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ABSTRACT

Settling of small particles in a Quid; mathematical theory. —Small parti-
cles immersed in a liquid experience a motion which is the combination of a
steady gravitational drift and a Brownian movement. If there are space varia-
tions in the density of distribution of particles, the Brownian movement
produces a diffusion which tends to equalize the density. In the steady state
the density e of particles is an exponential function of x, the distance below the
surface of the liquid. This paper investigates the mariner in @hick the steady
stateis established. A consideration of the combined effect of fall and diffusion
leads to a partial differential equation for the number density of particles as a
function of depth and time. A set of special solutions is obtained in terms of
which a solution satisfying initial and boundary conditions can be expressed.
(1) Liquid of finite depth. The solution is obtained for a liquid of finite depth
with an arbitrary initial distribution no ——f(x), For the case of uniform initial
distribution a reduced form of the solution is obtained which contains a single
parameter. This one parameter family of curves is plotted, and from these
curves, either directly or by interpolation, may be obtained the density distribu-
tion at any time for a solution of any depth, density, and viscosity, and for
particles of any size and density. For small values of t, since the solution
obtained converges slowly, an image method is used to obtain an integral
formula for the density. (2) Ligmid of semi-igni&e or infinite depth. In the
case of a liquid of infinite depth the solution for an arbitrary initial distribu-
tion is expressed by the Fourier integral identity. The case of zero initial
density for negative x, and constant initial density for positive x is calculated,
as is also the case of particles initially uniformly distributed over a layer of
depth h. In the case of a liquid extending from x=0 to x=00, the boundary
conditions are satisfied by assuming a suitable fictitious initial distribution
over the range from x= —oo to x=0. The cases of uniform initial distribu-
tion, and initial distribution over a layer, are calculated. The latter case,
while derived for a liquid of semi-infinite depth, gives approximately the
distribution of density during the settling of a layer of particles initially dis-
tributed uniformly over a depth h at the upper end of a very long column of
liquid.

MALL particles immersed in a liquid experience a motion which is the
~

~

combination of a steady gravitational drift, the velocity of which is

given by Stoke's law of fall, and a Brownian movement due to molecular
bombardment. If there are variations of the density of distribution of
particles, the Brownian movement produces a diffusion tending to
equalize the density. If a liquid containing such particles stand undis-

turbed, a steady state is reached in which the density n of particles i»n
exponential function of x, the distance below the surface of the liquid, 88

has been veri6ed experimentally by Perrin. It is the purpose of this
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paper to investigate the manner in which the steady state is established.
A consideration of the combined effect of fall and diffusion leads to a
differential equation for the number-density of particles as a function of
depth and time. The solution is obtained for an arbitrary initial distribu-
tion no f(—x—), both for a liquid of finite depth, and for a liquid of infinite

depth.

1. THE DrI I vRENnAL I gUAriox r'oR rHF. Noiv-STEAD@ CASE

The coefficient of diffusion can be obtained from a consideration of the
steady state. ' Suppose a gravitational force X to act on a spherical
particle of radius a. Its velocity U is then given by Stoke's law of fall as

6~pa V= X
whe~e p, is the coefficient of viscosity of the liquid. Due to this velocity
there will cross per second downward through unit horizontal area a
number of particles given by

Vn = nX/6pxa

The density distribution in the steady state is known to be given by
n~ e(x/RT) x(~—x')

where X is Avagrado's number, R the gas constant for a gram molecule,
'1 the absolute temperature, and where n' is the density of particles at
the position x=x'. It follows that the gradient of density in the steady
state is given by

an/Bx = (N/RT) Xn.
The steady state, however, is characterized by the fact that the number
drifting downward through unit horizontal area is equal to the number
diffusing upward through the same area. The number of particles diffusing

upward must therefore be given by
nX RT 8n

67f Po, N6m. yu Bx

Thus the factor by which the rate of change of density must be multiplied
to give the fiow of particles due to diffusion is RT/N6xjia. This quan«ty
is therefore the desired coefficient of diffusion.

In the non-steady state there is, then, a net How, per unit area, in the
positive direction of x I'that is, downward) given by

(ti(x, t)X, RT Bn(x, t)
6' pa N6xpa

where n(x, t) is the number-density of particles at the place x and the
time f. The net downward How at the same time through a unit «e~ a

' Einstein, Ann, der Phys. p. 554, 1916
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distance dx lower is F+ (81'/ttx)dx; so that the net gain, per unit time, of
the layer of thickness dx would be —(BF/Bx)dx. That is

8 1 AT Bn Bn
nX ———

Bx 6~ltta iV Bx

or
Bn 8'n Bn—=3 ——8—

Bx' Bx '

with
RT X ~~7f-a'g6 2g6a'

X6zpa
'

6' pa 6z pa 9p

where 8 is the effective density of the immersed particle; that is, its
density minus the density of the liquid.

No particles cross the planes x=0 or x=3 where tt' is the depth of the
liquid. Thus the net Row into the layer between x =0 and x =dx is given

by the net How across the plane x=dx. Therefore

dx(8n/Bt) = (A Bn/Bx Bn)e„—
where Bn/Bt is the average value of ttn/Bt over the layer, and where the
subscript dx on the parenthesis indicates that its value is to be given at
x =dx. If dx is now allowed to approach zero, the equation

A ttn/ttx=Bn, for x=0,
is obtained as one boundary condition. In the same manner it follows

that
A Bn/Bx=Bn, for x=l,

To these must be added the condition that the density reduce to the
arbitrary distribution np f(x) fo——r t=0. The Prob1ern thus consists of
ftnding a solution of the partial differential eftuation (1)

Bn 8 n On—=A ——8—
Bt Bx Bx

under the boundary conditions

A Bn/ptx=Bn, for x=0 and l,

and the ini6at condition'

np f(x), fo——r t=0 (4)
The problem of the temperature distribution along a rod, insulated

along its sides but radiating from its ends, differs analytically from the
diffusion-fall problem here considered in the absence of the second term

on the right side of (1). The differential equation (1) might be reduced to

'The differential equation here given was obtained by Th. De Coudres in an
article, Ann. der Phys. 1894, which seems to be the only one previously published on the
question. He did not attempt an exact solution under the boundary conditions, but
limited himself from the beginning to approximate methods, studying in this manner
the case of a liquid of finite depth.
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the heat equation by the substitution x' = x —Bt. This substitution,
however, would introduce a complexity in the boundary conditions,
offsetting the gain in simplicity in the differential equation itself.

2. THE SOLUTION OF THE DIFFERENTIAL EQUATION

If a solution of (1) be assumed in the form of a product of a function
X of x alone by a function T of t alone, one obtains at once

Z'/Z'= (AX"—BX')/X = constant = —r,
or the two ordinary equations

T' = —rr; AX"—BX'+rX = 0,
where r is as yet unrestricted. A solution of the first of these equations is

T=e "' (5)
The solution of the second is

X= e * " (C& sin G)x+Cg cos cdx) y

where
(6)

o) = +4rA B'/2A-.
Solving this last equation for r in terms of the new constant cv, substituting
this in (5), and taking the product of (5) and (6) one obtains

n(x, t) = e &
"' '+s'&'t4~ e&st'"'* (C& sin cox+Cg cos &vx).

3. THE BOUNDARY CONDITIONS

The substitution of (6) in the boundary conditions leads to the equations
CI coA —Cg —,'8 =0,

Cz (MA cos cA sB sir& a&I) ——Cg (sB cos xf+G&A sin &0I) =0. (8)
In order that these homogeneous equations possess solutions for C& and C&,

other than the trivial solution CI = C2 ——0, it is necessary that the deter-
minant of the coefficients vanish. That is,

sin &0I (&O'A'+B'/4) =0,
so that

ol

&u=mx/I, m=0, 1, 2, (9)

(o = + t' B/2A. (10)
The consta. nt cv having one of the values given by (9) or (10), the ratio of
C& to C2 is given by either equation (8). If one chooses

Cg=C 8,

Cg ——C„2r&txA /I.
When &a has the value (10), r is zero so that Z' is unity, and the cor-
responding special solution of (1) is

eJ3g/A
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It follows that the expression

e &4A~P«~~—yean~)upx«es~lu g C [B sin (mxx/I)

+(2mprA/I) c o(smprx/I)]+Cp es*~", (11)

satisfies (1) and the boundary conditions, C and Cp being arbitrary.
It remains to satisfy the initial condition. For t=0 Eq. (11) gives

rip e s*~'~ =f(x) e a*i'" = Cp es* '"+g C~ [B sin (mprx/I)

+ (2mprA /l) cos (mxx/I)], (12)

and it is necessary to determine the constants Co and C so that this

equation will be satisfied. That is to say, it is necessary to expand an

arbitrary function

4 (x)=f(x) e '"""
in a series of characteristic functions u, where

u =B sin pi x+2Api cos &p x, &p =mx/I; m/0
u —esP/2A re P — B?/4A2

(13)

It is interesting to note that in order to obtain a complete set of char-
acteristic functions, in terms of which an arbitrary function can be
expanded, it is necessary to include the function No, which is so radically
different in character from the other characteristic functions u .

The functions u; satisfy the diAerential equation

u,"+~,2g, =o '=0, t, 2, . . . ,

and the boundary conditions

u =B/2A u;, @=0 and l.

Hence, integrating by parts,

f rr II(u;"u; u;"u,) dx =—[u u; uu;]', (—u u —u—u )dx =0.

From equation (13) it follows however that

(u;"u; u;"u;)-dx=(ptP-ppP) u;u; dx.
0 0

Hence the integral from 0 to 3 of the product u~n; of two characteristic
functions vanishes when i/j. When i =j

updx=~i(Bp+4Appip), i/0.
0

Multiplying both sides of (12) by up and integrating fr'om 0 to I
l E

Cp es"~"dx= f(x)dx,
0 0

and for the special case that the initial distribution is uniform, i,e. that
f(x) =constant = up,

Cp =Bnpl/A (es""—1).
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Multiplying both sides of ('I 2) by zz, where nzY 0, and integrating from

0to),
4m'~'A'+l'8'

Iz
—C,= e e'~z~ f(x) ]8sin(mpx/l)+(2mzrA/t)cos(mzrx/IIdx,

0

For the case f(x) =constant=np this equation gives

162'Bmm P (
[4A zmzxz+8'P]z '

with the upper sign'holding for rn even, the lower for m odd. The solution
of (1) which satisfies the boundary and initial conditions is thus

g)~Bx/A
(14)

Bx
2A oo

+np 16 Az8xPe

(4A 2Zn2zrS+B~l2) t B/

max 2mzrA mzrx
m Iye 8 sin + cos

[4A 2m 2xz +82/2]2

4. REDUCTION OF THE SOLUTION

In (14) the density is expressed as a function of x and t, and of the three
parameters 2, 8, and l. By making suitable substitutions in the diGer-

ential equations and boundary conditions it is possible to obtain a reduced
form of the solution, which contains a single parameter. This one param-
eter family of curves then furnishes the solution for any given A, 8, and

The Fqs. (1) and (3) through the substitutions

llx=y, —=a, —=P, P~'=t (15)

are reduced to the form
C)'fly 8 fS 8Ã—=a ———z

Bg

a 8n/rZy=n, y=0, 3'= &1

the solution of which, corresponding to (14), is

n e~/"

np a(e'~' —1)
s-s~ e ' "' m(1+e —'~z") [sinmzry+2zrmacosmxy]

1 (Iy4zrzmzaz)z

(14')

» Figs. &, 2, 3, 4, and 5 this equation is plotted for the values a =.025,
0.1, 0.3, 0.5, and 2;0. For each value of a, curves are drawn for t'=0.05
0.25, 0.50, 1.0, and ~, except that such of these curves as practically
coincide with the steady state curve t' = ~ are omitted. The ratio, in the
steady state, of the density at the bottom of the liquid to the density at
the top is given by e., the values of a plotted covering a range in this
ratio from 1.65 to 2.35&(10' .



To illustrate the use of these curves a definite example will be con-
sidered. Perrin, in his observations of the variation with height of the
concentrations of Brovmian particles, experimented with gamboge grains
of I'8dlus 0.2i2p ance density i.194. These paltlcles were imITlersed ln

The curve

wtersez'4
-1

at &.-qo

Fig. i

water in a cell ot' depth loop. For these data it follows, from (2) and

(15), that

2 =9.03&i0-~, B=1.902&10-~, 1 =i0,-2 P=5260, e, =.475.

The curves for 0, =.475 may be obtained by tracing on a single sheet the

curves for o, =.3 and a =.5 and interpolating. The result is shown in Fig.
6. In order to return to the original variables x and t it is necessary to
multiply the ordinates by 3=100p,, and the time t' by P. The curve

i or 5=5260 sec. sensibly coincides with the curve 1=00 so that the

steady state of distribution is practically established after about one and

one half hours. Perrin remarks, "A few minutes su%ce for the lover layers

to become manifestly richer in granules than the upper layers. . . .
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With the emulsions I have used, three hours are sufficient for the attain-
ment of a well-defined limiting distribution in an emulsion left at rest, for
practically the same values are found after three hours as after fifteen
days. " The information to be read from the curves is thus consistent
with the observations of Perrin,

5. LIQUID OF, INFINITE DEPTII

In the case of a liquid which extends from x = —~ to x = +~ there
are no boundary conditions, so that (7) is a solution for any vaiue of &o.

0-

0 1 0/~

Fig. 2

The addition of all these solutions gives the solution

e —(4Am~'+B') t/4A eB.r/2A Pe
~ (CislIl Nx+Cg cos ~x)du,

where C& and C2 are arbitrary. When t=0 this reduces to

e *'" Ci sin ~x+C2 cos coax der,
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which, ~f the initial condition is to be satisfied, must be identical with the
function f(x). The comparion of this expression with the Fourier
integral identity

y(x) =f d&uf y(p) cos (u(y —x)dy,

shows at once that the equation

f(x)e ' '" = (C~ sin cux+C~ cos ~x)d~
0

1

I-'ig. 3

is satisfied provided the constants C~ and C2 have the values

7rC, ff(y)e s=»2~sin geo dy,

vr(."g ——f f(y) e-s~""cos y(a dy.

Thus
+4 OQ

f(&) s—sv/2 ld+ s-(4A't~" +8'( t/4A esca/2A cos &-(
—OG 0

%7 t
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satishes the diA'erential

42i

s i erential equation and the ini
'

tion with respect to b
e initial condition. If h

o co e carried out th'
t e integra-

is reduces to

ri=(1 2 A/ /A t) f(~) s —(7 g+Bt)—~/4A(

If the initial densit b

(16)

If ' ' ' .nsi y e zero for x&0 , and a constant v 1

is expression takes the
va ue no for

a es the special form

e &~ '+~'&)'f'-~' d =-'-n (»)n, &

— — - ' dq=-,' n, [1 -6[Bt—x)/v—'4At,

0

, ?

ny P.

Fig. 4

where 8(x~ srastands for the prob b'1' '
aro a i ity integral

(2/&~) * s-*' dx.

particles be initiall un'ia y uniformly distributed ovi u e over a layer of depth

f(x)=0, x&0 orx&tt; x =or x&h; f(x) = no&x&t, t

n =~n, I 8[(h xqBt-)/v'4Ai] 8[(Bt x)tv'4-At }-



In terms of the running coordinateg ordinate x Bt,—expressions (17) and (18

e initial distribution of temperature bein i

the first case, constant for )0, d
'

h

ra.ure eing, in

thickn h Th
x, an int esecond

ess . us when the li uid
, constant over a layer of

iqui extends indefinitely in both the
positive and negative directions of x there is superimposed u on

v oci y is a diffusion entirel
a i aston of heat. This statement also f

remarks at the end of $(1

a so follows from the

4

If the li uid xq e tends from x=0 to x= th e initia istribution
is given for positive 7 only and th b d, an e oun ary condition

A Bn/Bx =Brr, for x = 0,

must be satisfied. The roblem

(19)

ce ing by supposing that the liquid extend from —00 to ~ an
ave an initia istribution of density of such nature that
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the condition ~19( ) will be satisfied for any t If the
sa is e it is obviously immasa is e

' '
y

'
material whether or not the

actua ly exists. The solution 16
this case provided f( ) f

' is thus available for
or negative y be determ

(16) satisfy (19).
e ermined in such a way that

60p-

60)

lOOp

Fig. 6

If (16) be differen
'

ntiated with respect to x and th
integration by part ths e equation

0 x an t e iesult simplified by

Bs I f (~) s--(y —x+Bi)&t4Ai d
A7ft

77

results, it being assumed that f(y) is continuous at = . 's y
condition (19) the relation

l~ f'(v) & f(v) 1
"—+""""'d v = o7 )

or

f„s """[~ f'(V) & f(V)1 & '""—' de =o7
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must hold identically in t. The factor e ~ / ~'is even in y, so that the
condition will be satisfied if f be defined for negative values of y so that

s """[Af'(v) &f—(v)1 (20)
is an odd function of y. This condition gives a differential equation of the
First order for f(y), p&0, which, in combination with the assumed con-

tinuity of f at y =0 uniquely determines f for negative y in terms of the
known f for positive y. For example, if f(p) =constant=no for y)0 then

f'(v) (&/A—) f(v) = (&no/A) s"/",
and

f(7) =r/o s'""(I+&7/A), 7&0,
so that the solution is

0
n/no ——(I/2+A7rt)

I
(1+23'/A) es~/~ e-&~-*+a'&'/'"' dy

e- (y —g+BI) s/4At d~ . Z 1.
0

which reduces to

e—(Bt—x) &/4AI+ zBQ&
no Qg i,v'4A 3

(Bf,+x&+- s"/»+ —(211+~) 1 —0
~ )

(22)
t +4At)

As a second example suppose that the particles are initially distributed

uniformly over a layer extending from x =0 to x =h; that is,

f(~) =n„O & ~ &II.
Then, as before

F(y) ri, esv/=" (1+lay/A), —lz&y&0.

For values of p less than —h, however, the equatiQIl

f'(v) —(8/A) f(v) =o,
gl ves

f(~) —
( ssp/A

(24)

I':valuating the constant by means oI the condition that f(y) is a con-

tinuouss

functloil, one has
F' /, JN/A /i s ///1/s (1 2—IIi/A)-

or

f(y) =n, es~" (1 8/i/A), y& —h. — (25)

II (23), (24), and (25) al e substitllted in (16) and tile iiltegl ala evalu-

ated the result is

(Z~)
no +4AI A QA7 ( )'

h ——, )(Bt-x—h't
(1 e i~') i ' (1-Bh/'A) I+8'
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This expression, while derived for a liquid of senti-infinite depth,
Hpproxllmately gives the dlstrlbutlon of density dul lng the set. tllng of a
layer of particles, init. ially distributed uniformly over a depth k at the

upper end of a very long column of liquid.

6. I~I.1'c'a.AL Soleil so~i I.ore mv. I'IN?TI: CAsI:

Eq. (14') converges very slowly for small values of [, especially if 4(

be small, so that it is unsuitable for calculation. An application of the
image method sometimes used in heat problems furnishes an integral
formula from which the density may be easily calculated when t is small.

If Eq. (16) be differentiated with respect to x, integrated by parts
(assuming f(y) continuous), and substituted in the boundary conditions

AI 4)n/t)x=13n, x=1,
Al t)n/t)x=Bn, x=0,

tile result is the pair of equations

[ft (P/Al)f] B
—(i t+Bt)~/—4Al d —0

Ol

B
—(BIA)(y l)[f' (I—I/Al)f] B

—(v —t)'(4"l dy =()

8 ti2A [ft ()tI/AI)f)] B
—(t /4Al) dy Q

~ ~ ~ ~

~

~

ese two equations wi11 be satisfied identically in t if the function
—(B/2A) (y l) [f' —(2I/AI)f] (27)

is skew-symmetric about y = t, and the function

B ""A [f' (&/AI)f]— (»)
skew-symmetric about the origin & =0.

These two conditions suffice to determine f(p) for any y provided the

function is given over the range from 0 to I. Condition (27) "reflects"

this given strip of the function, so that it is then given over the strip

from 0 to 2I: condition (28) then reflects this given strip about the origin,

so that it is then given from —21 to 2t; and so on. If, for example,

f(y) = n from 0 to I, the function from I to 2l is given by the equation

B "'"'" " [f'(V) —(&/~)f(V)]=(&IAI) B """'""
the solution of which is

f(p)=(ap/AI) e'" -'+Ce"'.
If the constant is evaluated from the condition that f(y) is continuous the

result is
f(y)-B(B~A)(~-)) Ii+(8/AI) (y —l)I, 1(y( . 2f
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In the same way the function in the range from —l to 0 is determined
from condition (28), reflecting about the origin. Thus

(y) =ef"' &''+'~ {I1+(8/A) (y+t) I, —t(y&0.
If it were desired to establish a formula valid for any time it would be

necessary to repeat this process indefinitely, but it is obvious that for t

small the distribution in the range 0 to l' will be affected only by the initial
distribution in the immediate neighborhood. If the values here deter-
mined for the initial distribution in the range from —I to 2I be substituted
in (16) and the integration carried out the following formula results:

zb —~) &n, , &
y+t' 1 —2 y t' — — 1 y t'&- —

+4at' +4at' ]
(X—I) (~ —X—t') ' (& —y—t') ' X y+$' 1+y+]')

a e 4at' —g 4at' +~ e a ~+

y+t (1+y+t') ' (t'+y) '-' 1 —y+ ~')—8 ===, + ——s" e 4a' e4.r —+—„' 8 +4at' )

(29)

where y, t', and n are given by (15).
This formula was used in calculating the curves for 3'=0.05 and t'=0.25

in Fig. 1. One of these curves was also calculated from (14) and the two

checked.
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