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A NEW APPLICATION OF THE BAR METHOD FOR THE
MEASUREMENT OF THERMAL CONDUCTIVITY.

BY MARCUS D. 0 DAY

ABSTRACT

Thermal conductivity. —(1) Electrically heated bar method of measurement.
Equations are derived for the case of a long thermally insulated bar, with ends
kept at the same constant temperature, and carrying an alternating current
such as to make the temperature distribution parabolic. This is possible only
with conductors for which (n —3p) )0, where a and P are the temperature
coefficients of electrical and thermal conductivity, respectively. It is shown
that the conductivity at each end E'e=jPROL'/2AB~=jI'ROL/APO, where

j I'Ro is the heat generated per unit length at the ends, 2L is the length, A is
the cross section, 9~ is the mean temperature above that at the ends, and po is
the temperature gradient at the ends. (2) Conductivity of lead and tin. A
long test bar was used, with ends fastened into heavy copper blocks, insulated
from each other but both in the same thermostatic oil bath. The temperature
distribution was determined by thermo-junctions and the critical current found
by interpolation. For lead, Xo ——.0877, P=.000138; for tin K0=.1575, P=
.00067.

Thomson effect.—(1)Bar method. In connection with thermal conductivity
measurements, the coefficient may be determined from observations of the
effect at a point .42L from one end, of reversing a direct current of the critical
magnitude. (2) The coegcient for tin at 38' came at 9.7 &10-' cal. per coulomb
per sec.

'HE writer restricts the term "bar method" to mean one of the
electrical methods such as used by Jaeger and Diesselhorst, ' and
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Fig. 1. Diagram of method.

Callendar. ' The principle of such a method is illustrated in Fig. 1.
A bar of metal AC ps placed between two heavy copper blocks kept at a

' Jaeger and Diesselhorst, Preusse. Akad. Wiss. , Berlin, 38, 711, 1899
' Callendar, Article on Conduction of Heat in Encyclopedia Britannica
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constant temperature. It is covered with some fairly good heat insulating
substance and then by a metal sheath, electrically insulated from the
two copper blocks. Thermo-couples are placed along the bar for the
measurement of the temperature distribution when an electric current is
flowing through it. The whole is immersed in a constant temperature
bath, the temperature of which is taken as a zero of reference. We can
measure directly the following quantities

The dimensions of the bar; the length 2L, and the cross section 2;
The resistance of the bar Rp(1+a8) where Rp is the resistance of the bar

at the zero of temperature.
The temperature gradient at the ends po,
The temperature at the middle 0

The electric current passing through the bar I.
The quantities which we cannot measure directly are:

The heat conductivity of the bar, X=Xp(1 —P8) '

The heat conductivity of the insulating substance, 0 =kp(1 —y8);
The coefficients P and y;
The emissivity of the bar Z.

THEORY

The amount of heat crossing a plane section of the bar at a distance x
due to conduction along in time dP is,

Qi ——AX (d8/dx)dt
The amount of heat accumulating in the element in time dh is,

d r' dred
Qi Qp=A I

Ij: ) dxd"
dx i dxj

The amount of heat accumulating in the element in time dt due to the
Joule heating of the electric current isjPRp(1+a8)dxdt where j =.239,
the number of calories in a joule. The amount of heat accumulating in

the element in time dh due to the Thomson effect, "Specific heat of
Electricity, " which is directly proportional to the current and to the
temperature gradient is Is (d8/dx)dxd—t where s is the Thomson

coefficient.
For the steady state the sum of these three terms must be equal to the

loss of heat through the surface, which is, assuming New'ton's law of
cooling h8dxdt where h is Ep, the emissivity times the perimeter of the bar.

We thus get as the differential equation expressing the ffow of heat in a
rod carrying an electric current

d f d8& d8
Is —+(jPRpa —h) 8= jPRp-

dx ( dx) dx
(1)

This equation is of the form
d dgi( dgE—

i
—0,—+ho = —c

dx dxj dx
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The integration of this equation in the general case is not feasible. . There
are certain special cases, however, of great interest from the experimental
standpoint, where the equation reduces to one with a simple algebraic
integral.

Case I. In this case we use an alternating current so as to make a zero

and so adjust its value that the quantity b is also made zero. This
requires that

h =jI2Epa (2)
This was first suggested by Callendar. ' Putting for X its value Xo(1—p8),
the second integral of the reduced equation is seen to be

8Zp(1 —-,'P8) = ,'cx'+D—x-+Z
We have as our boundary conditions, 8 =0 when x =0 and when x = 21.,
whence

E=.O, and D=cl. (3)
The quantity Xa(1 ——,p8 ) is easily seen to be the heat conductivity at the
temperature -,'8 and is the mean conductivity which we shall denote by
Z„. We have the relation that when 8=8, x=L (at the middle). Hence

X =cL'/28 =j PROL'/2A8 (4)
We can determine the constant D by the relation that X=Xp and
d8/dx=po when x=0. We thus get D =Popo. Combining this with

Eq. (3)
Xp = cL/pp =j PROL/A po (5)

From Eqs. (4) and (5) we can calculate the value of p, the temperature
coefficient.

The question naturally arises how the experimenter knows how to
adjust the current to such a value that Eq. (2) is satisfied. Probably the
best way to do this is to measure the quantity h directly as was done by
King. ' If we use a very small current, the value of 8 will not be large
and the temperature gradient near the middle of the bar will be zero. In
this case all of the heat generated at this portion of the bar will be lost and
we have the relation

h8„=j12R. (6)
Case II. In this case we adjust the current until we have a perf'ect

parabolic distribution of temperature. We will use alternating current so
as to make the second term zero. We can write Eq. (1')

d'8 d'8 l d8Z, Plt, 8 Z—;P —
(
—

( +—f8—+c=odx' dx' gdx) (&)

and so adjust the current that the sum of the three middle terms is equal

' King, Amer. Acad. Proc. 33, 353, 1898
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to zero. To do this it is necessary to solve the following equations and
eliminate 0.

(8)
(9)

Xp (d'0/dx')+c=0
PI@0 (d'0/dx')+XoP (de/dx)' b8=—0

Solving the last one 6rst we get
-.'pRo (0 de/dx)'= 'beoy-D (10)

Since de/dx is finite when 0 = 0 we have D = 0. Eq. (10) then integrates
into

V'3p R,e= V'-,'b x+Z
and since x=Q when 0=0, we have E, =O. Squaring we get

3P Roe= —', bx' and 0=0~ when x=I (11)
It will be shown later from Eq. (8) that 2Xoe =cIp which substituted
into Eq. (11) gives

b =3pc (12)
Replacing b and c by their values from Eq. (1) we get

jPRpa h= 3Pj P—Ro, P = h/j Ro(a 3P) —(13)
The larger the difference, a —3p, the better the method and it fails

when this difference is very small or negative.
The first integral of Eq. (8) for the critical value of the current is

Zp (de/dx) = cx+D an—d the second integral is
E'o0 = —-,'cx'+Bx+D' (15)

which reduces to
Xp =j PRpI-'/2ae (16)

if we apply the same boundary conditions as before. This replaces

Eq. (4) and instead of Eq. (5) we get
&o =j I'RoI-/& Po

These two equations are compatible only when

8 =-,'I. Pp (18)
The above relation shows how we may reahze the conditions of Eq. (13)

without knowing either k or p. If the bar under investigation is of

reasonable length (25 cm or over) a thermo-couple placed one centimeter

from the ends of the bar will give the value of po. A thermo-couple is

placed at the end of the bar as in Fig. (1) to get the temperature of the

end point. The experimenter need only to try several different currents,

plot the varia, tions from Eq. (18) and note at what current the relation is

satished. If he does this for two different temperatures of the constant

temperature bath, he can calculate p, and then from Eq. (16) he may

obtain h.
If h is known and the inner and outer radii R' and R of the insulating

layer, the heat conductivity of the insulating substance may be calculated

from the formula
X= (h/27r) log (R/R') (18')
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Both methods were used by the writer, the first on lead and the second
on tin. However, he prefers the latter method especially when a —3P is

fairly large. The difficulties usually met with, viz. , the measurement of
small temperatures and the loss of heat through the insulating substance,
have to a large extent been overcome. We have a very accurate method of
measuring h, and the temperature differences are very large, the smallest
being about five centigrade degrees. The measurement of so large a
temperature presents no great experimental difficulties.

After the experimenter has found the correct value of the current he

may use direct current of the same value and measure the Thomson effect.
Instead of Eq. (8) we have

which has for its integral

d'0 a!0
Xo——C—= —C

dx dx

8 = Be"* D+cx/m—

(19)

where m=u/Xo.
Using the same boundary conditions we get

g = —jx —2I (erne I)/eomL I) J
C

m
and

(21)

II =D = 2cL/m(e'm—~ 1)—(22)
The second term of the right hand side of Eq. (21) can be expanded by
means of Bernoulli's functions, and neglecting m' in comparison with m,
since it is less than 10-5, we get

g = c jx(2L —x) +—', mx(2L —x) (L —X) j (23)
The value of m changes sign with the direction of the current and calling
do the change in temperature obtained upon reversal of the current, we get

d8= ', cmx(2L, —X)-(I. X)—
This is a maximum when x=.42L, . Therefore if we place a thermo-
element at this point and measure de, we get for the Thomson coefficient

s =A oZ'odg/0. 128j IoLoRo (25)
Since the value of the current is determined by Eq. (13), the only ar-
bitrary quantity in the above equation is the length 2L, and the equation
shows that increasing the length very greatly increases the sensibility.
The Thomson coefficient is measured in calories per coulomb per sec.
and is of the order of 10-'. It is thus seen that do is necessarily a very
small difference in temperature. Ordinarily currents of from three to ten
amperes are used, while in this method the currents are well above fifty
amperes. Since dg is proportional to I' in the latter case it will be very
materially increased. If the loss of heat from the surface is not compen-
sated, the error caused thereby is proportional to the length of the bar.
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In this case where it is compensated, the length can be as large as mechani-

cally feasible. Eq. (25) shows that increasing the length has the same

effect as increasing the current.
The method divers from that used by the majority of investigators

in that the ends are kept at the same temperature and the heating of

f /&Z

I l/ G'Pfl ~XV

Fig. 2. Upper curve: Temperature distribution for ideal case.
Lower curve: EEect of Thomson effect on the distribution.

the current causes iis own temperature gradient. In I'ig. 2, the writer

has plotted the temperature distribution for an ideal case which is

approximately that of tin. It is seen that for a given maximum temper-

ature the method outlined above gives a much larger temperature grad-

ient. Since the value of a in Eq. (19) is directly proportional to the

temperature gradient, it is seen that dg is much greater in the method

suggested. The bottom curve in Fig. (2) (drawn on a scale one hundred

'times as large) shows the effect of the Thomson heating upon the temper-

ature distribution.



A NEW APPLICATION OF THE BAR METHOD

DESCRIPTION OF APPARATUS

The bar of metal to be investigated was screwed into two large copper
blocks, two inches in diameter and one foot long. The bar was bent
in the shape of a U, as in Fig. 3. The copper blocks were separated by
thin sheets of mica. The bar was covered with wool yarn and placed in

an inverted Dewar flask. The copper blocks were then placed in an oil
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Fig. 3. Apparatus.

bath kept in motion by a stirrer. The alternating current was supplied

by a low voltage transf'ormer and measured by a current transformer.
Five thermo-couples were attached to the bar and from these it was easy
to get po and 0 . For the measurement of po the thermo-couples were

placed two centimeters apart. The thermo-couples were then brought
to a special selector switch which enabled a series of thermo-couples to be
balanced very rapidly against one standard thermo-couple. This switch
was so designed as to eliminate spurious e.m. fs. at the contact points.
A Leeds and Northrup type K potentiometer was used for measurement
of temperature with the standard cell replaced by a standard thermo-

couple with one junction in ice and the other in steam. This proved to be
very satisfactory and enabled the potentiometer to read directly in

degrees as thermo-junctions were chosen to all have the same e.m. f.
Thermo-couples soldered without twisting proved to be much more
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uniform than twisted ones. Isolated thermo-couples were not used in the
case of lead and the Thomson effect was not measured. However, in
the case of tin, thermo-couples coated with lacquer and then glued into
the bar gave good results and enabled a determination of the Thomson
effect.

DATA ON LEAD

A bar of lead, supposed to be Kahlbaum's, 25 cm long, was used.
Only X and P were determined in these early experiments as the appa-
ratus was designed before the complete theory of the method was at-
tempted. Also the Thomson effect was not measured, it being difficult
to eliminate leaks in the potentiometer circuit. The method used was that
of Case I. The data taken with the bath at room temperature are as
follows: I=50 amp; I =12.5 cm; A =0.439 cm', Ra=0.000478 ohms

(resistance at 20'C); c = 0.6504.

TABLE I

Temp. (ends)
25.97
26.67
27. 14
26.47

Means: 26.56

Results for lead at

Pp 0m

8.72 52.34
8.91 53.14
8.90 53.76
8.87 52.93
8.85 53.17

room temperature

X/c
0.1370
0.1350
0.1355
0.1345
0.1355

Xp/c
0.1430
0.1400
0.1406
0.1409
0.1411

Xm/c
0.1490
0.1450
0.1455
0.1475
0.1467

From this the heat conductivity (in c.g.s. units) was found to be

At O' C 0.0877
At 26.5'C 0.0920
At 53.1'C 0.0955

By using values of heat conductivity for wool given in the tables, h

was calculated by use of Eq. (18'). From this it was estimated that 50
amperes would approximately compensate for the loss of heat through
the surface. In Fig. 4 are given the values of the conductivity at these
three points and the straight line drawn. It is to be noted that the value

of the conductivity at these three points is from one set of readings at just
one temperature of the bath. The bath was then heated to varying
temperatures and the conductivity at these temperatures noted. In
this case the constant c was not equal toj PRO but to (j PRO+h90) where

00 is the temperature of the surrounding atmosphere. Since it hadal a
large negative- value, measurements were difficult and values of the
temperature gradients were not consistent so the heat conductivity was

calculated from the formula
AX = (cg c2)'L'/De =jPRO/rM (28)

where 68 is the difference in the values of 0 when the current is Aowing

and when it is shut off. Readings were taken with the current off for
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thirty minutes, on for thrity minutes, and off again for thirty minutes.
This gave a good average to substitute in the above formula. Since the
resistivity of the bar checked exactly with that given by. the Bureau of
Standards, their value of the temperature coeKcient was used.

0.04+0
OO+PP

00$

Fig. 4.

/dd /SP

Thermal conductivity of le~a'd as a function of temperature,

DATA ON TIN

The method of Case II was used. In the following table let t/' be the

per cent variation from the true parabolic distribution of temperature
2L, =28 cm; A =0.211 cm'; Ro ——0.000528 ohms per cm (room temp. );
n =0.0042; and c=0.584 12&(10-3.

I Temp. (ends) PO Om —,'LP0 V QV

15 amp.
20
25
30
35
40
45
50

20. 52
20.21
21.25
22. 24
22.43
23.57
26, 00
29. 14

0.970
1.705
2.775
3.855
5,475
7.630

10.270
13.780

6. 15
10.90
17.48
24. 51
35.24
49.97
68.50
96.46

—0.640—1.035—1.945—2.490—3.069—3.430—3.090
+1.040

10.40 3.20
9.50 3.08

10.90 3.30
10.05 3.16
8, 69 2.95
6.78 2.60
4.50 2.12—1.07 1.03

In Fig. 5 two curves are plotted giving the manner in which QV and

pp depend upon the current. It is evident from the figure that the balanc-

ing current is 49.2 amperes and that the value of Pp is 13.00. This gives

a value of the conductivity equal to 0.1575 c.g.s. units. The peculiar
behavior of the curve in the neighborhood of 20 amperes may be due to
a recalescence phenomenon which the writer hopes to investigate at a later
date. In computing the value of the conductivity it is to be noted that
Rp has increased, owing to the fact that the ends have been raised to a
higher temperature. This is also to be noted in the calculation of the
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temperature coefficient P. The value of. h was determined from Eq.
(6) and found to be h=(2.64)'X528X10 '/0448X4. 184=1.96X10 4

cal./sec. , which combined with Eq. (16) gives for P the value —0.000670.
A direct current of more than 36 amperes which was sufficiently steady

for the measurement of the Thomson effect was not av'ailable. However
with a current of 36.1-amperes, there was a deflection corresponding to
0.4' C upon reversal of the current. This value of do substituted in Eq.
(25) gives s=9 7X10 r calories per coulomb per sec. This would be
the value of the Thomson effect at 38'.

tM
' IV

R~g. 4

Fig. 5. Case II. Variation of QV and p0 with current I.

The results show that the samples were not of the utmost purity as
the temperature coeScients are positive. The writer hopes to investi-

gate this point further in later researches on the e8ect of a systematic
alloying of the lower melting point metals upon the thermal conductiv-
ity. He wishes to express his gratitude to Professor E. E. Hall, of this

university whose interest and suggestions have been the inspiration of
this work. He is also indebted to Professors Boynton and Caswell of
the University of Oregon for valuable suggestions concerning the Thom-

son effect.
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