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ON THE RESISTANCE EXPERIENCED BY SPHERES
IN THEIR MOTION THROUGH GASES

BY PAUL S. EPsTEIN

ABSTRACT

Kinetic theory of the resistance to a syhere moving through a gas.—
(1) Droplets small in comparison with the mean free path. he high degree of
accuracy achieved in. the experimental determination of the law of motions of
droplets through gases, makes a careful theoretical examination of the problem
desirable. Assuming the usual Maxwellian distribution of velocities in the gas,
the force exerted by the impinging molecules is found to be M wher& M = (4~/3)
Nma'cmV, N, m, a, and cm being the number per unit volume, mass, radius,
and mean speed of the molecules and V the speed of the droplet. The force ex-
erted by the molecules leaving the surface depends on how they leave. (1) For
uniform evaporation from the whole surface, the force is —M; (2) for specular
reflection of all the impinging molecules, —M; (3) for diffuse reflection with
unchanged distribution of velocities, —(13/9) M; (4) for diffuse reflection with
the Maxwell distribution corresponding to the effective temperature of the part
of the surface they come from, —(1+9vr/64)M, for a non-conducting droplet
(4a), and —(1+~/8)M, for a perfectly conducting droplet (4b). Cases (1)
and (2) can not be distinguished experimentally, but (2) is more probable
physically. The experimental values agree with 1/10 specular reflection, case
(2), and 9/10 difl'use reflection, case (4a) or (4b). For large values of l/a, the
droplet behaves like a perfect conductor, case (4b). (2) Comparatively large

spheres. The distribution of velocities is no longer Maxwellian because of the
hydrodynamic stresses which can not now be neglected. The new law is

derived (Eq. 47). The conditions at the surface of the sphere are discussed
and it is shown that the difl'usely reflected molecules have a Maxwellian
distribution corresponding to the temperature and density of the gas, just as
though they were reflected with conservation of velocity (specularly). The
assumptions of Bassett are theoretically justified and a complete confirmation
is obtained for the correction factor for Stokes' law [1+0.7004 (2/s —1) (l/a)]
on which Millikan's conclusions are based, especially as to the percentage of
specular reflection. (3) Rotating spheres are also considered in an appendix,
and the values of the resistance are derived for various cases.

1. INTRoDUcTIQN

HE high degree of accuracy achieved by Millikan and his pupils

in the measurement of velocities of small spheres moving through

gases' makes a careful examination of this problem from the theoretical

point of view highly desirable. For the case of spheres which are large

compared with the mean free path of the gas, we already possess quite

' See R. A. Millikan, Phys. Rev. 22, 1, July 1923
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a satisfactory theory, given by Millikan' himself. The opposite case of
small spheres remained, however, unsettled. Some theoretical work was

done by Langevin, ' Cunningham, and Lenard and his pupils' but the
results of these authors were in partial disagreement with each other
and in complete disagreement with the experimental facts. At the sug-

gestion of Dr. Millikan I undertook, therefore, the analysis of this prob-
lem, and the 6rst part of the present paper contains the results of my
investigations in this respect. The values given by Lenard corresponding
to various hypotheses as to the law of reHection of the molecules from
the surface of the sphere, turned out to be correct from a mathematical
point of view. From a physical point of view, however, it appeared
that the hypotheses made by Lenard can scarcely be called probable or
even permissible (section 5). Therefore two new hypotheses were worked

out which seemed to me to be the most natural and the only probable
ones. The two assumptions yieM almost the same value for the resistance
which is, moreover, in a very satisfactory agreement with the experi-
mental value found by Millikan.

The second part is devoted to the theory from the kinetic point of
view, of the resistance experienced by large spheres. An important paper
of Millikan's, ' already referred to, showed us for the erst time the possi-
bility of a theoretical understanding of his own correction to Stokes'
Law by tying it up with the concepts of the external friction and the
slip coefficient. His theory starts from a hydrodynamical resistance for-
mula given by Bassett and contains as its only hypothetical element the
assumption that the slip coefficient for a spherical surface of suAiciently

large radius, is the same as for a plane surface. Though this assumption
has a priori a high degree of probability and is vigorously supported by
the experimental facts, it seems desirable to examine it also from the
theoretical point of view, as well as the hypotheses underlying the theory
of Bassett. The result is that Bassett's purely phenomenological assump-
tions are kinetically valid exactly to the same extent as this is necessary
to justify Millikan's theory, so that the conclusions drawn by the latter
are unimpeachable.

PART I. RESISTANCE EXPERIENCED BY CDMPARATIVELY SMALL SPHERES

2. Distribution of velocitiesin the gas. In this part we dea'I with spheres
small compared with the mean free path. Such spheres will obviously

' R. A. Millikan, Phys. Rev. 21, 217, March 1923
' Langevin, Ann. de Chim. et Phys. 5, 266, 1905
E. Cunningham, Proc. Roy. Soc. 88, 359, 1910

' P. Lenard. Ann. der Phys. 61, 672, 1920



exercise no inRuence on the distribution of velocities among the molecules,

and the distributio&x will be that of a gas at rest, that is the Maxwell
distribution: the number of molecules having the component of velocity
parallel to the cartesian axes x, y, s between the values (, q, g and

(+dp, q+dq, 1+dg is given by the expression

(h
Kf „,f d$dsdf'=Xi —

I e "'f +" +"~d$dsdf (f)

where N denotes the number of molecules per unit volume and h is

an abbreviation of the following combination of the mass nz of a molecule,

the temperature T of the gas and the Boltzmann constant k

In view of the Brownian movem. ents, the velocity of a small sphere in

a gas is not quite constant. However, it is not necessary to take into
account these irregularities as they only change the resistance in the
ratio y/(m+p) where y is the mass of the sphere, the difference of which

from 1 is much too small to be observed. We shall, therefore, inquire

as to the distribution of velocities from the point of view of an observer

moving through the gas with a constant velocity having the components

V, Vp, V~ along the axes x, y, s respectively. This observer can re-

gard himself as at rest and the molecules of the gas as moving with the
velocities $—aV, p —PV, (—pV, instead of p, q, t. The velocity dis-

tribution for him mill therefore be

(

'
s si(f-V v)'—+(„+Pv)'y(l yqv)'] (3))

If we limit ourselves to so small values of U that we need only to take
into account the 6rst power

N( q g
= N — I —2h V 0,(+Pq+ yt e "',

where

—hg d((~
—k( d( 2h'

0 0

C = +P+g2+g2 (5)

denotes the absolute value of the velocity of a molecule.
Ke put together a few mathematical formulas which represent the

chief instrument of the following computations:
+00 +00 +00

—/If df . P
—hPdf 1 V $4

—kPd)
~ yg/g i h5/2

00 OC —00 (6)

p
—b$ d( 2h"
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3. Number of motecutes imPiugiug ou o, surface etemeut M. aking use

of the distribution law (4), we ask how many of the molecules having

velocity components between $, p, g and (+d(, p+dg, f=d$ will strike
in unit of time a surface element dS. We choose the x-axis as the direc-

tion of the normal to the element. The molecules we look for are those
that at a given moment are lying in a cylinder constructed on the element
dS as base in the direction of the velocity (, g, P with the length of the
absolute value c of that velocity. The volume of this cylinder is equal
to the product of the area of the base dS by the height —$, and as the
number of molecules of the kind considered in unit of volume of the gas
is N~ z g d$ dq df, the number of tee impinging molecules will be

n~zt d$dgd f dS= —N —
} j$—2hV (a)+pq+yf)j}e ~'d/d~dfd5 (l7).

For later applications we have still to compute the total number of
impinging molecules n and the number of molecules n,dc striking the
element with an absolute value of their velocity between c and c+dc.
The number n we obtain by integrating ng „,|- over all values of q and g

and over all negative values of P:
0 +oo +oo

ut, „,r d&= —
} 1+&.& «}2 & Qxk (g)

On the other hand, for 6nding n„we have to introduce polar co-ordi-
nates and put

g=c cos P, q=c sin P cos X, g=c sin f sin X (9)
and for the volume element c' sin P dc dP dy,
so that instead of nq, „,g d$ dg dg we get

n, ,~,z dcdrPdy= —N -) [cosP —2kVc(acosf+

+P sin fcosx+7sin Psin x) cos P] ec"' sin f dc df d'.
This expression we have to integrate over all directions of the impinging

molecules, that is over x from 0 to 2~ and over P from m/2 to m.

2% 7r

n, dc= dy g, p„dP= —b't'(1+s4hVac)c'e "'dc (10)
0 ~/2

4. Momentnm transmitted by the impinging molecules. Our object is to
calculate the component. of the momentum in a direction having the
co»nes &', p', p' with the axes, that is transported by the totality of all
molecules impinging on the surface element dS in unit of time. An
individual molecule has in that direction the projection of momentum
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m(a'f+p'q+p'f). Therefore, the momentum transmitted by all the

impinging molecules is
0 +ac +oo

m jd&Jd,f(a']+P'~+~'f)nf, „,t @ds=

r—+ —( '+-'P8'+ 'vv')}dZ-
Denoting the part of this expression depending on V by 3II, ' dS we find

(Xm V'I—
} («'+ :pp'+-l v~')dS

g v'~h) (11)

Introducing instead of the constant h, the mean velocity c by means

of the relation

(12)

we obtain
Ms"dS= ', NmcV (aa—'+—',PP'+ ,'y-p')dS. - (13)

If the element dS belongs to the surface of a sphere of the radius u

moving through the gas with a velocity U, the normal to this element

will form with V some angle 0. Let us'choose the direction of the z-axis

at right angles to the plane going through x and V; then we have a = cosa;

P = sin tII, y =0; and let us, moreover, determine the momentum communi-

cated to the surface element in the direction V, (a'=cos 0, p' =sin 8),
Ms"dS = 2Nrzc V (cos' 0—+--', sin' 8)dS. (14)

The total momentum received by the whole surface of the sphere from

the impinging molecules is the integral of this expression over all the
surface elements dS=c' sin 0 de dq

2' 7r

Mq' a' sin 0 do dp = —-3- %mcus'U. (15)

This expression represents the force of resistance which a sphere

experiences in its motion through a gas as far as the impinging molecules

are concerned, or in other words the reaction of the impinging molecnles

on a sphere. To obtain the total resistance of the gas we must still add
the reaction of the emerging (reRected or evaporated) molecules. We
need not consider the terms independent of V because they represent the
reaction in the absence of any motion of the sphere, which, of course,
must vanish.

5. 3IIomentum of the emerging moteciIles. Old hypotheses. We have now

to calculate the momentum which a surface element receives from the
molecules leaving it in unit time, that is the momentum which these
molecules carry away, taken with the opposite sign. Of course, this
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portion of the reaction depends entirely on the physical nature of the

exchange of molecules between the gas and the spherical body. Ke have

therefore to examine dlRcrcnt posslb111t1cs.

Case (1). Uniform evaporation from the whole surface of the sphere

Under this assumption the gas molecules hit the sphere according to the
law of section 3, but are condensed at its surface and re-evaporated at
the same rate from every surface element, independently of its position.
It is obvious that the loss of momentum occurs in this case perfectly
symmetrically, so that the tota1 force of reaction due to the emerging

molecules is zero M('=0
and W, =W(«+W('«= —-4-," X~c~2V. (16)

This assumption was examined by Lenard' with the same Iesult, and

by Cunningham who, however, obtained double the value. ' It can hardly

be regarded as physically probable, as the number of impinging molecules

ls qultc different 1n cvc1.y po1nt of thc sphere, and a rapid cquRllzRtlon

would requiIe a high Huidity of the surface layer.
Case (&). Specutar reflection Every .molecule retains after the reliection

its old values of q and g„but changes the sign of (. The reAected mole-

cules will, therefore, have a stream velocity with the opposite sign of the
x-component of V; instead of a we have to write —a. We have to
substitute in (ll) a = —cos 8, P =sin 8, while a' and P' undergo no change
(a'=cos8, P'=sin 8), and in view of the opposite sign of the whole

expression, we get
cVs&'d5=-,'XmcV (cos' 8 ——', sin' 8)d5.

The integration over a11 the surface of the sphere gives

M '«=c' Sf'('«sin I9 dq de=0.

Again thc emerging molccules cxc1clsc, on thc whole, no force of
reaction at all, and we get for the resistance the same value as before

~,=~, «+~,(«=-'x~z~ v (17,)
in agreement with the results of Langevin, Lcnard, and Cunningham.

6 Cunningham gives a detailed computation only for the case of specular reflection.
With respect to condensation he says:". . . the mean impulse is found to bear to that
previously found the'ratio of

Js {1+cos'e) sin ede to f& 2 cos'8 sine',
that is, exactly the double. '" It is true that, if one works out the two cases following
Cunningham's method of computation, the parts of the momentum integrals propor-
tional to the velocity V contain the factors (1+cos'8) sin8 d8 and 2 cos'8 sin& d8.
However, previous to the integration with respect to d8, one has to carry through an
integration with respect to another variable the limits of which depend themselves on
8 and on U. By this the ratio of the two impulses is entirely changed and turns out
to be i.



The fact that the resistance is the same in both cases removes the
basis of all the discussions about the factor f+2(1 f)—introduced by
Cunningham, where f denotes the fraction of molecules reHected specular-

ly and (1 f)—the fraction of uniformly evaporated molecules. The
correct form of this expression is f+ (1 f) —= 1, so that it is impossible to
discriminate between the two cases by observations on mobility.

Case (Za). Radial rejtection Th. is hypothesis has been used by
McKeehan, Gaede and Lenard and consists in the assumption that every
molecule retains after reHection the absolute value of its velocity but is
reHected in the direction of the normal to the surface. Let us conside~

the reaction of the n,dc reHected molecules having velocities between

c and c+dc. As each of them carries away the radial momentum mc, the
total momentum carried away by this group from the element d5 will be
men, dcdS, and the reaction on the element d5 by all the molecules.

emerging from it with any velocity will be, according to (10),
h'~' Ees.Ug"'~5= —~4 N =nzVg -c'e "'dc d5= —~4 0.Vd5.

As in section 4, a has the value cos 8. This force is directed normally;
in order to get the total force in the direction of the velocity V, we have

to take the projection in this direction by multiplying by cos 8, and

integrate it over the whole surface of the sphere. Using, moreover,
relation (12)

2II2, ~'~ = —
& +rncg~frf fcos2 g sin g d&pdg= —

9 +gpga V c.

The total force is therefore

m -m ~&+m()- ——'~em. a2V (18)

It is explained in a preceding paper by Millikan' that such a law of
reHection would violate the second law of thermodynamics.

Case (3a). Digmss refection according 10 Isnard A, s in (. 2a) the mole-

cules retain after reHection the absolute values of their respective veloci-

ties, but are distributed in all directions so that for every velocity there

emerges in a solid angle dQ a number of molecules proportional to the
value of dQ. The mean momentum carried by a molecule of the velocity
c is, therefore, iu the direction of the normal and has the absolute value

m/2

c cos $JQ= — c cos P sin P dx 4P= &psc.2'. 22l-

The whole difference between this case and the case of radial reHection

is, therefore, thatwe h. ave to multiply r4 by mc/2 instead of mc, so that
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u,.& ) =-, m,.() = ——', x~-.~ v.

The total resistance becomes in. this case

(19')

(19)

However, it is easy to see that such a hypothesis is no less in contradic-
tion with the principle of entropy than the last one. The distribution of
directions adopted by Lenard is not a random dis/ributiom in the statistical
sense. Indeed, the principles of statistics tell us that in a homogenious

gas, among the rnolecutes contained in c given volume every solid angle has
equal probability. The distribution of velocities among the molecu/es

coming from a surface element is quite a different matter and is found by
the construction of a cylinder on the surface element, as shown in section
2. The volume of the cylinder turned out there to be ( dS=c cos ltt dS, so
that the probability of a given solid angle dQ is proportional not only to
this value but also to cos f; it is therefore

cos lit dQ
cosg sin lit dX df.

dQ

That the assumption of Lenard is not permissible appears most
clearly if we consider the reaction on a surface element at rest (V=O).
According to (10) this will be

3IIs"dS= —-'m cn, dc dS= ——„ I, dS,

while in the case of specular reflection we have from (7)
+oo +ao

Nm
Has('~dS= —m d$ dg (n( g t- dg= —

4g dS.

The difference amounts to NmdS/16h, or to one eighth of the pressure
of the gas. Taking a disk with a diffusely reflecting surface on one side
and a specularly reflecting on the other, we should therefore be able to
obtain a perpetual motion of the second kind.

6. New hypotheses as to the physical nature of molecular impact Of.
course, the streaming of the impinging molecules has a certain influence
on the distribution of directions among the reflected ones, but this one
usually takes into account by saying that there is a certain proportion of
specular reflection. For the remainder of the reflected molecules we are
looking for a law of random distribution of directions independent of the
velocity of the impinging ones and symmetrical with respect to the
normal; There is no doubt whatever that the only thermodynamically
permissible law is that of formula (20), so that the mean momentum



carried away in the normal direction by molecules having the velocity c
is given by

tFEC
cos P sin P dy dg = 3 sic.

0 0

As to the distribution of the absolute values of velocities among the
emerging molecules many assumptions are thermodynamically possible,
but only the following two seem reasonable.

Case (3). Diffuse reflection with cansersarzon of irefacity. The molecules
retain the distribution which they bring with them, that given by formula

(10), or in other words, every molecule retains after reflection its former
velocity. The only difference from case (3a) is that we have to take as
mean momentum not mc/2 but 2mc/3 so that the result (19') is increased
in the proportion 4/3:

M3(') = —
z& Xmc a' V

Case (4). Diffuse refection taAh accommodation Th.e hypothesis of
conservation of velocity treats the surface of a solid or liquid body as if
it mere rigid. We know, however, that the collision of the gas molecules
in reality occurs with the individual molecules or atoms constituting that
surface and results in an exchange of momentum and energy with the
latter. The assumption Mich is physically most satisfactory is, therefore,
that the gas molecules in being reflected accommodate themselves either
completely or partially to the temperature of the reflecting surface. If T
is the temperature of the gas and T' that of the surface, then the hy-
pothesis usually made is that the reflected molecules possess a temper-
ature T" given by the formula

T"—T=a (T' T)—
where 0 is a constant smaller than 1 called the "coef6cient of accommo-
dation. " We shall call T" the "eA'ective temperature" of the surface.
For all our purposes it is quite immaterial whether it happens to coincide
with the true temperature or not, that is, whether we have complete or
partial accommodation. We shall, therefore, assume that all the imping-

ing molecules are reemitted from the same surface element which they
strike and that in leaving the surface they possess, with respect to their
velocities and directions, a Maxwell distribution corresponding to the
effective temperature of the part of the surface they come from. Two
sub-cases must be distinguished.
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Case (4a). The sphere fs a perfect thermal non cond-uctor Th.e energy
balance must then be maintained for every surface element individually.

Its temperature will increase or decrease until the energy carried off by
the emerging molecules will be just equal to the energy brought by the

impinging ones. The constant h of the distribution law will, therefore,
be a function of the position on the surface of the sphere; as the difference

from the normal value will be but slight, we will write h+h' instead of h,

with the understanding that h' is a small quantity the square of which

can be neglected. We have to assign to the number of molecules emerging
from a surface element dS with velocities between (, q, g and $+d$,
s+d)), $+df an expression of the same type as the first term of (7)

n)c)f t Ce
—(h+h')c f Cp( 1 hc($2+S2+f2) 1 e hc

The coefficients C and h' are determined by the two conditions, con-

servation of number and conservation of energy. The first condition is
satisfied if the total number of emerging molecules

+ Qo +QO C &

dg d& &'~, t-, &+ =—

is equal to the number of impinging ones given by (8):
Cz ( 2h'i N—

I
1 ——

)
= —(1+Vsrh a V).

h' E h ) Vwh
(23)

The second condition tells us that the energy transport to the element
dS

:-f«—fd f (e+'+V)..., , df ="=-(1+-:~—.h. V)2h Q~h
must be equal to the energy transport from it

+00 +OO

mC((8+v'+f') "t
2h' ( h)

so that

(24a)

(24b)

(»)

C~ ( 3h'l—
(

1 ——
~

= (1+—', Q)ch a V).
h' 4 h) Q~h

From (23) and (24) we obtain
(h') h(h

X(1+—'v h aV)
E. )

4

Finally we have to compute the momentum carried away by the
reflected molecules
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~C ~»2—Mg" ——m d( dg gn')( gdp =—
4h h 'h

or substituting the expressions (25) and putting, as before, a=cos8,
Qvh = 2/c and taldng into account only the term dependent on V

~,«~dS= —',
4 em~ Vcos 0 dS.

Integrating the projection of this on the direction of motion over the
whole surface of the sphere, we get

&V,")= ——,—'
X~nf.a'V

M„=M„"+M" = —(-',-+=,, )7rXmca' V.

Case (4h). Tke spkere is a perfect thermal condnctor ln th. is case the

energy balance need not be maintained for the individual surface elements
and is obviously satished for the sphere as a whole if we assume that its
temperature is everywhere the same as that of the gas. VA have, there-
fore, to drop condition (24) and put h'=0; then (23) gives

»2
C = X — (I+V'rk Vcos 8). (28)

Substituting this into (26)

m&&')dr= —8zmt." Vcos 0 dS

and integrating over the surface

M4, ('~ = ——,'XmC a'V
and

M = M "+M"= ——(4+—'&)Xmc a,'V.

7. Millikan's coeffl cient (2+8). We can summarize the results of the
two preceding sections in the following way. In all cases the force of
resistance is given by the expression

Ii = —3II= 0 z Xmc a' V (30)

where 8 is a numerical factor having the following values:
Case (Z). Specnlar reflection

82=1
Case (3). Disuse reflection roAh conservation of velocity

83= 9 =1.444

Case (4). Diffuse reflection with accommodation containing the two sub-

cases of section 6

64, = 1+~—4 = 1.442

64g=1+8 =1.393



RESISTANCE TO iVOTION OF 5PIIERES THROUGII GASES 721

Millikan has shown that the experimental values for the force of
resistance when the radius a is small compared with the mean free path
l can be represented by the formula

6ma'pUp—
(A+B)~1

where p, is the coefficient of viscosity

p, =0.3502 %encl.

Comparing expressions (30) and (31) we find

9 X0.3502 1.575

26

(32)

Using the above values of 6 we find for:
Case (2). Specstlar reflection

(A +B)s ——1.575
Case (3). Conservation of velocity

(A+B)s =1091
Case (4). Accommodation

(A +B)s,= 1.093
(A +B)4s = 1.131

The experiments of Millikan were made with oil drops, and by observ-

ing comparatively large drops he had previously ascertained that one
tenth of the molecules followed the law of specular reHection. Let us,
therefore, inquire about the force of resistance in the case when different
fractions s of the impinging molecules are subject to different laws of
reHection; obviously the expression for this force wi11 be

F=gs8 —sXmc as V

so that we obtain for Millikan's coefficient

1.575A+8 =
s8

(33)

We shall assume that one tenth of the molecules are reHected specu-
larly, and that the rest all follow the same law (diffuse reHection or
evaporation)

A+8 = 1.575

0.1+0.98

This gives us for the various cases
Case (3). Conservcttion of velocity

(A+B)s ——1.125
Case (4). A cco~moda, ti on

(A+8)4, ——1.127

(A +B)4b ——1.164



The experimental value found by Millikan for oil drops is j..154
(while Knudsen obtained for glass spheres 1.164) which is especially close

to our theoretical value (2+B)4q H. owever, the agreement with the
values (A+B)3 and (A+B)4, is also pretty satisfactory, so that it would

be rash to regard this as convincing evidence in favor of the hypothesis
that the sphere can be regarded as a perfect conductor. Fortunately we

can decide the question by other considerations. The behavior of the
sphere depends on the ratio of the heat transported through its interior,
which we may call the infernal conducfion, to the heat received in unit
time from the molecular impacts, externol conduction. If the increase of
temperature of a surface element is AT, the internal conduction, obviously
will be of the order of magnitude

z being the coef6cient of conductivity of the material and c the radius.
In the most favorable case the increase of the constant h=m/ZkT is

according to the formulas (25) given by

whence
QmmT

DT —~ ~ eV
2k

(,, ff; QmmT .nV.
4a 2k

With ~=1.65 104 (olive oil), m=4. 5 10 '(air), "k=1.33 10 ', T=300',
209C(') =—a V.
4u

On the other hand the external conduction in the most favorable case
can be derived from equations (24a), (24b) and (28) by putting k'=0

The factor rhea/2h is just equal to the pressure of the gas p and this
pressure is inversely proportional to the mean free path: P/Po =ID/I;
Since for a pressure of 1 atmosphere po is close to 1G' c.g.s. units, lo =
5.9 10 ' cm we get P =5.9/ and

5.9C"=—cV
4/
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The ratio of the internal conduction to the external is, therefore,
c(*~

=35 —~

C(~) a (34)

If the accommodation is incomplete the factor 35 must be increased
in the rat'o 1/0.

We see from this that if I/a « 1/35, the internal conduction can be
neglected and the oil drop will behave like a perfect insulating sphere.
On the other hand, if I/a» 1/35, the oil drop can be regarded as a
perfectly conducting sphere. The considerations of the 6rst part of our

paper apply to large values of I/a; in fact Millikan derived the aforesaid
value of 2+8 from measurements with values of this ratio as high as
140 which is five thousand times larger than our critical number 1/35.
It follows that on'y the hypothesis underlying the result (A+8)4i, is

justified, so that the agreement be!ween theory and experimentis comp/ete.

If we turn to the opposite case of comparatively large spheres, to which

the second part of th's paper is devoted, we meet qu'te different condi-

tions; the actual measurements' of the coef6cients A were made with
values of the ratio I/c not far from our critical value 1/35. This, however,
does not imply any difficult for the theory, as n the case of large
spheres it happens that d, T=O. Under no circumstances does there
occur a local increase 'n temperature so that the two cases of this
section need not be d'scriminated there.

PART II. RESISTANCE EXPERIENCED BY COMPARATIVELY LARGE

SPHERES

8. Conditions to mlzicIz the gas is subject. The difference between the
case of large spheres and that of small spheres treated in the 6rst part
is that the sphere exercises an important influence on the whole character
of motion of the gas molecules. The distribution of velocities in the gas
will no longer follow the Maxwell law of Eq. (1), but will have a quite
different express'on which we now propose to 6nd. This problem has been
already treated by Maxwell, but in the special case when temperature
differences do not exist in the gas, the solution can be found in a very
simp!e way by a method used by the author several years ago in con-
siderations referring to space charge phenomena. ' This method has the
advantage that it is based on the principle of Boltzmann and is free from
any assumptions further than those which his principle implies as to the

' P. S. Epstein, Verh. der deutsch. Phys. Ges. 21, 96, j.919. The same method was
applied to the theory of the radiometer by Miss E. Einstein in a recent investigation
(Ann. der Phys. 69, 241, 1922) which was begun under the supervision of the writer.



mechanism of the molecular co!lisions, whil'e Maxwell's considerations
were restricted to molecules behaving like perfectly elastic spheres.

The hydrodynamical expression for the fact that the conditions of
motion of the gas are changed by the presence of the sphere consists in

the appearance of a system of hydrodynamical stresses, dependent on the
ve'ocities. If we denote by u, v w the components of the (macroscopic)
velocity of the gas n the directions x, y, s, the stress components are

bu bv bm
P~~ = P+2P ~ Puv = P+2P ' P« = P+2IJ

bx by bs

(8tv trav t'hu dtv» (8v bu&
(35

p"=uI —+- p*=p
I
—+—

) p"=p
I
-+—

I
E by b~ E bs by) (bx by)

If we return to the kinetic point of view, we must say that all the
macroscopic characteristics of the gas are a result of the co-operation of
the individual molecules. Let the number of molecules have velocit'. es

between $, g, g and $+d$, g+dy, f+dg at some point of the gas be given by

f(k, s, f)4dsdf =fd~ (36)
Then the density of the gas at this point will be

p=m Jfd~ (37a)

The mass flowing across a unit of area in the respective directions

x, y, s, willbe

pu=mf ]fd~, pv=mf gfd~, ptv=mf gfd~ (37b)

Finally, the physical meaning of the stress components (35) is the
transportation of a given component of momentum in a given direction:

p„= mfpfdur, —p„„= mfs'fd~ —p = mfpfdu—
Jnkf&P- — J t$f,d P —= IJ fnfd*. =—

Whatever the expression of fmay be, it must be chosen so as to satisfy
these ten conditions.

9. Law of distribution of velocities The .principles of statistical
mechanics tell us that the correct law of distribution is that of the h'ghest

probability, or stated mathematically, according to Boltzmann's H-
theorem, that for which

H=J'f log f d&v =minimum. (3g)

The special conditions by wh'ch the choice of f is restricted, of course,

must be taken into account, and these are in our case the ten conditions

(37a, b, c). The problem is, therefore, reduced to that of finding the

minimum of a function subject to additional conditions, and the rule

for this is, as is well known, to multiply the relations (37a, b, c) by La-

grangian factors, to add them to 2V, and to put the variation of the sum
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equal to zero. Denoting the factors by —(log P+1), a', b', c', l', m',
n', 2P', 2g', 2r', respectively, we arrive at the equation

bJf [logf (lo—g P+ I)+a'h+b'~+c'I +I'8+m'n'+n'I'+
+2/'q f+2q'I )+2r')rl]des =0

or

(40)

log f=log P (a'p+—b'g+c'f) —(I'p+m'ri'+n'f'+ (39)
+2&'nl +2q'I f+2r'8)

In the applications we shall restrict ourselves to the case in which the
function f differs very little from that of the law of Maxwell

(hi 3~2b
]

p
E~)

so that we can put

l =h+l", nz'=h+m", I'=h+n" (41)

where 3", m', n", as well as a', b', c', p', q', r' are very small quantities
the squares of which may be neglected. Ke get, therefore,

f=Pe "' I1—(a'f+b'rj+c'f) —(1"P+m"g'+n"P+ (42)
+2f 'el+2q'0+2r'8) I .

It only remains to calculate the ten constants of this expression from
the ten equations (37a, b, c). If we denote

hl 3/~ h& 3/2
pP= -) (43)

the 6rst of those conditions gives us

p =pe[1 ——(l"+m" +n")]
2h

and

The equations (37b)

p, =p[1+—(I"+m"+n")]
2h

(44a)

bf C
'N = ——i (44b)

and equations (37c) combined with (44a)

p ( l"'t p( m"&
~* =--]1-—

I
~-=--]1-=

]2hE &) 2h( h )
p ( n"']

p., =—]
1 ——],

2hE h)
p

2h'

Taking into account that
p

2h

p
P = ——r

2h'
(44c)

(45}
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and denoting
Su

p z)z =2@
8x

we finally obtain

8v, Ro
puu 2H ' p»

8x 8s
(46)

The sum

c = —2hu)

2h,/" = —.p'-Xg )

2h'
p p'vz )

b'= —2hv,

2h',
m p

P

2h'
g = pzx)

c = —2h'w)

2h',
P

2h'= —p
P

p (bu 5v Ro&I"y "+ "=4a -( —+—+—
~

p (8x ~y 8~)

can on account of the equation of continuity

h(pu) 8(pv) b(p)U)

bx 8y bs

differ from zero only by terms of the second order in the velocities, which

we have consistently neglected. Practically, therefore, po = p and the
distribution function now acquires the form

2h'
f fp[1 —2h(ut+sr)+wl ) +—(P'„t'+P'„„g'+

p

+O'- V+20" nf +2P.*2+2'*.hn)t (47)
10. Conditions at the surface of an iesmersed body. The distribution

function found in the preceding section is strictly valid only for interior
points of the gas. Close to its boundary it necessarily must be changed,
due to the fact that, near the surface of an immersed body, the molecules
having a positive $ component of velocity (as before we choose the
normal direction as the x-axis) are those which come from the surface
after being reHected from it. As the total force acting on some volume

of the gas is equal to the transportation of momentum through the
surface of this volume, it is obvious that the transportation of momentum

or, in other words, the stress tensor is the quantity which regulates the
equilibrium of the gas. A stationary state is only then reached when the
rejected portion of the molecules no 1onger disagrees with the conditions
prevailing at the interior points of the medium, but fits into the system
of stresses given by equations (37c). In other words, the reflected mole-

cules must produce the same effects, as to the transportation of momen-

tum, which molecules moving with a positive g component and the
velocity distribution f(&, rl, I') of the preceding section would produce in

the absence of a boundary.
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The number of molecules of the range of velocities between f, g, f and

(+de, g+dg, f+dg which impinge on a surface element dS in unit time is,
as stated in section 3, &f—($, g, f)df dg di dS, provided that g is negative.
Let the fraction (1—s) of this number undergo specular reflection, and
the fraction s diffuse reflection, in which latter case the law of distribution
of velocities among the emerging molecules will be a new one, given by the
expression f'($, g, f). According to the above remarks the totality of all
reAected molecules must carry exactly the same momentum that would
be carried by molecules having the distribution f($, y, f) and a positive P

component, so that the stresses produced by the former and the latter
are the same. This gives us at once six conditions for the six stress
components. The first of them is

+~ +~ p +co +co

f d~ f d.fe'(~. f)dr+(1 )f-«f d.f&'&«&)'&=
0 oo oQ oo 00 Qo

k, n, C C.
0 co cO

By choosing in the second integral as the variable of integration —$
instead of $, we can reduce this to the form

+co +co

f d& fdrl f I sf'(],g,f)+(1 s)f( —$,q, f)—f(],v, f—) I Pdf =0. (48a)
0 ce ce

In a similar way we get for the normal stress in the y-direction
+oo +co

f d&f dq f I sf'(g, q, f)+(1 s)f( c,—s,f) f—(&,q, f) Is'df—=0, (48b)
0 OQ ce

and a third similar equation for the s-component.
Turning to the shearing stresses we have to take into account that

f'(&,p, f) represents a distribution symmetrical with respect to the normal.
Therefore the diffusely reflected molecules cannot produce any shearing
stresses and the term of the equation depending on f' must vanish. We
have, therefore,

f d&fd.f I (1 s)f( &,s—,f) f—(&,s,f) I
—fydf =0,

f d&

fdic

f I (1 ~)f( f,n, f) f—(h, v, f) }
—8 df

0 —oo —oo

(49)

and a third relation which is satished identically.
To these five conditions two more must be added, expressing the

principle of conservation of mass and that of conservation of energy. The
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number of molecules impinging on a surface element of the boundary is

equal to the number reHected from it, and the energy brought by the
first group of molecules to this element is equal to that carried away by
the second. As these demands are obviously satisfied by the part of the
molecules undergoing specular reHection, we need to state it only for those
reHected diffusely. We have, therefore,

+QO +QO

(5o)
0 QO. QO

+QO +QO

f« fdv f If (f-,v, f) f( ~-. f-) I f(f'+ "+f')df-=O
0 QO QO

(51)

The seven conditions of this section must be satisfied by a suitable
choice of the coefficients e, v, rv, p„, etc. of the function f and of those of
the function f' Of t.he former, according to equations (35), only three

are arbitrary.
11. Conclusions drawn from the 0 netic boundary conditions. Into

the equations of the last section we have to introduce for f' the function

representing the velocity distribution of molecules reHected diffusely

with accommodation. According to section 6 the law can be written in

the form
f'=f0 I ~+&' &'(8+v—'+f') I (52)

If we limit our considerations to the case of surfaces with compara-

tively large radii of curvature R~ so that the ratio of the mean free path
of the gas l to R becomes so small that the square of l/R can be neglected

(as well as the products of the velocities u, v, rv, with f/R), then the form

of the distribution function f can be simplified.

Indeed, if we have no slip at the surface, the velocity components close

to it must vanish; u = v = m =0, whence at the surface

bu bv Rv—=—=—=0
bx by br

If there exists a slip, the velocity at the surface can only be of the order

of magnitude vl/R, while p'„, p'», p'„, due to the differentiation and

to the factor p are still a second time multiplied by l/R. Therefore,

within the limits of the accuracy of our theory we can put, compared

with P„, etc. ,

P ~~=P vu=P -=0
so that close to the boundary the function f assumes the form

4h'
f=fo I & 2&(vk+vv+—ivan)+ (p;~f+ p*—*H+p.,B)I. '

p

(53)

(54)



We introduce this formula into the two conditions (49) of the last
section independent of f' and obtain

~~a (&2

p gS

pcs.
p gS

The three conditions (48) yield all one and the same relation

5 h'
(2 —s)u+-,' —P' —— — —=0.

h 8 h h

From (50) we obtain
12 h'

Q — I '+ —={),~hh
and from (51) I, 12

Su — P'+ —=0.
&~h &~h h

The solution of these equations is

I"=0, h'=0,

The result (56) shows us that the velocity distribution among the
dIAusely reacted molecules ls the plain 7UIaxwell dlstrlbUtlon, corre-
sponding to the temperature and density of the surrounding gas. There
is no local heating of the immersed body, as we already mentioned in

section 6. It is interesting to point out that the assumption of the con-
servation of velocity would lead to exactly the same result, so that the
case of a large sphere does not permit us to diGerentiate between the two
possibilities. The analysis of the motion of small spheres is in this
respect superior to the case here considered.

Equation (5/) together with (55) giwes us the macroscopic boundary
conditions ncccssRry fol the solution of the hydrodynRmieal problem.
VA see that they formally coincide with the phenomenologieal assump-
tloTls 1Tltroclueed by Basset:

I8 is called the "coefFicient of sliding friction" and p/P the "slip coefFicient. "
Comparing (55) with (58) and taking into account relations (12) and
(32), we get as expression of the slip coefficient

- =o »«I ——'!'p,
(59)

P
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(61)

12. APPENDIX. ON THE ROTATIONAL MOTION OF SPHERES

At the Boston meeting of the American Physical Society, where an ab-
stractof thispaper was read, my attention was drawn by Dr. G. Breit
to the importance which the knowledge of the resistance experienced

by a sphere rotating in a gaseous medium presents. Dr. Breit is going
to publish in this connection some interesting considerations of his own,
but I should like to point out here what our general formulas yield for
this special case.

As in the case of a translatory motion we have to distinguish between
the two cases when the radius of the sphere is small compared with the
mean free path and when it is large compared with it.

~ Basset, Hydrodynamics, 2, 271; H. Lamb, Hydrodynamics (4th ed. ), p. 591

in agreement with 7UIaxwell's value, so that the conditions at a surface
of sufficiently small curvature are, with respect to sliding, the same as at
a plane surface.

It must, however, be remarked that though equations (55), (57) and
(58) are formally identical, s and w in (55) are not the actual velocity
components at the surface but those values which the components would
have if the distribution function f and the hydrodynamical equations
were rigorously valid up to the immediate vicinity of the boundary.
As the solution of the latter equations in the case of a sphere can be found
in most text-books of hydrodynamics, it is not necessary to repeat it
here. The force of resistance experienced by a sphere, or, according to
Eqs. (37c), the momentum conferred on the sphere by the gas molecules
in unit time, is given by Basset's formula,

2p+PuM = —6m pa t/". (60)
3@+Pc

It must be borne in mind, however, that we have found the assumptions

(58), underlying Basset's formula, to be valid only in the case when

squares of the ratio I/a can be neglected, so that it would be more con-
sistent to neglect such terms in the expression of the resistance itself
and to write the formula in the form

p &i S~pcV~= —«~«l 1 ——
l
=—P~),+ ~

Pa
This can be hardly regarded as a limitation, because, if I/a is not small,
the applicability of hydrodynamics begins anyway to break down.

As we have obtained a complete con6rmation of the two formulas (61)
and (59) on which Millikan s theory is based, all his conclusions, espe-
cially as to the percentage of specular reHection,

'

seem unimpeachable.
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Case 1. a« I. We choose, as in section 3, the normal to the surface

as the x-direction, the meridian through the axis of rotation as the y-axis,
and the paralleI circle in the direction of rotation as the s-axis. As every
surface eIement moves in its own plane in the direction s, we have to
specialize the angles in formula (13) as follows:

a=0, P=0, y=1.
Ke wish, moreover, to compute the component of the momentum com-

municated by the gas to a surface element dS in the direction of its
motion, so that

a'=0, Pl 0 /

The aforesaid momentum, therefore, turns out to be

Ms"dS = ——,'Nmc VdS (62)

V~' = ——Nmc a4. (63)

As to the momentum of the rejected molecules, it is evident that the
effect of the specularly reflected wi11 just cancel that of the corresponding

impinging ones; while the diffusely reflected emerge symmetrically with

respect to the normal, and yield, therefore, no contribution to the
moment of momentum. If we denote the fraction of the molecules under-

going diffuse reAection by s, the total resistance will be

P= —3s Nmc~a4, (64)

or, according to equation (32)

Y= —2.185msp, coa' —. (64')

Fram this it is easy to obtain the moment of momentum Y, with respect
to the axis of rotation, acquired by the surface etement in unit time; it
suffjces to multiply this expression by the distance from the axis. Taking
the center of the sphere as origin of a system of polar coordinates r, 0, q

and the axis of rotation as the polar axis, we get for that distance a sin 9,
while dS =a'sin 0 do dy and V= ace sin 0. Hence if we denote the angular

velocity of rotation by co,

Ys"dS= —-„'Nmccoa4 sin'Odgdq.

The total moment of momentum conferred to the sphere by the imping-

ing molecu1es is obtained by integrating over the whole surface of the
sphere and comes out

If the measurement of resistance under the above conditions is experi-
menta1ly feasible, it will yield a direct determination of the fraction s of
diffusely rejected molecules.

Case Z. a) )l. According to section 11, we have to solve in this case
the problem of the motion of a viscous fluid with the boundary condi-
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tions (58). The general solution in the case when the square of the
velocity is negligible, can be found in most text-books of hydrodynamics;
the velocity V of the liquid or gas turns out to have in the direction of
the above polar coordinates the components:

V„=O, Vg=0, V„=, sin 8.C

From this we get the stress components at the surface of the sphere in our

previous notations (taking again the s-axis in the direction of the parallel

circle)
O'.*=O' =O'- =O

C .
Pu~ =P~*=O~ P*v = 3p —sm 0.

a
(65)

In giving the values of u, v, w it must be taken into account that in (58)
they are the components of the relative velocity of the gas with respect to
the surface of the sphere. Therefore:

N=O, s=~ ——a~0 sing, is=0.(C
(66)

(a2

Of the three conditions (58) two are satisfied identically, the third gives

an equation for the determination of the constant C:
(C ~ C

p( ——a~
I
= —5i —,

Ea' )
vrhence

a M a co

1+s—," 1+2.1012(—, —1),—
We obtain the resistance by integration of the moment p,„a sing dS,

acting on a surface element, over the whole surface

8~pa'co (67)
1+2.1012(—,—1)—,

We see that the correction due to the finite value of the mean free path
:is three times as large in the case of the translatory motion of a sphere.

In certain theories of dispersion the rotation of molecules plays a con-

spicuous part and the resistance oAered by the medium of this rotation is

computed as if the molecules were spheres on the basis of the uncorrected

equation
Y= 8%'pa Gl. (68)

In reality, the application of any theory becomes doubtful under those

conditions. Even if it is permissible to regard a molecule as a sphere,

the radius and the mean free path are of the same order of magnitude, so

H. Lamb, Hydrodynamics (4th ed.), p. 581
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that neither formula (64) and (67) is applicable. There is, however,

little doubt that the- true resistance for l =a must be smaller than that
given by either of the two expressions, and is therefore, more than three
times smaller than that derived from formula (68).

Another cause of uncertainty is the deviation of the molecules from a
spherical shape. It is interesting in this connection to compute what
the resistance of a flat disk of the radius c will be, revolving with constant
angular velocity around an axis in its plane passing through its center.
The computation is easy on the basis of our general results in the casea« l. Assuming that a fraction (l —s) of the molecules is reflected
specularly and a fraction s undergoes diffuse reflection with accommo-
dation (section 6) and that the disk acts like a perfect conductor, we get
the expression

Y'= ——,'7rXmcu4[2 —s+-,'ssj co. (69)
If the percentage of specular reHection is fairly low the difference be-

tween this case and that of formula (64) is not very important. From
all these considerations we can draw the conclusion that formula (68)
will give -us oIjly the rough order of magnitude of the resistance ex-
perienced by a rotating molecule, and its application is only justified
when nothing but a rough estimate is required.

NORMAN BRIDGE LABORATORY,
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February 3, 1923.


