec.
tion between the classical and quantum formulas for statistical equilibrium. A corre-
spondence principle for absorption could doubtless be derived from such considerations,
but. no explicit mention is made of the asymptotic connection of the classical absorption
and the differential absorption for a single orbit (where thermodynamic equilibrium
need not be assumed) which is the primary concern of the present paper."The generalization to cases of more than, three quantum numbers is given in section

"Not all the integers 2-1, 2.2, 2.g need be positive but the state r must have a greater
energy than s.
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virtually to saying that in general energy levels are not evenly spaced,
except, of course, for such an ideal case as the linear oscillator). However,
if the State t haS quantum numberS n& —r&, n2 —r2, n3 —r3, then fOr large
values of nq, n&, na the ratio v, ,t'v,

& approaches unity, for both these
spectroscopic frequencies approach asymptotically the combination
overtone r~tdy+r2au2+r3fd3 of the o:.bital frequencies. Hence it is natural
to define as the differential rate of absorption the excess of light absorbed

by transitions from the state s to the state r over the energy returned
to the ether by induced emissive transitions from the state s to the state
t, where, as mentioned above, the differences between the quantum
numbers for the states s and t are the same as the corresponding differen-
ces for the states r and s.

With this definition it follows that in the time At the differential
absorption of light energy of frequency approximately rIco&+r2co2+r3~3

by N atoms in the state s amounts to
tst = [hv„,p(v„,)B,~„—hv„p(v„)B,~,] Nd t (15)

If we admit the validity of the correspondence principle for emission
then Eqs. (7) and (9) show that for large quantum numbers this expres-
sion becomes approximately

St =',~'e'h ' [v„,p(v„,) D„' —v„p(v„) D, '] Nht

where for brevity we have written D„ for D" (r&, r&, r3), etc. Also for large
quantum numbers the discrete succession of quantum orbits becomes so

nearly consecutive that differences may be replaced by differentials, just
as is done in the derivation of the correspondence theorem for frequen-
cies.' Consequently

(Bp~
~F 3' 'e'h '

p V Ds Vrs Vst +Vst Ds Vrs Vst +Vstp Vst ~D Skt
E8 v)

where 5 denotes the difference between an expression evaluated for the
states s and t. It is, of course, to be understood that p(v) and Bp/dv are
to be evaluated with v approximately equal to v„(or v„). Now since we

are dealing with the large quantum number limit, the correspondence
theorem for frequencies tells us that v, t may without sensible error be
replaced by the combination overtone rIco&+r2or2+r3co3 of the orbital
frequencies, and similarly v„—v, t is to the desired approximation equal
to 8(rq&uq+rzcom+'r3coe), Now since the system is non-degenerate, the
amplitude D as well as the co's and the energy S; is a function of the'

constants J~, J2, J3 which according to the quantum conditions are
equated to integral multiples of h, and consequently

BGoy BMy BGoy ( 8 8 8
8~g ——— kg+—8Js+——8Je=h] rg +rg —+r3 —j(ag) assJv=rgh .

~+1 ~J2 ~J3 E ~+1 ~J2 ~+Sef
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Similar relations hold for ko~, 6~3, and ba . The expression for the diSer-
ential absorption therefore becomes

8 8 8
BF = sv 8 p((dr) pg '—+ rs — + 1'g ——

i
Gr +

8JI BJ2 BJ39
Bp ( 8 8 8—G.

i
rg +—rg —+—ra &o. %61 (16)

8V & 8JI 8J2 8J3

where we have written cu, for r~cvq+r~cu2+rgvz and G for &u, [D(r~, rq, rq)]'
It is shown in part II of the present paper that Eq. (16) also gives the

amount of energy which according to purely classical mechanics is ab-
sorbed in a time ht by X systems, each with a multiply periodic orbit
similar to the state s, when exposed to a radiation 6eld of vanishing

intensity except for frequencies in the vicinity of ~]M],+T207g+TBM3. That
is to say Eq. (16) also gives the part of the classical absorption due to
resonance of the impressed waves with the combination overtone ~~, ~~, r~.

The total classical absorption is, of cour'se, the sum of resonance eR'ects

for all possible overtones.
Ke may therefore conclude that the correspondence principle for

absorption holds even for an arbitrary multiply periodic orbit; i. e.
assuming the validity of the correspondence principle for emission, the
differential quantum absorption by a particular orbit approaches at high

quantum numbers (usually long wave-lengths) the classical absorption of
light of asymptotically corresponding frequency. "

"It is clearly to be understood that although in deriving (26) we have apparently
utilized Eq. (9), the proof of (26) can be readily shown to be equally valid if (9) holds
asymptotically, so that at ordinary wave-lengths A„—+, might, for instance, be deter-
mined by averaging the frequencies and amplitudes in the manner given in Eq. (20}.
In this connection it is interesting to note that it is not dificult to prove that for the.
special case of a linear oscillator the differential quantum absorption and the classical
absorption are exactly equal to each other even for low quantum numbers provided
A;+, is determined by taking the + signs in (20}, with the integer m arbitrary. On
the other hand it was found in section 2 that to make the mean free time of spontaneous
emission in the quantum theory just equal the classical time of transit from one state
to another in the absence of external radiation (i.e.p(a) 0), it is necessary to take the
—signs in (20) and m = -8,

Another way of formulating the correspondence principle for absorption is as follows.
The quantity hsA~& plays in the quantum theory the rhle of a coeKcient of emission,
and may be denoted by a. Using arguments-similar to those employed in the derivation
of (26), it is easy to show that the differential absorption has for large quantum numbers

very approximately the value
8 8 8 &

hF = (c'/Ss) p(&or) ( rr — + rs +ra — =
i (ao&—~ ') +

E aJ, aJ, aJ,&

Bp If' 8 8 81
s~ '—

I
"—+" +'~

8| L. BJ& BA BJs)
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In the present paper we have proved the correspondence principle for
3;bsorption after assuming the validity of the ordinary correspondence
principle for emission. The procedure could equally well have been re-
versed. That is to say, assuming an asymptotic connection of the differ-
ential absorption in the quantum theory with the corresponding absorp-
tion in the classical mechanism we could show that the spontaneous
emission in the quantum theory must approach equality with the classical
formula (8) for the spontaneous radiation of energy.

The classical formula (8) for spontaneous emission involves rather
more electrodynamics than the analogous classical formula for absorp-
tion, given in Eq. (16), for the derivation of the former is based on
retarded potentials and the validity of the field equations, while the latter
requires simply that there be a certain incoherence in the radiation field
and that the change in the energy be equal to the scalar product of the
impressed force and the velocity of the particIe, a very broad mechanical
principle. As pointed out in the preceding paragraph, the asymptotic
values of the probability coefFicients A,~„B„~„etc., can be derived from
the absorption instead of the emission viewpoint. Because of this alterna-
tive the correspondence principle for evaluating these coefFicients is in a
certain sense less electrodynamical and more purely mechanical in nature
than it has sometimes been considered to be. From this standpoint the
connection between the quantum theory and classical electrodynamics
comes through the assumption of Wien's law in obtaining Eq. (7), for in
Einstein's derivation of the Planck radiation formula considerations of
statistical equilibrium without resorting to Wien's Iaw do not suffice to
determine B,~./2, , If we assumed both the correspondence principle
for emission and that for absorption it would be possible to dispense with
the need of assuming (rather than proving) Wien's law. Virtually this
procedure was adopted by Planck, who studied the special cases of the
linear oscillator and rotating dipole. " As pointed out to the writer by
Prof. Ehrenfest, the content of the present paper may be regarded as
placing such a procedure on a more general basis. "

This is, however, nothing but the classical theory formula:for the coefficient of ab-
sorption in terms of the coeKcient of emission as can be seen from (8) and (16). This
way of stating the correspondence principle for absorption does not utilize (9) even
asymptotically.

8 WKrmestrahlung, 4th Ed., section 158. Cf. footnote ~'.
'9 The writer has just learned {Sept. 1924) that in unpublished computations made

at Copenhagen, J. C. Slater has independently derived an absorption formula similar
to Eq. (16) and has also noted the asymtotic connection of thf classical and quantum
;Ibsorption discussed in sections 4 and 5.



6. THE GENERAL CORRESPONDENCE PRINCIPLE BASIS FOR KRAMERS

DISPERSION FORMULA

In a recent note20 H. A. Kramers has proposed a formula for dispersion
which is a modification of an equation previously developed by Laden-
burg and Reiche, "and which must be regarded as a distinct advance in

the problem of reconciling dispersion with quantum phenomena. The
physical principle underlying Kramer's formula is that of "virtual" or
"ghost" resonators, first suggested by Slater" and elaborated by Bohr,
Kramers, and Slater." According to this viewpoint the dispersion is not
to be cs.lculated by considering the actual orbit (stationary state) as

reacting classically to the impressed waves. Instead, the stationary states
appear to be unaffected except for occasional qua'ntum leaps, but the
dispersion is to be computed as due to a set of hypothetical linear oscilla-
tors whose frequencies are the spectroscopic ones rather than those of the
orbits. The introduction of these virtual resonators is, to be sure, in some

ways very artificia, but is nevertheless apparently the most satisfactory
way of combining the elements of truth in both the classical and quantum
theories. In particular this avoids the otherwise almost insuperable
difficulty that it is the spectroscopic rather than the orbital frequencies,
i.e. v rather than 7 &~~+7.2~2+7&~3, which figure in dispersion. "

Kramer's formula for the polarization due to X, electrons in the state
S 1s

32s' i

~ v„'(v„,' —v') v, P(v„' —v')

'" H. A. Kramers Nature, May 10, 1924, p. '673; Aug. 30, 1924, p.. 310.
'-'! Ladenburg and Reiche, Naturwissenschaften 27, 584 (July 6, 1923). Ladenburg

and Reiche's fornsula differs from that of Kramers, given in (17), principally in that
the negative terms are not included.

'"- Slater, Nature& Mar. 1, 1924, p. 307
"Bohr, Kramers and Slater, Phil. Mag. 47, 785 (1924)
"14eference should, however, be made to the alternative explanation proposed by

Darwin (Proc. Nat. Acad. 9, 25, 1923)."This equation differs by a factor 1/3 fronx the formula in Kramer's note to Nature,
as (17) is written for the case where all orientations of the atom are equally probable,
while Kramers' original equation is for the case that the atoms are always so oriented
that their free vibrations are parallel to the impressed electric field. The assumption
that all orientations are equally probable may appear at first sight contrary to the
assumption that the system is non-degenerate, as al'1 three intrinsic frequencies (the
criterion for non-degeneracy) can appear only when the atomic force field does not have
a spacial symmetry, and with such a dissymmetry the quantum conditions allow only
certain particular orientations. However, we may imagine the asymmetrical internal
atomic force fields to have all possible orientations in the different atones. This artifice,
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where e is the electric intensity and v i~ the frequency of the impressed
wave. The summation with respect to r is to be taken over all states of
energy content higher than s, while that for t over all orbits of lower

energy content than s. Each term in this equation represents the disper-
sion due to a "virtual oscillator" and corresponds to a particular quantum
transition starting from the state s. Each oscillator in the t summation
gives a negative dispersion, corresponding to Einstein's negative absorp-
tion, mentioned in section 3.

Kramers states that (17) merges asymptotically for large quantum
numbers into the classical formula for the polarization. It is our purpose
to show that this is true not just when the quantized system is a linear
oscillator, but also when it is the most general type of non-degenerate
multiply periodic orbit. " Just as in section 5, the upward transitions
(s ~ r) anal the downward ones (s~t) may be mated together in such a way
that in each pair v„,/r, r converges to unity for large quantum numbers.
This is accomplished, just as before, by making the differences in quan-
tum numbers between the states r and s the same as those between the
states s and t, and we shall denote these differences by v. i, v.2, v 3. Each pair
contributes a positive anti a negative term in (17) and their net effect is
a "differential dispersion" very analogous to the differential absorption
mentioned in sections 4 anti S. In precisely the same way that (16) is

introduced for simplicity, enables one to have a. random spacial distribution of orbits
without having degenerate systems.

In this connection it is interesting to note that if the axes of the asymmetrical atomic
force fields had the same orientations in all atoms, as is the case when the dissymetry is
due to a constant external magnetic or electric field, then we should expect the virtual
resonators to have only certain particular orientations, as only a few quantized spacial
positions can be assumed by the atoms. By analogy with the classical theory results
mentioned after Eq. (41) in section 15 of part II, there might then be possible a polariza-
tion in the y and z directions even though the electric intensity coincides with the x axis.
The polarization and electric vectors would then have different directions, as in a crystal.
Therefore the application of a weak constant external field would cause an abrupt dis-
symmetry in the index of refraction just as it creates an abrupt outstanding polarization
of the spontaneously radiated light (cf. N. Bohr, the Fundamental Postulates of the
Quantum Theory, Supplement of Proc. Cambr. Phil. Soc., p. 27). These sudden dis-
continuities are not found in the classical theory because the spacial distributions are
continuous rather than quantized,

"In his erst note Kramers did not give his proof of the desired asymptotic
connection. Inasmuch as the formula for the dispersion by an arbitrary multiply periodic
orbit, to be developed in section 15 of part II, did not appear to have previously been
given and was not mentioned in Kramers' note, the writer supposed that Kramers' prior
demonstration was somewhat less general than that of the present paper. Since writing
this paper, the author has learned, however, that Kramers' unpublished computations
are of the same scope and generality as those in $ 15. Cf. Kramers' second notes".
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derived from (15) we find that for very large quantum numbers the
contribution of one particular pair to the polarization becomes

2o)&. 8
ri +—rs— + r3 (—cur S,r"(,18)

(~~2 y2)2 8J1 871 ~J2I

where G, and ~, are defined as in Eq. (16).
It is proved in section 15 that (18) also gives the polarization which

according to the classical theory would be produced by resonance be-
tween the impressed frequency and the combination overtone ~, in a
multiply periodic orbit of the same size and shape as the state s. The
difterential dispersion in Kramers' theory therefore approaches asymptot-
ically the classical dispersion for the actual orbit. The asymptotic con-
nection is thus very similar to that previously encountered in the corre-
spondence principle for absorption.

It is particularly interesting to note that although both the positive and
negative terms in the differential dispersion taken separately represent a
type of dispersion characteristic of a linear oscillator (except that oscilla-
tors with negative dispersion correspond to no ordinary physical reality,
as they would have to possess a negative mass) the difference of the
two terms approaches asymptotically a more complicated type of dis-
persion appropriate to the general multiply periodic orbit. For Eq. (18)
contains a term in (&a,

' —i') ' as well as the familiar term in (&s,
' —v') '

characteristic of the ideal resonator. The fact that the dispersion for the
simple virtual oscillators thus merges asymptotically into the more
complex classical dispersion for the actual orbits must be regarded as an
important argument for the virtual resonator viewpoint, as such a con-
nection is not an obvious outcome of the theory. Especially does this

asymptotic connection increase our faith in the particular form of virtual
oscillator theory embodied in Kramers' dispersion formula, and makes
it easier to accept the rather arti6cial negative dispersion terms thus
involved. '7

" It is to be noted that if A~, is determined in accordance with Eq. (10), the +
signs being taken, then the differential dispersion in the Krarners' formula is for the
s'pecial case of a quantized linear oscillator easily proved identical even at low quantum
numbers with the classical dispersion. It was pointed out in footnote " that this kind
of formula also makes the differential and classical absorption identical for the ideal
oscillator without passing to the high quantum number limit. These facts taken together
furnish a limited amount of evidence for the use of the average of the form (10) (with
+ signs) rather than the alternative logarithmic average which Hoyt has shown explains
observed intensities equally well in the instances studied by him. '


