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THE STATISTICAL THEORY OF SPONTANEOUS FLUCTU-
ATIONS IN ENERGY, PRESSURE, AND DENSITY.

By KuLesa CuaNDRA Kar.

ABSTRACT.

Theoretical derivation of expressions for fluctuations in energy, pressure, and’
density.—The fluctuation of a quantity, such as the energy, is defined as the
ratio of the average deviation from the mean energy to the mean energy.
The following expressions are deduced from a new statistical theory for ordi-
nary temperature and pressure: Fluctuation in energy at constant volume
= v (2/ynf) and at constant temperature = 2/fVn; Fluctuation in pressure
or density at constant temperature = 1/ V7; where n is the number of mole-
cules, f the number of degrees of freedom of each, and v the ratio of total energy
to kinetic energy. At the critical condition the first of these becomes (12 /ynf)1/4
and the last (6/7)4. The expressions obtained by Smoluchowski, Hauer, Fiirth
and Laue are shown to be special cases of the above. Relations are obtained
between the various types of fluctuations for the case of an ideal gas.

INTRODUCTION.

IN 1904 Smoluchowski ! obtained from theoretical considerations the
- equation for the mean isothermal fluctuation of density of a gas
|3,| » due to molecular collisions

&) [Belr =2, =0

T

where # is the number of molecules inside the volume considered.

This equation being true for a gas will also hold for colloidal particles.
As a result of a series of observations 2 with colloidal solutions Svedberg,
Westgren and others found that the fluctuation of density really obeys
Smoluchowski’s equation.

In 1908 Smoluchowski? showed that at the critical condition of a
gas |3.| is given by the equation

< I.I

(2) 15e1T=';"

which was subsequently verified by Kammarlingh Onnes and Keesom.*
Thus at the critical state the mean fluctuation is greater than at the
ordinary condition. Smoluchowski, however, suggested that this fluc-
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1 Boltzman, Festschrift, s. 626 (1904).

2 Svedberg, Die Existenz der Molekiile, Leipzig, 1912.
3 Ann. d. Phys., 25, 205 (1908).

4 Comm. fr. the Phys. Lab. of Leiden (1908).
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tuation of density might give rise to opalescence noticeable at the
critical state of a gas. But he did not in that paper obtain any expression
for the intensity of the opalescent light. Subsequently in 1910 Einstein !
obtained the value of the mean intensity of opalescent light which agreed
with Keesom'’s 2 equation found experimentally on working with ethylene
at its critical condition. It is noteworthy that in deducing the equation
Einstein supposed the variation of density to be a circular function of the
codrdinates. Now the intensity of opalescent light ® as calculated from
Smoluchowski’s equation is exactly the same as that from FEinstein's
equation putting ¢ = o, This is again an indirect verification of
Smoluchowski's equation (2).

Later in 1915 F. v. Hauer? obtained an expression for the isochoric
temperature fluctuation of an ideal gas at the ordinary conditions.

More recently, however, M. v. Laue® and R. Fiirth® have found the
energy and pressure fluctuations by a somewhat similar method.

— KTw,| (dU/dv) }

6142 - — - C«UT y
4) - T { @p/do) + 0 (Laue)
(5) 3> = x/n where x = C,/C, (Fiirth).

It should be noted, however, that in these two kinds of fluctuations
the temperature and volume are not constant.

In the present paper it is proposed to develop a statistical theory
of the different kinds of fluctuations.

STATISTICAL THEORY.

Let us consider a volume containing # molecules within a large volume
of a gas and suppose each molecule has f degrees of freedom. Then the
behavior of the gas in the volume considered is given at any instant by
the position of the representative point in 2nf dimensional phase space.
Now due to molecular collisions and other factors, the representative
point does not move in the same energy surface U, but between two
energy surfaces Up and Ug 4+ dU,. Or in other words the representative
points are canonically distributed in Gibbs’s phase space according to

! Ann. d. Phys., 33, 1294 (1910).

2 Ann. d. Phys., 35, 591 (1911).

3 Die Theorie der Strahlung und der Quanten, von A. Eucken, p. 182, W. Knapp
(1914).

¢ Hauer, Ann. der Phys. 47, 365, 1915.

® Laue, Phys. Zeit. 18, 542, 1917; also R. Fiirth, Schwankungserscheinungen in der
Physik.

6 Fiirth, Phys. Zeit. 20, 350, 1919.
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the equation !

where U is the energy.

Thus in the canonical distribution the energy of the representative
point does not remain constant but fluctuates within a certain range.
And this fluctuation of energy, or the ‘“dispersion of energy’ as it is
generally called, of the representative point measures the variation of
energy of the » molecules which it represents. If we suppose the poten-
tial energy of the molecules to be nothing, the fluctuation of energy of
the molecules can be caused only by the dispersion in the velocity or the
positional space. Thus the total dispersion of energy is equal to the sum
of the two partial dispersions in the velocity and the positional space.
And it is evident that the energy fluctuation, when there is no dis-
persion in the positional space (Lagenraum), will correspond to the
energy or temperature fluctuation at constant volume (Hauer). Then
again the fluctuation of energy at constant velocity space will give
rise to pressure fluctuation at constant temperature. But they will
not be identical as will be discussed below. Now let us calculate the
energy or the temperature fluctuation at constant volume from the dis-
persion theory. '

We have for the fluctuation of energy, (U — U)/U.

Suppose

U=U-+ &
therefore _ _
U = (U)*+ £+ 2¢-U.

Taking the mean and remembering that £ = 0 we have

F- 0 - (O
therefore
5= U (07
()
Also:
4
- Ue ¢ A7
U = 7 ’
Se ¢ Ar
S U Lel A
— e T
vt T
Se 9Ar

where At = Aty A7y,

1 C. Shaefer, Einfiihrung in die theoretische Physik, Bd. IL,, Berlin, 1921; also Gibbs,
Statistical Mechanics.
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U
(6) Putting x for 1/6 and P for S¢ ¢ Ar or fe=U#Ar, we have

— 1 dP
@ U=—-3i"
7 _1&P
®) 4 Pdx?
Therefore
_ - — 1 d?P 1 (dP\?
— 772 _ 2 = =
P
_a|adx
dx\ P
Hence remembering (7)
5_ _d0

dx

aU

= 2—
0 70 from (6).

Suppose U= LY L being the kinetic energy. From the equiparti-
tion theorem

= _mf
(9) U=-78,
so that

) M 2

¢ > 62,
Hence

—~ 2

8.2), = —

(8. ynf
or

For ideal gas or colloidal particles ¥ = 1 and f = 3, thus, at ordinary
temperature and pressure,

which is Hauer’s equation. B
At the critical condition we suppose £ = 0, so

g U — (D)
() ()
_ 'For an ideal gas, the potential energy ¢ is zero, so that y = 1, but for solids
¢ =L,te,y =2,

(10) 8, =
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Differentiating (7) with respect to x we have

_ &P (4.5)2
dx? dx
P T
On further differentiation with respect to x
NESRUN- ()
@  — ax3 dx dx? dx
12 = = —_
(12) 7 (0) 7 +t—= .
On differentiating again

d‘P a*P dP ( a:P )2
+3

d  —
(11) @(U) =

@& dx s dx dx
I —_— - .
1) ZO =3 t4 =5 P
(‘_i_l_’)zé?_’ (ﬂ’)“
dx ] dx? dx
— 12 P + 6 i .

Substituting the value of U from (9) in (11) remembering (8)

P 2@ T7)2
U 0d0+(U)

2 2

(110)

Again substituting values of % and U in (12) we have
,Y3n3f303

— Gynf + 3 Gyrnf? ( 1+ l’f’f)
4 2 4

= Gynfl— 1 43 nf\ _ e
o[- s+ 20) - 23]

~

(120)

Similarly from (13)

U* = 30tynf + 2vnfo-Gynf { - +27nf(1 +'Y7nf) _Zz“ziz}

(13a) +3'W<I+Zﬂ>2
4 2
e e
4 2 2 16
Therefore
B =T — (D) = 30vnf + 26*y*n2f? { -1+ 2 7"f<1 + ;Y:—f> B ‘72?2}

+ 3 W(I _,_ﬂf)z ~ 12 0473n3f3(1 +'y_nf) + s yinifigr
4 2 8 2 16
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= S mnifogt = Sopmipien + ynfot

Hence
:é py3niif304__. § 72,”27'204 + 37nf04
(33),, = 4 4
T 4 494
<7 n'f
_1z _ 20 . 48
'Ynf ,Y2n2f2 ,y3n3f3
=12
ynf
when # is large or
. ‘12
Bl = NGy

For simplicity we suppose ¢ = 0 or v = I, so that

412

(14) Igulv = ;J;

677

Let us now find the pressure fluctuation at constant temperature.
As before we have the isothermal pressure fluctuation at ordinary con-

ditions given by
3 P — (p)?

I (6, p = 2L -
(15) o)1 G
Also:

5 = S (@dU/dv)e~"°Ar
fe"v/aAT ’
= S(@U/dv)e"’Ar
7= fe_U/GA'r '
Remembering (6) we have
daP I au — U6
i B A
dv ] f a ° T
P _ 1 ((AUN e
dv? +02f<d11) ¢ A
Hence we have
5= — gt/
(16) — d“’l;’/dv2
2 — 2 ‘
P + & P

Substituting (16) in (15) and after transformation we get
1 C. Schaefer, loc. cit., p. 445 (85).
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S5 _ @ (dP/dv e _ _ odp/dv
(x7) G = o (L2 @y - — 0L,
(18) but p = nf/v.!
Using (18) we get
(19) (67 = 1/n.

Now at the critical condition, dp/dv in (17) is zero, so that (§,%), = o.
Therefore the critical fluctuation of pressure will be given by

5 P = @)
(20 5.4, = 2"1,,,:_,',__, .

: 0 ®)*

The right-hand term of equation (20) is evaluated as in (10) and we
have

G =24 5+ 2
n n: n
or when # is large
(21) (6,97 = 6/n, ie. |5,|p = 1-56/ An.

One may note here that the iosthermal energy fluctuation cannot be
obtained as the isothermal pressure fluctuation. Therefore a special
device has been used in this case. It is not difficult to see that equation
(17), in which p is taken only as a function of volume, is perfectly gen-
eral and it will be possible to get the value of (8.2) by simply putting
U for p. We thus have from (17)

U

= - P
3D, = — 022 [(Up = —9-2 -
(8.2) 0 o (0) Ty
Now remembering U = (f/2)(n8/v) and = n6/v, we have
(22) @27 = 4/fn.

We leave the matter here to discuss.it later on in connection with
Laue’s energy fluctuation.

RELATION BETWEEN DIFFERENT KINDS OF FLUCTUATION.

After deducing from the dispersion theory the values of (6_1:2)1,, (S_Tz),,,
(;STLE)T and (8,%)y, we shall next proceed to find the different kinds of
fluctuations considered by previous workers referred to in the introduc-
t on, from the fundamental relation proved just now.

From the gas equation pv = RT we have

(2 + BP) (¢ — M) = R(T* + AT%),

where the bar represents the mean fluctuation of the corresponding
quantities.
1 C. Schaefer, loc. cit., p. 447 (98).
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A—p2 Aw: AT?

(23) Hence a b
From the above equation we get the following fundamental relations:
(24a) (_5;‘2)7' = (—572)7',
(245) @0 = ().,
(240) (62 = = (7).
(249) 3,2 =32

where p is the density.

Now combining (24a¢) and (24d) we have

(5—:03)7' = (5;:_2)7'

and hence with the help of (19) we have
(25) 63z = 1/n,
which is Smoluchowski’s density fluctuation.!

Again we have the general equation

87 = (697 + ()
Now using (24b) we have
52 = 0D + Gr)e = 0 + B,

or substituting the values of terms in the right-hand side of the equation
we get

02 =1/n+ 2/fn

= x/n where x = (f 4+ 2)/f,
and this is Fiirth’s equation (5) for pressure fluctuation at the ordinary
conditions. - And at the critical state this fluctuation will be 6x/% as will
be seen from (14) and (21).

Similarly we have for the energy fluctuation

82 = (320 + (3.2
2/fn + 4/f'n = 2x/fn,
this being Laue's equation as will be seen by transforming his original
equation (4) with the help of the well-known formulee

It

— =p=-—"1 where kT =29,
v t/
U= (f/2)(nkT/v) and ¢, = (f/2)(nk/v).
47 CORPORATION STREET,
CaLcutTa, March 29, 1923.

! In his paper referred to in the introduction, Smoluchowski has calculated [5p|7 and
not (6p%)7. But (6p?)r calculated from his theory is exactly as in (25). See Fiirth,
Schwankungserscheinungen, pp. 22 and 55.



