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THE SETTLING OF SMALL PARTICLES IN A FLUID

By Max MasoN AND WARREN WEAVER

ABSTRACT

Settling of small particles in a fluid; mathematical theory.—Small parti-
cles immersed in a liquid experience a motion which is the combination of a
steady gravitational drift and a Brownian movement. If there are space varia-
tions in the density of distribution of particles, the Brownian movement
produces a diffusion which tends to equalize the density. In the steady state
the density # of particles is an exponential function of x, the distance below the
surface of the liquid. This paper investigates the manner in which the steady
state is established. A consideration of the combined effect of fall and diffusion
leads to a partial differential equation for the number density of particles as a
function of depth and time. A set of special solutions is obtained in terms of
which a solution satisfying initial and boundary conditions can be expressed.
(1) Liquid of finite depth. The solution is obtained for a liquid of finite depth
with an arbitrary initial distribution #o=f(x). For the case of uniform initial
distribution a reduced form of the solution is obtained which contains a single
parameter, This one parameter family of curves is plotted, and from these
curves, either directly or by interpolation, may be obtained the density distribu-
tion at any time for a solution of any depth, density, and viscosity, and for
particles of any size and density. For small values of ¢, since the solution
obtained converges slowly, an image method is used to obtain an integral
formula for the density. (2) Liguid of semi-infinite or infinite depth. In the
case of a liquid of infinite depth the solution for an arbitrary initial distribu-
tion is expressed by the Fourier integral identity. The case of zero initial
density for negative x, and constant initial density for positive x is calculated,
as is also the case of particles initially uniformly distributed over a layer of
depth k. In the case of a liquid extending from x=0 to x =0, the boundary
conditions are satisfied by assuming a suitable fictitious initial distribution
over the range from x=—w to x=0. The cases of uniform initial distribu-
tion, and initial distribution over a layer, are calculated. The latter case,
while derived for a liquid of semi-infinite depth, gives approximately the
‘distribution of density during the settling of a layer of particles initially dis-
tributed uniformly over a depth % at the upper end of a very long column of
liquid.
SMALL particles immersed in a liquid experience a motion which is the
combination of a steady gravitational drift, the velocity of which is
given by Stoke’s law of fall, and a Brownian movement due to molecular
bombardment. If there are variations of the density of distribution of
particles, the Brownian movement produces a diffusion tending to
equalize the density. If a liquid containing such particles stand undis-
turbed, a steady state is reached in which the density # of particles is an
exponential function of x, the distance below the surface of the liquid, as
has been verified experimentally by Perrin. It is the purpose of this
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paper to investigate the manner in which the steady state is established.
A consideration of the combined effect of fall and diffusion leads to a
differential equation for the number-density of particles as a function of
depth and time. The solution is obtained for an arbitrary initial distribu-
tion 7= f(x), both for a liquid of finite depth, and for a liquid of infinite
depth.

1. THE DIFFERENTIAL EQUATION FOR THE NON-STEADY CASE

The coefficient of diffusion can be obtained from a consideration of the
steady state.! Suppose a gravitational force X to act on a spherical
particle of radius a. Its velocity V is then given by Stoke’s law of fall as

6muaV=:=X,
where u is the coefficient of viscosity of the liquid. Due to this velocity
there will cross per second downward through unit horizontal area a
number of particles given by
Vn=nX/6ura.
The density distribution in the steady state is known to be given by
n=n' ¢W/RT)X@—2")

where NV is Avagrado’s number, R the gas constant for a gram molecule,
T the absolute temperature, and where »’ is the density of particles at
the position x=x’. It follows that the gradient of density in the steady
state is given by
n/dx=(N/RT)Xn.
The steady state, however, is characterized by the fact that the number
drifting downward through unit horizontal area is equal to the number
diffusing upward through the same area. The number of particles diffusing
upward must therefore be given by
nX RT on

6rua  N6rua 9x
Thus the factor by which the rate of change of density must be multiplied
to give the flow of particles due to diffusionis RT/N6wua. This quantity
is therefore the desired coefficient of diffusion.
In the non-steady state there is, then, a net flow, per unit area, in the
positive direction of x (that is, downward) given by
_ n(x, z)X_ RT an(x,t))

Fx, 8) 6mua N6rua 0x

where n(x, ¢) is the number-density of particles at the place x and the
time £.  The net downward flow at the same time through a unit area a

! Einstein, Ann. der Phys. p. 554, 1916
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distance dx lower is F- (9F/dx)dx; so that the net gain, per unit time, of
the layer of thickness dx would be — (8 F/dx)dx. That is
o 1 l: _RT an] on

T ox O6mua N x| o’
or
on a*n on
TR TR (1)
with

RT X _§ma’gd _2¢ba’

A= Norma’ B = Gmma = 6rpa o’

(2)

where 6 is the effective density of the immersed particle; that is, its
density minus the density of the liquid.

No particles cross the planes x =0 or x=1] where / is the depth of the
liquid. Thus the net flow into the layer between x =0 and x=dx is given
by the net flow across the plane x=dx. Therefore

dx(9n/9t) = (A On/dx —Bn)a,
where 97/t is the average value of 97/dt over the layer, and where the
subscript dx on the parenthesis indicates that its value is to be given at
x=dx. If dx is now allowed to approach zero, the equation
A on/dx=DBn, forx=0,
is obtained as one boundary condition: In the same manner it follows
that
A on/dx=Bn, forx=l,
To these must be added the condition that the density reduce to the
arbitrary distribution no=f(x) for t=0. The problem thus consists of
finding a solution of the partial differential equation (1)
n ?n on
Ry i
at Jx? dx
under the boundary conditions
A dn/dx=Bn, for x=0 and ], (3)
and the initial condition®
no=f(x), fort=0. 4)

The problem of the temperature distribution along a rod, insulated
along its sides but radiating from its ends, differs analytically from the
diffusion-fall problem here considered in the absence of the second term
on the right side of (1). The differential equation (1) might be reduced to

2 The differential equation here given was obtained by Th. De Coudres in an
article, Ann. der Phys. 1894, which seems to be the only one previously published on the
question. He did not attempt an exact solution under the boundary conditions, but
limited himself from the beginning to approximate methods, studying in this manner
the case of a liquid of finite depth.
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the heat equation by the substitution x’=x-—Bt. This substitution,
however, would introduce a complexity in the boundary conditions,
offsetting the gain in simplicity in the differential equation itself.

2. THE SOLUTION OF THE DIFFERENTIAL EQUATION

If a solution of (1) be assumed in the form of a product of a function
X of x alone by a function T of ¢ alone, one obtains at once
17"/T=(A4X"—BX’)/X =constant = —r,
or the two ordinary equations
T'=~Tr; AX"—-BX'+rX =0,
where 7 is as yet unrestricted. A solution of the first of these equations is
T=e", (5)
The solution of the second is
X =¢Bs/24 (C sin wx+ Cy cos wx), (6)
where

w=+/4r4A —B?/24.
Solving this last equation for 7 in terms of the new constant w, substituting
this in (5), and taking the product of (5) and (6) one obtains

n(x, t) = e~ WA +B) /44 o(B/2A)s () sin wx+ Ca cOS wX). )

3. THE BouNpaRY CONDITIONS

The substitution of (6) in the boundary conditions leads to the equations
Crwd—C; 1B=0,
Ci (w4 cos wl—1B sin wl) —~ Cy (3B cos wl+wA sin wl) =0. (8)
In order that these homogeneous equations possess solutions for Cyand Cy,
other than the trivial solution Cy= Cy=0, it is necessary that the deter-
minant of the coefficients vanish. That is,
sin wl (w?42+B2/4) =0,
so that
w=mx/l, m=0,1,2, ..., 9)
or
w=+i B/24. (10)
The constant w having one of the values given by (9) or (10), the ratio of
Ci to C is given by either equation (8). If one chooses
C,=CnB,
then
Co=Cpn 2mwd/l.
When o has the value (10), 7 is zero so that T  is unity, and the cor-
responding special solution of (1) is
CO eBx/A.
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It follows that the expression
51 = e~ (@A m2n+-BUYL/4A12 ,Bx/24 Z;" Con [B sin (mmx/h)
+-(2mwA /1) cos(mmx/L)]+ Co eB¥4,  (11)
satisfies (1) and the boundary conditions, C, and C, being arbitrary.
It remains to satisfy the initial condition. For t=0 Eq. (11) gives
ng e BE2 = f(x) e=B+/24 = Cy P24+ "" C,, [B sin (mmx/])
+ (2mwA /1) cos (mwx/1)], (12)

and it is necessary to determine the constants Cp and C, so that this
equation will be satisfied. That is to say, it is necessary to expand an
arbitrary function
Y (x)=f(x) e P24,
in a series of characteristic functions #,,, where
Un=DB sin waXx+24w, COS WnX, wm=mu/l; m*~0
1y = eB+/24, we? = —DB2/442.

It is interesting to note that in order to obtain a complete set of char-
acteristic functions, in terms of which an arbitrary function can be
expanded, it is necessary to include the function #,, which is so radically
different in character from the other characteristic functions #m.

The functions u; satisfy the differential equation

u;”—l—w,ﬂ u,;=0 i=0, 1, 2, e e ey (13)
and the boundary conditions
u; =B/24 u;, x=0 and /.

Hence, integrating by parts,
j: (u;”uj——uj”u,»)dx=[ui’u,-—u,-’u,-],{—-‘/:(u,-’uj“—u,-’ui')dx=O.
From equation (13) it follows however that
j;l(ui”uj—uf”ui)dx = (w,-f‘—w,vz)j:uiu,- dx.

Hence the integral from 0 to I of the product usu; of two characteristic
functions vanishes when 75¢7. When 7=j

[lusds=3(Br+44%2), i=o0.
Multiplying both sides of (12) by %y and integrating from 0 to ]
Co j;l eBx/Adx=jZf(x)dx,

and for the special case that the initial distribution is uniform, i.e. that
S(x) =constant =y,
CO =_Bnol/A (eB’/A bt 1)
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Multiplying both sides of (12) by ., where m 0, and integrating from
0 to I,

2.2 42 2132
4—@-%[;_” B C;;ijt?””"”” fx) {B sin (max/1)+(2mwA /l)cos(mmx/1}dx.
For the case f(x) =constant =n, this equation gives
16A42BmnPB _
Cn=latzner e LT,

with the upper sign holding for m even, the lower for m odd. The solution
of (1) which satisfies the boundary and initial conditions is thus

_ mo BleBs/4
(4 A2ty B2 _Bi y
% e “ m(1Fe 2A) [B sin———m;rx—l—z——vm;r cosmlix]
1016 ABrlte” ) " (iAo T BT

4. REDUCTION OF THE SOLUTION

In (14) the density is expressed as a function of x and ¢, and of the three
parameters 4, B, and J. By making suitable substitutions in the differ-
ential equations and boundary conditions it is possible to obtain a reduced
form of the solution, which contains a single parameter. This one param-
eter family of curves then furnishes the solution for any given 4, B, and
I. The Egs. (1) and (3) through the substitutions

4 /

Ao Lop sr= (15)

x=y,

are reduced to the form
on ?n  on
"y ay
a on/dy=mn, y=0, y=1,
the solution of which, corresponding to (14), is
n ev'e
=D )
0 —amir2f’ I o 2a 1
16 atrerhirie 37 ¢ m(1%e (1735:;1 M:f:x;rbrmacos mmy]
In Figs. 1, 2, 3, 4, and 5 this equation is plotted for the values a =.025,
0.1, 0.3, 0.5, and 2:0. For each value of a, curves are drawn for ¢’ =0.05
0.25, 0.50, 1.0, and =, except that such of these curves as practically
coincide with the steady state curve # = © are omitted. The ratio, in the
steady state, of the density at the bottom of the liquid to the density at
the top is given by e, the values of a plotted covering a range in this
ratio from 1.65 to 2.35X 107,

(14)
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To illustrate the use of these curves a definite example will be con-
sidered. Perrin, in his observations of the variation with height of the
concentrations of Brownian particles, experimented with gamboge grains
of radius 0.212u and density 1.194. These particles were immersed in
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water in a cell of depth 100u. For these data it follows, from (2) and
(15), that
A=9.03X10"° B=1.902X10% [=10,% B=35260, a=.475.

The curves for a=.475 may be obtained by tracing on a single sheet the
curves for a=.3 and a=.5 and interpolating. The result is shown in Fig.
6. In order to return to the original variables x and ¢ it is necessary to
multiply the ordinates by /=100y, and the time # by 8. The curve
# =1 or t=75260 sec. sensibly coincides with the curve {= = so that the
steady state of distribution is practically established after about one and
one half hours. Perrin remarks, “A few minutes suffice for the lower layers
to become manifestly richer in granules than the upper layers. . .
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With the emulsions I have used, three hours are sufficient for the attain-
ment of a well-defined limiting distribution in an emulsion left at rest, for
practically the same values are found after three hours as after fifteen
days.” The information to be read from the curves is thus consistent
with the observations of Perrin.

5. Liouip or. INFINITE DEPTH

In the case of a liquid which extends from x= —® to x= -4 there
are no boundary conditions, so that (7) is a solution for any value of w.

=1

o

] ) \[é]t;%

o] 1 [4 4 V., 6 8

=)

0

Fig. 2
The addition of all these solutions gives the solution
n =g~ AWM BY/44 eB-‘/“jOm(Cl sin wx -+ Cs cos wx)dw,
where C; and C, are arbitrary. When ¢=0 this reduces to

00
eBe/24 j; (Ci sin wx+C; cos wx)dow,
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which, if the initial condition is to be satisfied, must be identical with the
function f(x). The comparion of this expression with the Fourier
integral identity

0 400
o) = [ "dw [ $(v) cos w(vy=)dv,
shows at once that the equation
flx)e—Bs/24 :j;w(Cl sin wx+ Cy cos wx)dw

xX =3

0

0 1 W, 3 Iv)
Fig. 3

is satisfied provided the constants C; and C; have the values
40 .
C, =ff(7)e“”7/2‘45i11 yw dv,
~0
e 00
7rC2=ff('y) e~ Bv/24 cos yw dy.
-0

Thus

anf?(v) e=B1/2 0y fwe—(zwwewe-ls'e) 144 gBE/ 1 o8 oy —x)dw,
- 0

©0
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satisfies the differential equation and the initial condition. If the integra-
tion with respect to.» be carried out this reduces to

n=(1/2V/Ar) [ Jly) o= trmrtmsa dy, (16)

If the initial density be zero for x <0, and a constant value #y for
positive values of «, this expression takes the special form

1= (1o/2V/ At [ e=Gmrt B0V oy = 4y [1—O[Bi—x)/vEAL, (17)

o =.5
0o
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where 6(x) stands for the probability integral
2 ) Tt .
(2/v/7) j; e~ dux.

If the particles be initially uniformly distributed over a layer of depth
h, so that
fx)=0, x<0orx>h; flx)=mn, 0<x<h,
equation (16) reduces to

n="3no{O[(h—x+Bt)// 41| O[(Bt~x)/v/4A1}. (18)
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In terms of the running coordinate x — Bt, expressions (17) and (18) are of
the same form as the expression for the one-dimensional diffusion of heat
in an unlimited region, the initial distribution of temperature being, in
the first case, constant for x >0, and in the second, constant over a layer of
thickness #. Thus when the liquid extends indefinitely in both the
positive and negative directions of x there is superimposed upon the
steady fall whose velocity is B a diffusion entirely similar to the one-
" dimensional diffusion of heat. This statement also follows from the
remarks at the end of §(1).

Fig. 5

If the liquid extends from x=0 to x=® the initial distribution f(v)
is given for positive v only, and the boundary condition

A 0n/dx=DBn, for x=0, (19)

must be satisfied. The problem can be reduced to the case just pre-

ceding by supposing that the liquid extend from — to 4%, and that

the region x <0 have an initial distribution of density of such nature that
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the condition (19) will be satisfied for any ¢. If the boundary condition
at x=0 is always satisfied it is obviously immaterial whether or not the
liquid above x =0 actually exists. The solution (16) is thus available for
this case provided f(v) for negative v be determined in such a way that
(16) satisfy (19).

x = 475
[0}

20p

40p

60y - —

80p

IOO/« s

Fig. 6

If (16) be differentiated with respect to x and the result simplified by
integration by parts the equation
‘21’_=_£___: ;fw) ¢ (s kBOYAAL o
0x  24/Axt ). ’
results, it being assumed that f(v) is continuous at v=0. Then to satisfy

condition (19) the relation
400

ST £ =B sy emtrrmvast gy =,
or

j::;nw“ [4 f'(v) =B f(v)] er/44t dy =0,
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must hold identically in ¢. The factor ¢~ Y/44*is even in v, so that the
condition will be satisfied if f be defined for negative values of v so that

e~ B PATAL () = Bf (v)] (20)
is an odd function of v. This condition gives a differential equation of the
first order for f(v), v <0, which, in combination with the assumed con-
tinuity of f at v =0 uniquely determines f for negative-y in terms of the
known f for positive y. For example, if f(y) = constant =%, for v >0 then

()= (B/4) f(v) = (Bno/A)ePr'4,

J(y)=mno B/4(14Bv/4), v<0,
so that the solution is

and

nino=(1/25/Amt){ [20+By/A) etria o= mstmiisat gy
+ j:oe—v(y~z+Bl)Z/4Atd,y§ 21)

which reduces to

A BYVE 1[ — (Btﬁx>]
ny \/;4—7re e Vads
1 ] B _ BH—x 22
1 B4 [1+Z (Bt—{-x)] [1 o (\/H‘z)] 22)

As a second example suppose that the particles are initially distributed
uniformly over a layer extending from x=0 to x=#; that is,

f()=ns,  0<y<h. (23)

Then, as before
f(y)=mno eBA(14-By/A4), —h<y<0. (24)
For values of v less than —#%, however, the equation

J'(v) = (B/4) f(v) =0,
flv)=C &P/,

Evaluating the constant by means of the condition that f(v) is a con-
tinuous function, one has

C e BWA =y, g~Bild (1 —Bh/A).

gives

or
J(v)=ng P4 (1—~Bh/4), v<—h. (25)

If (23), (24), and (25) are substituted in (16) and the integrals evalu-
ated the result is

n_, h—x-+Bt ! B Bi—x—h !
— =10 Ll B/ A 1L (x—BH) | © 26
no PO\ VAt ) 20 [ A )] A 0)

w;{f PHANS A (1= B leaidry 1 (12 Bl JA), [1+6(Bt—x~h)]

NZVY
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This expression, while derived for a liquid of semi-infinite depth,
approximately gives the distribution of density during the settling of a
layer of particles, initially distributed uniformly over a depth 7/ at the
upper end of a very long column of liquid.

6. INTEGRAL SOLUTION rOR THE FINITE CASE

Eq. (14') converges very slowly for small values of ¢, especially if a
be small, so that it is unsuitable for calculation. An application of the
image method sometimes used in heat problems furnishes an integral
formula from which the density may be easily calculated when ¢ is small.

If Eq. (16) be differentiated with respect to x, integrated by parts
(assuming f(y) continuous), and substituted in the boundary conditions

~ A 0n/ox=Bn, x=I,
A on/dx =Bn, x=0,
the result is the pair of equations

[ 17— @)1 e otrmaas gy =o,

[ [ B e errmnas gy =o,
or

w1/ A)) emo=bis dy =0,

[lemnd 1= (B/AN) e dy =o.

These two equations will be satisfied identically in # if the function

e~ 0D = (B/4)]] 1)
is skew-symmetric about v =/, and the function
e~ B2 [ —(B/A)f] (28)

skew-symmetric about the origin y=0.

These two conditions suffice to determine f(v) for any v prov;dcd the
function is given over the range from 0 to 7. Condition (27) “reflects”
this given strip of the function, so that it is then given over the strip
from 0 to 2}: condition (28) then reflects this given strip about the origin,
so that it is then given from —2I to 2/; and so on. If, for example,
f(v) =n from 0 to I, the function from / to 2/ is given by the equation

e300 [1() — (B/A)f(x)] = (B/4) e~ B2 0=,
the solution of which is .
J9) = (By/d) @60 1-C Pt
If the constant is evaluated from the condition that f(v) is continuous the
result is
J(y) =e®BD6=d {14 (B/A) (v=h}, I<y<2l
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In the same way the function in the range from —/ to 0 is determined
from condition (28), reflecting about the origin. Thus

(y) =efBDGH) [14-(B/A) (v+1)}, —I<v<O0.

If it were desired to establish a formula valid for any time it would be
necessary to repeat this process indefinitely, but it is obvious that for ¢
small the distribution in the range 0 to / will be affected only by the initial
distribution in the immediate neighborhood. If the values here deter-
mined for the initial distribution in the range from —1/ to 21 be substituted
in (16) and the integration carried out the following formula results:

ﬁ=%e(y—1)/a [1‘,,2_"1,____1.] [9 2=yt -0 1-y-t ]

0 a Vidat' Vaat'
7 =D _@my—ir =yt ¥ y+t’ T+y+t

- ;r € a [6 4at’ —¢ 4at’ ] —f—% €a [1+T 5] \/4—0'?—
Y+t J 4/ v )[ BESEE m_(ity)j] [ (1—y+t’

-0 ——= e pO dat’ —e at’ L —
\/4(1[') + a7re %e el ¢ 5] Vdat'

U=y
(Vi) ] (29)

where vy, #/, and « are given by (15).

This formula was used in calculating the curves for # =0.05 and ¢’ =0.25
in Fig. 1. One of these curves was also calculated from (14) and the two
checked.
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