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ABSTRACT

Application of half quantum numbers to the theory of the rotational specific
heat of hydrogen. —It is shown from a consideration of infra-red rotation-oscil-
lation spectra, that the lowest possible azimuthal quantum number for a non-

oscillating rotating molecule of the rigid "dumb-bell" model can have only the
values zero, one, or one-half. An elementary theory of quantization in space
for the new case of half quantum numbers is then developed which shows that
the a priori probabilities for successive levels of rotational energy stand in

the ratios of 1, 2, 3, . . . . The specific heat curve for diatomic hydrogen to
300'K is then calculated on the basis of the energy levels and of a priori prob-
abilities corresponding to half quantum numbers, and is compared with the
experimental points and with the curves calculated by Reiche using zero and
one as the lowest possible azimuthal quantum number. At low temperatures
the new curve agrees with the experimental data as well as any curve of
Reiche's. At the higher temperatures, none of the curves agree with all the
experimental points. The nzornent of inertia for the hydrogen molecule cor-
responding to the new curve is J=1.387)&10-4I gm cm', about two-thirds the
values assumed by Reiche, 2.095 to 2.293&&10-4', and agrees better with the
conclusion of Sommerfeld from the separation of lines in the many lined spec-
trum of hydrogen, that the moment of inertia of an excited hydrogen molecule

is 1.9X10-4I gm cm', which should be greater than that of the unexcited mole-

cules involved in specific heats. Hence the possibility of half quantum num-

bers seems worthy of consideration,

INTRQDUcTIoN

' 'T IS the purpose of the following paper to investigate the possibility

. of accounting for the rotational specific heat of diatomic hydrogen

by assuming for the hydrogen molecule the rigid "dumb-bell" model

with two degrees of freedom, making use of the "first" form of the

quantum theory, and taking the lowest possible azimuthal quantum

number as one half instead of either zero or one as has previously been

done.
We shall first show from a consideration of infra-red rotation-oscilla-

tion spectra, that the only possible values for the lowest azimuthal

quantum number for the non-oscillating molecule are zero, one half,

and one, and shall point out that the new assumption has the advantage

of making the lowest azimuthal quantum number one half for both

the oscillating and non-oscillating molecule, instead of different for the

molecule in the two states. We shall then develop an elementary theory
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of quantization in space for half quantum numbers and show that such

a theory leads in a very simple and unconstrained manner to a priori

probabilities for successive energy levels which stand in the ratios 1,

2, 3, 4 etc. Using the new a priori probabilities and new energy levels,

the specific heat curve for hydrogen will then be calculated and compared

with the experimental data of Eucken' and of Scheel and Heuse. ' The
results will also be compared with those calculated by Reiche' on the

assumptions of zero and one as the lowest possible azimuthal quantum

number, and various assumptions as to a priori probabilities.
The new specific heat curve thus obtained agrees with the experimental

points at low temperatures as well as any curve of Reiche's, and has the

advantage of giving a lower value for the moment of inertia of the

hydrogen molecule, a result which is supported by the separation of the
lines in the many-lined spectrum of hydrogen. At higher temperatures
neither the new curve nor those of Reiche agree completely with the

experimental points.

B"3 S~2 8.t 8 B-I g~l A"2 3+8 8+4 A~X Final azimuthal number

8~3 8'& 8'& 8 A A ~l cl 2 g g 3~4 Ini tial aglrnuthax number

Fig. 1

It has seemed worth while to present the results of the calculations
since half quantum numbers have recently shown a surprising tendency
to appear, and have already been considered by Kratzer4 as a definite

possibility in attempting to account for band spectra. It is believed

that the results are sufficient to show that half quantum numbers must
also be regarded as a definite possibility in attempting a theory of
rotational specific heats.

ROTATIONAL QUANTUM NUMBERS AND INFRA-RED SPECTRA

Information as to the possible states of rotation of a diatomic mole-

cule can best be obtained from a consideration of the rotation-oscillation
spectra of the hydrogen-halides. These spectra consist of approximately
equally spaced lines with the omission of one line in the center as shown

diagrammatically in Fig. 1.
' Eucken, Sitzungsber d. Preuss. Akad. d. Miss. 1912, p, 148
' Scheel and Heuse, Ibid. 1913, p. 44; Ann. der Phys. 40, 473 (1913)
' Reiche, Ann. der Phys. 58, 657 (1919)
' Kratzer, Ergebnisse der Exakten Naturwissenschaften 1, 332, 1922



Except for a possible uncertainty as to the correct way of assigning
rotational quantum numbers to the different lines, the theory of such

spectra has been presented by Kratzer' in a very satisfactory form,
which not only takes account of the rotation of the molecules about
their center of gravity and the oscillation of the atoms along their
connecting line but also allows for the mutual interaction of rotation
and oscillation and for the possibility that the law of force between

the atoms may be such as to lead to non-harmonic oscillation.
For our immediate purpose we shall not need the complete theory

but may consider that the energy taken up by the molecule accompany-

ing an absorption line in the fundamental series is given by the approxi-
mate equation

bv =hvo+ (m" —m')h' jsm' J (&)

where v is the frequency of the line, vo the frequency of the oscillation,
m and m' the azimuthal quantum numbers before and after absorption,
and J the moment of inertia of the molecule. Using the Bohr selection

principle to restrict the change in azimuthal quantum number to the
values

I'=ms+1 (2)
it can easily be shown that Eq. (1) does lead to a set of equally spaced
lines, the absorption lines of higher frequency (to the right of the gap),
being associated with unit increase in azimuthal quantum number and

the lines to the left of the gap being associated with unit decrease in

azimuthal quantum number, and furthermore the initial azimuthal

quantum number of the molecule before absorption increasing by unity
a

for each successive line counted from the center outwards.
: We may use the above results to assist us in determining the possible

absolute values for the initial quantum numbers. Referring again to
Fig. 1, let the'initial quantum numbers for the lines to the right of the

gap be A, 2+2', 2+2, . . . and for those to the left of the gap to be

8, 8+1, 8+2, . . . . where A and 8 are'the two unknown quantities

concerning which information is desired.
Since. the interval between the lines with initial quantum numbers

8 and A is twice that between the lines A and 2+1, it is evident from

Eq. (1) that we may write the equation

[(2+1)'—A'] —[(3—1)'—8'] = 2[(A+2)' —(2+1)']—2[(2+1)'—A']

which reduces to
8+2 =2 (3)

Furthermore, since we accept the hypothesis that quantum numbers

' Kratzer, Zeitschr. f. Phys. 3, 289 {1920)
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can only differ by an integer, we may write for the difference between
8 and A, the equation

8—2 =i, wherei =0, +1, +2, etc (4)
Let us now examine the diRerent possible. cases that can be obtained

by taking different values for i,
Case I. i=0; A =8 =1.

This is the assumption originally made by Kratzer. ' It makes the
lowest possible quantum number unity for a non-oscillating molecule

and, since 8—1 occurs after absorption, zero for an oscillating molecule,
and thus has the disadvantage of allowing zero rotation in one case but
not in the other.
Case II. I=1;2=—', ;8=3j2.

This is the case we shall test in this paper. It makes the lowest
possible azimuthal quantum number one half, the same for oscillating
and non-oscillating molecules.

Case III. i =2; A =0; 8=2.
This case would allow zero rotation for the non-oscillating molecule

but not for the oscillating molecule, which is inherently improbable
and has been shown by Reiche to lead to impossible specific heat curves.

It can easily be seen that cases where i is assumed negative or nu-
merically greater than two are not feasible.

QUANTIZATION IN SPACE FOR HALF QUANTUM NUMBERS

If now we proceed on the new basis that the azimuthal quantum num-
bers can take the values -'„3(2, 5/2, . . . , or in general n —-'„where
n=1, 2, 3. . . we may develop an elementary theory of quantiza-
tion in space. If we assume in agreement with the work of Epstein'
that the angular momentum of the molecule associated with the azi-
muthal quantum number, and the component of this angular momen-
tum in the "specified" direction, can both be quantized, we may write
for the azimuthal angular momentum,

P=(n —-', )kj2~ (5)
and for the component momentum in the specified" direction

Pg = (ng —-', )h(2n. (~)
where (n ', ) is t—he-azimuthal quantum number and {nI ', ) is th—e-
equatorial quantum number. The necessity of using half equatorial
quantum numbers as well as half azimuthal quantum numbers arises
from our acceptance of the hypothesis that quantum numbers can
differ only by an integer combined with the hypothesis that the lowest

' Epstein, Her. d. Phys. Ges. 19, 116 (191.7)
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possible values for equatorial and azimuthal quantum numbers are the
same. '

If a is the angle between the total angular momentum and the "speci-
6ed" direction we may evidently write

p))t' ni 2 2n] 1
COS a=—=

p n g
~2n (7)

Since n and n& must be integers greater than zero and cos a must be less

than unity, Eq, (7) imposes definite restrictions on the possible values of

a. Giving n the successive value 1, 2, 3, . . . we can easily deter-
mine the possible values of a which are summarized in the following

table.

Case I n =-1; n&.——1; cos a =1
Number of values of a

1

Case II n=2; ny=1; cos a=1/3
ni=2; cos a= 1

Case III n=3; n~=1;
nl 2;
n] —3 )

Cos a=1/5
cos a=3/5
Cos a=1

Ca e IV n=4; n~ ——1;

n1=3 j

ni =4;

cos a=1(7
co8 a=3/T
cos a=5/7
Cos a =1

etc.
If we count positive and negative rotations separately, as is apparently

required by the Bohr correspondence principle, ' we may then write

p =2n (8)

for the a priori probability of a state having the azimuthal quantum

number
m= (n ——,') (9)

In connection with the above discussion of a priori probabilities, it

should be noted how simply we have arrived at the conclusion that the

a priori probabilities of the successive energy levels, .tand in the ratio

1, 2, 3, etc. , without resorting to any artificial rejection of the states of

no rotation or states where the plane of rotation is pa: al el to the specified

direction.

' Compare Lande, Zeitschr. f. Phys. 11, 357 (1922)
8 Bohr, "On the Quantum Theory of Line-Spectra, " Copenhagen Academy 1918,

Part I, p. 25.
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GENERAL EQUATION FOR ROTATIONAL SPECIFIC HEAT

Ke may evidently write for the rotational heat capacity of one mol

of an ideal diatomic gas consisting of molecules of the rigid "dumb-bell"
model, the expression

where, following Reiche' we have put

o =—h'/gn'J'kT (11)
and where N is the number of molecules in a gram-molecule, m is the
azimuthal quantum number, J is the moment of inertia of the molecule,

p is the a priori probability corresponding to m, and the summations
are to be taken for all possible values of the azimuthal quantum
number.

If now, following the procedure of Reiche' we write

Q
. gp e-m'e (12)

it can readily be shown that Eq. (10) can be rewritten in the form

Cg, d'logQ
(13)

R do~

Using the a priori probabilities given by Eq. (8), corresponding
to the quantum numbers given by (9) we.may rewrite (12) for our case
in the form

Q X, 2ne=

APPROXIMATIONS FOR HIGH LOW AND INTERMEDIATE TEMPERATURES

At very high temperatures where 0 is small we may evidently write
the approximations

oe

Q = 2ne '" '*'"dn = -[1-+ '&(ne-)]-
0 0

log Q= —log 0.+-', Q(m.a); (&5)

Cn/& = 1 —V'(ne) /8
and note that the value of Cs/R approaches unity as the temperature
rises.

At very low temperatures where o is large we may evidently write
the approximations

Q =2e '~'(1+2e-'~)

log Q=log 2 —-', o+2e-"
Cs/R =8e'e '
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Atintermediate temperatures, we can generally obtain sufficient ac-

curacy by considering the first four terms in Q. Eq. (13) can then be

written

Cz, (1/16) e '~'+ (81/8) e '~~'+ (1875/16) e "~~'+ (2401/4) e " ~'

R -tT/4+2 -9o./4+3 -250/4+ 4 -490/4

, (1/4) e ~ '+(9/2) e ' + (75/4) e " ~ +49e "' ' (17'L

e-~/4+2e- ~/ +3e- ~/ +4e-~9~/

THE SPEcIFIc HEAT CURvE FoR HvDRoGEr

Making use of Eqs. (16) and (17) a number of values for C~/R have

been calculated for different values of o-, and are tabulated below. The

temperatures in the third column are related to the values of 0. by the

equation
T= 286/e (&8)

This corresponds to a value for the moment of inertia of the hydrogen

molecule.
Z= ~.387 y, &0-4~gm cm2 (»)

and gives the best correspondence between the experimental data and

the calculated curve.
TABLE I

7
6
5
4
3N
2N
2
1/5
1V3
1

1/0

0. 1429
0. 1667
0.2
0.2S
0, 3125
0.375
0.5
0.625
0.75
1
1.2$

40.9
47, 7

, 57.2
71.5
89.4

107.3
143.0
178.8
214.5
286. 0
357.7

Cg/R

0.000
0.003
0.008
0.042
0. 151
0.270
0.533
0.729
0.813
0.845
0.852

COMPARISON %'ITH THE EXPERIMENTAL DATA AND KITH THE CURVES

QF REIcHE

The agreement between the calculated curve and the experimental

values of Eucken and of Scheel and Heuse as cited by Reiche' is shown

in Fig. 2. The full line is the best smooth curve through the calculated

points, and the experimental points are indicated by crosses. The dotted

lines give the upper portions of Reiche's curves Nos. III, IV and V. At

low temperatures these curves of Reiche are in as satisfactory agreement

as our own with the experimental points. At the higher temperatures

none of the curves agree with all the experimental points.

Reiche's calculations employing different assumptions as to the form

of 0 mav now be compared with the calculations made in this paper.



ROTA TIONAL SPF.CIFIC H'E.4 T

(I) Q =Z, (2zzz+ l)e ""'.
This form for Q is obtained on the assumption that the lowest possible.

azimuthal quantum number is zero, and that positive and negative
rotations are to be counted twice in determining a priori probabilities.
It leads to a speci6c heat curve with a maximum value for Cg/R at low

temperatures and cannot agree with the experimental facts.
Ce/~

0.9
II

r

0.7

0.6

a/f quantum numbers
vms

O.Z

O. /

I I I I I I I I I I
0 20 40 ()O 80 /OO /ZO /40 /6O /80 200 220 240 250 280 300 320 34O +6O

Fig. 2

(II) Q=Z, (zzz+1)e-
This form for Q is obtained on the same assumptions as above except

that positive and negative rotations are only counted once in determin-
ing a priori probabilities, a procedure, however, which is apparently not
in agreement with the correspondence principle. It also leads to an
impossible specific heat curve with a maximum value for Czz/R at low
temperatures.

(III) Q = Z, (2zzz+ I)e-"".
This form for Q is obtained by counting positive and negative ro-

tations twice, but excluding the possibility of no rotation. With the
value for the moment of inertia J=2.21.4x10-" it agrees with the experi-
mental points at low temperatures but fails at high temperatures.
(IU) Q=Z, (ns+1)e-'"' .

This form for Q is obtained on the same assumptions as for (III)
but counting positive and negative rotations only once. With the
value for the moment of inertia J=2.293x10-", it agrees with the ex-
perimental points at low temperatures but fails at high temperatures.
(U) Q=Zz 2me- ' .

This form for Q is obtained on the same assumption as for (I) but ex-
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eludes not only the case of no rotation but somewhat arbitrarily all
cases where the plane of rotation is parallel to the specified direction.
With the value J=2,095 X10 4' it agrees with experimental points at low

temperatures and with the two points at the highest temperatures but
fails to agree with the points at 197'.

(vi) q =Z", (2~+1).-("'+-+')..
This form for Q is based on calculations made by Planck, using the

second form of quantum theory. It leads to a specific heat curve with
a maximum 10 per cent greater than the classical value and cannot agree
with the experimental facts.

(VI I) Q=r, , 2ne-'"-" .
This is the form for Q discussed in this paper. It takes the lowest

possible azimuthal quantum number as one half and makes no ar-
bitrary exclusions in determining the a priori probabilities. VAth the
value for the moment of inertia 7=1.387 X10 "it agrees with the ex-

perimental data at low temperatures as well as any curve of Reiche's.
This lower value for the moment of inertia. is of interest since Sommer-
feld' concludes from the many lined spectrum of hydrogen that the
moment of inertia of an excited hydrogen molecule is 1.9)&10 ', and the
moment of inertia of the unexcited molecules involved in determining

specific heats at low temperatures must be lower than that figure, a
conditi'on which is met by the new curve and not by those of Reiche.
The failure of all the curves at the higher temperatures may be due to
the over simplification .involved in assuming the rigid "dumb-bell"
model for the hydrogen molecule, which can at best be regarde'd only
as a first approximation, "

The assumption of half quantum numbers has also been used for

calculating the entropies of diatomic gases and shown to agree as well

with the experimental facts as any of the older assumptions. "
In conclusion the writer wishes to express his appreciation to Profes-

sors Charles G. Darwin and Paul S. Epstein for very helpful suggestions

and criticisms.
'
NORMAN BRIDGE LABORATORY OF PHYSICS)

PAsADENA, CALIFQRNIA&

May 16, 1923.

9Sommerfeld, . "Atombau und Spektrallinien, " 3rd edition, page 535, Braunschweig
1922. It should be noted that the change to half quantum numbers does not acct the
relation b,v=6/4''J for the spacing between lines.

"At high enough temperatures, an appreciable amount of energy of oscillation may
enter in. See the treatment of Kemble and Uan Uleck, Phys. Rev. 21, 653, 1923,
which has appeared since the above was written.

"See Tolman and Badger, J. Amer. Chem. Soc. 45, 2277, 1923.


