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THE STATISTICAL THEORY OF SPONTANEOUS FLUCTU-
ATIONS IN ENERGY, PRESSURE, AND DENSITY,

BY KULESH CHANDRA KAR.

ABSTRACT.

Theoretical derivation of expressions for fluctuations in energy, pressure, and
density. —The fluctuation of a quantity, such as the energy, is defined as the
ratio of the average deviation from the mean energy to the mean energy.
The following expressions are deduced from a new statistical theory for ordi-

nary temperature and pressure: Fluctuation in energy at constant volume
= y(2/ynf) and at constant temperature = 2/f/'; Fluctuation in pressure
or density at const-ant temperature = I/Qn; where n is the number of mole-

cules, f the number of degrees of freedom of each, and p the ratio of total energy
to kinetic energy. At the critical condition the first of these becomes (I2/ynf) «4

and the last (6/n)'~4. The expressions obtained by Smoluchowski, Bauer, Furth
and Laue are shown to be special cases of the above. Relations are obtained
between the various types of fluctuations for the case of an ideal gas.

IN TRQDUc TIQN.

I904 Smoluchowski ' obtained from theoretical considerations the

equation for the mean isothermal fluctuation of density of a gas

~g, ~r due to molecular collisions

7m n

where n is the number of molecules inside the volume considered.

This equation being true for a gas wi11 also hold for colloidal particles.

As a result of a series of observations ' with colloidal solutions Svedberg,

9festgren and others found that the fluctuation of density really obeys

Smoluchowski's equation.
In x9o8 Smoluchowski ' showed that at the critical condition of a

gas ~4,
~

is given by the equation

r.zg

n

which was subsequently verified by Kammarlingh Onnes and Keesom. 4

Thus at the critical state the mean fluctuation is greater than at the

ordinary condition. Smol. uchowski, however, suggested that this fluc-

' Boltzman, Festschrift, s. 626 (I9o4).
' $vedberg, Die Existenz der Molekule, Leipzig, I9I2.
~ Ann. d. Phys. , 25, 205 (I908).
4 Comm. fr. the Phys. Lab. of Leiden (I9o8).
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tuatiori of density might give rise to opalescence noticeable at the
critical state of a gas. But he did not in that paper obtain any expression
for the intensity of the opalescent light. Subsequently in I9Io Einstein '
obtained the value of the mean intensity of opalescent light which agreed
with Keesom's ' equation found experimentally on working with ethylene
at its critical condition. It is noteworthy that in deducing the equation
Einstein supposed the variation of density to be a circular function of the
coordinates. Now the intensity of opalescent light ' as calculated from
Smoluchowski's equation is exactly the same as that from Einstein's
equation putting p = o, This is again an indirect verification of
Smoluchowski's equation (2).

Later in I9I5 F. v. Hauer obtained an expression for the isochoric
temperature H.uctuation of an ideal gas at the ordinary conditions.

(5r2). = 2/3n.

More recently, however, M. v. Laue' and R. Fiirth' have found the
energy and pressure fluctuations by a somewhat similar method.

p ICTovo (dU/dv)' + C, '1()
~v U' (dp/dv)

8„' = x/n where x = C„/C„

(Laue),

(Fiirth).

It should be noted, however, that in these two kinds of Huctuations
the temperature and volume are not constant.

In the present paper it is proposed to develop a statistical theory
of the different kinds of fluctuations.

STATISTICAL THEORY.

Let us consider a volume containing n molecules within a large volume
of a gas and suppose each molecule has f degrees of freedom. Then the
behavior of the gas in the volume considered is given at any instant by
the position of the representative point in 2nf dimensional phase space.
Now due to molecular collisions and other factors, the representative
point does not move in the same energy surface Uo but between two
energy surfaces Uo and U0+ d Uo. Or in other words the representative
points are canonically distributed in Gibbs's phase space according to

' Ann. d. Phys. , 33, I294, (I9IO).
~ Ann. d. Phys. , 35, 59I (I9II).
3 Die Theoric der Strahlung und der Quanten, von A. Eucken, p. I82, W. Knapp

(I9I4).
' Hauer, Ann. der Phys. 4y, 365, I9I5.' Laue, Phys. Zeit. I8, 542, I9I7; also R. Furth, Schwankungserscheinungen in der

Physik.
' Furth, Phys. Zeit. 20, 350, I9I9.
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the equation '

where U is the energy.
Thus in the canonical distribution the energy of the representative

point does not remain constant but Huctuates within a certain range.
And this fluctuation of energy, or the "dispersion of energy" as it is

generaHy called, of the representative point measures the variation of

energy of the n molecules which it represents. If we suppose the poten-

tial energy of the molecules to be nothing, the Huctuation of energy of
the molecules can be caused only by the dispersion in the velocity or the

positional space. Thus the total dispersion of energy is equal to the sum

of the two partial dispersions in the velocity and the positional space.
And it is evident that the energy fluctuation, when there is no dis-

persion in the positional space (Lagenraum), will correspond to the

energy or temperature Huctuation at constant volume (Hauer). Then

again the fluctuation of energy at constant velocity space will give

rise to pressure Buctuation at constant temperature. But they will

not be identical as will be discussed below. Now let us calculate the

energy or the temperature fluctuation at constant volume from the dis-

persion theory.
Ke have for the Auctuation of energy, (U —U)/ U.

Suppose
U= U+~;

therefore
U' = (U)' @ P + ~& U.

Taking the mean and remembering that ( = o we have

P —U2 ( U)2 ~

therefore
U' —( U)'

(U)'
Also:

V

J'Ue ' Ar
U V

J'e
V

J'U'e ' Av
U2

e

where Av = 6v„Lv~.
' C. Shaefef, EinfCihrung in die theoretische Physik, Bd. II., Berlin„192'; also Gibbs,

Statistical Mechanics.



(6) Putting x for i/8 and P for J's 'Ar or j'e ~*Dr, we have

Therefore
I O'I' r dP

p U2 (U)2 P dx' P' dx

Hence remembering (p)
dU

X

dU= 9'—from (6).d0

Suppose U = yL, I being the kinetic energy. From the equiparti-
tion theorem

OI

For ideal gas or colloidal particles y = x and f = g, thus, at ordinarY
temperature and pressure,

which Is Haue1 s equation.
At the critical condition we suppose P = o, so

' For an ideal gas, the potential energy @ is zero, so that y ~ I, but for solids
@=J, s.e., y =2,



DiiTerentiating (7) with respect to x we have

dx P P'

On further differentiation vrith respect to x

d3I 8P d2I dP
d' — dx' dx dx' dh
dx' P P' P'

On di8'erentiating again

O'P d'I' ddI' d'5'
dx4 de dx de

(x3) —(u) = ——-+4- +3
dx I E2 I'2

dI' 'd2I' dI' 4

P3 +4

Substituting the value of U from (9) in (ii) remembering (8)

U2 = 82 —+ (U)'
d8

71(, ~ v'f).
Again substituting values of V and U ln (i2) we have

3 ynf p'n8f'8'—U' = —tPynf + —8'y'n2f' x +
2o)

~nf ~Rnm= 8'7nf —i + —qnf i +
2

Similarly from (i3)

U4 = g84ynf + 2ynf8 8'ynf —x + —ynf x +-ynf y'n2f '
2 4

+ '"'"'-'( + '"')'
82p'n'f' 8'j nf ynf y'n'f'8'

6
Therefore

]4 = U' —(U)' = 38'ynf + a8'y'n'f' —x + —ynf x +3 Vnf 7'n'f'

+ 3' l + —I2 I + + 5'
84''n'f' ynf ' 8'y'nsf' ynf y4n'f'8'

2 8 2 r6
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= —p n8f8884——y2n2f284+ 3ylf843 5
4

~8n8f3g4 ~2n2f2g4+ g~nfg4

(~.). = 4
I

'4~4f4g4
x6

2o 48—+'"f ~2"2f2 ~8jg8f3

I2

when n is large or
'I ~~

Vn

For simplicity vre suppose @ = o or y = r, so that

Let us now hand the pressure fiuctuation at constant temperature.
As before we have the isothermal pressure fluctuation at ordinary con-
ditions given by

P' —(P)'.(~8') r
( )2

Also:
f(dU/dv)e ""~r

4
—U/8~

J'(d U/dv)2e '"~r
—Vj8~

Remembering (6) we have

dP x d D'
~]g—e

dv tII ds
dP I dU p(g

Hence we have

(i6)

dE/dv
P

,de/dv8
P

Substituting (t6) in (t5) and after transformation we get
~ C, Schaefer, 10c. cit., p. 44$ (85).
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(( ~) hali

d dP/dv
(
—

)2 gdp/dv
(p)'

'

(»)
Using (r8) we get

(r9) (B„')v = r/n.

Now at the critical condition, dp/dv in (rp) is zero, so that (5„)v = o.
Therefore the critical fluctuation of pressure wiH be given by

p' —(p)'(~.')v —
(-), -- .

The right-hand term of equation (zo) is evaluated as in (ro) and we

have
6 II 6

(&v')r = -+—+-
n e2 n8

or when e is large

(2x) (&.')r = 6/n i e I4lr = & 56/&n.

One may note here that the iosthermal energy fluctuation cannot be
obtained as the isothermal pressure fluctuation. Therefore a special
device has been used in this case. It is not dificult to see that equation

(rp), in which p is taken only as a function of volume, is perfectly gen-

eral and it will be possible to get the value of (6„)v by simply putting
U fol p. We tllus llave from (I7}

dU — P(&') = —~ —(~)'= —~—
dv (U)'

Now remembering U = (f/2)(n8/v) and p = n8/v, we have

(~-'), = 4/f'n

Ke leave the matter here to discuss, it later on in connection with

Laue's energy Huctuation.

RKI.ATION BET%KEN DIFFERENT KINDS OF FI.UCTUATION.

Alter deducing from the dispersion theory the values of (b„')„(Sr')„
(5„')v and (5')r, we shall next proceed to find the di6erent kinds of

Quctuations considered by previous workers referred to in the introduc-

t on, from the fundamental relation proved just now.

From the gas equation pv = RT we have

(p'+ Ap') (v' —~v') = R'(T'+ dT'),

where the bar represents the mean Ructuation of the corresponding

quantities.
' C. Schaefer, 10c. clt. q P, 447 (98).
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Ap2 AV2 6T2
Hence

p2 p2 T2

From the above equation we get

(2&a) (&.')r =

(24b) (~.'). =

(24&) (~'). =

(24d) $ 2

where p is the density.
Now combining (24a) and (2gd)

(b.') r

the following fundamental relations:

(b ')r
(~r'). ,

—(4').
$2

we have

= (b,')

and hence with the help of (t9) we have

(25) (5,')r = z/n,

which is Smoluchowski's density Huctuation. '

Again we have the general equation

b.' = (b') r + (b.')'
Now using (24b) we have

'.' = (~.')r+ (br') = (b')r+ (b-')

or substituting the values of terms in the right-hand side of the equation

we get
8„' = r/n+2/fn

=x/n where x =(f+2)/f
and this is Fiirth's equation (6) for pressure Huctuation at the ordinary

conditions. And at the critical state this Ructuation will be 6x/n as will

be seen from (r4) and (2z).
Similarly we have for the energy fluctuation

8„' = (8 ')„+(5„').
= 2/fn + 4/f'n = 2x/fn,

this being Laue s equation as will be seen by transforming his original

equation (4) with the help of the well-known formula

d U — nkT—=P= s where AT=0,
dv

U = (f/2)(nkT/s) and c„= (f/2)(nk/v).
gP CORPORATION STREET,

CALcUTTA, March 29, I923.
' In his paper referred to in the introduction, Smoluchowski has calculated tip~@' and

not (bp')p. But (bp')z calculated from his theory is exactly as in (25). See Furth,
Schwankungserscheinungen, pp. 22 and 55.


