
SPECIFIC HEAT OF KYDROGEN 653

ON THE THEORY OF THE TEMPERATURE VARIATION
OF THE SPECIFIC HEAT OF HYDROGEN
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ABSTRACT

Quantum theory of rotational and vibrational specific heats of an elastic,
non-gyroscopic model of a diatomic gas.—To account for the abnormally
large specific heat of hydrogen at high temperatures, the molecule is assumed
to have an internal vibrational degree of freedom. Assuming a dumb-bell
model and the following law of force F = 0,(r —r0)/r', the energies of the
stationary states are derived on the basis of the Bohr-Sommerfeld form of the
quantum hypothesis, and an expression for the specific heat obtained. -When
suitable values of the two adjustable constants are chosen, satisfactory agree-
ment is obtained with the experimental results for hydrogen throughout the
entire range, to I3oo' K.

Constants of the hydrogen molecule, computed from the empirical con-
stants of the specific heat equation are: Nuclear spacing, o.488 &( Io cm;
moment of inertia, I.975 &( Io " gm cm'; wave-length corresponding to
normal vibration, 2.05 p.

Specific heats of hydrogen and water vapor; new empirical formulas
for temperatures between 3oo' and 23oo' K derived from Pier's data, are
given: For hydrogen: c, = 4.87+ 0.539 g Io 5+ O. I46 g Io 'P; for water
vapor: c„ = 6.o3 + 4.2 )& Io 9 —4,o7 && Io 'P + I.95 && Io 't'.

INTRODUCTION

HE problem of explaining the abnormal speci6c heat of hydrogen at
low temperatures has engaged the attention of numerous investi-

gators. ' The theory most generally accepted at the present time was
first formulated by one of the writers of this paper in an unpublished
doctor's dissertation in z9j p.' A brief account of the theory was given
in a paper read before the American Physical Society in October, I9I /.
This paper was unfortunately marred by an error made in an attempt to
take into account the expansion of the molecule due to centrifugal force
at the larger rotational speeds. The publication of the details of the
theory was delayed by the war and in I9I9 Reiche, ' working independ-
ently, published a complete discussion of the problem based on a rigid
model of the molecule and differing only in minor respects from that
contained in the above-mentioned thesis.

' For a resume of the results see F. Reiche, "Die Quantentheorie, " Berlin, I92I.'E. C. Kemble, "Studies in the Application of the Quantum Hypothesis to the
Kinetic Theory of Gases and to the Theory of their Infra-red Absorption Bands, "
Harvard University, I9I7.

3 E. C. Kemble, Phys. Rev. Ir, p. I56, I9I8 (abstract).
F. Reiche, Ann. der phys. 58, p. 657, I9I9.
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The purpose of the present paper is to present a corrected calculation
of the rotational and vibrational specific heat of an elastic model of a
diatomic gas molecule. Such a calculation is desirable since the observed
specific heat of hydrogen at high temperatures is appreciably greater
than the limiting theoretical value for rigid molecules, (5/2)R or 4..963
calories per mol. We cannot correct for the eFfect of elasticity simply
by adding to the speci6c heat of a rigid molecule the vibrational speciFic
heat of an ideal linear oscillator, for the expansion of the molecule by
centrifugal force must be taken into account. ' This expansion alters
the energies of the stationary states corresponding to various values of
the angular momentum and thus causes an increase in the rotational
speci6c heat. The eFfect is largest for those molecules with the smallest
moments of inertia and hence is particularly important for hydrogen.

In this connection it may be observed that the classical statistical
mechanics does not demand a constant rotational specific heat as is
commonly assumed. The equipartition law speci6es the average kinetic
energy of rotation for a diatomic gas to be RT. If the molecules are
regarded as elastic a rotational potential energy must be added which is
roughly proportional to the square of the kinetic energy. It follows that
the complete rotational specific heat is an approximately linear function
of lhaving the value R as a lower limit. Needless to say, the correction
is small for most molecules at moderate temperatures.

DETERMINATION OF THE ENERGIES OF THE STATIONARY STATES

The 6rst part of the problem of computing the specific heat for a
model of a gas molecule consists in the application of the quantum
conditions to the determination of the energies of the stationary states.
In order to get a de6nite result we must introduce an assumption re-
garding the nature of the law of force binding the nuclei of the two
atoms together. A good deal of information regarding the nature of the
law for the HCl molecule can be, obtained from the study of its infra-red
band spectrum, but we have no sure hold, either experimental or theo-
retical, on the law for the hydrogen molecule. We know, however, that
when the nuclei are close to their equilibrium positions the restoring
force must be an approximately linear function of the displacement.
For large displacements, on the other hand, the force must drop off as
the inverse square of the distance between the nuclei, or more rapidly.
These two requirements are conveniently met by the assumption that
the force is of the form

' This expansion is the cause of the asymmetry of the infra-red absorption bands
of polar diatomic gases.



Here r is the distance between the nuclei, ro the equilibrium value of r,
and a is a constant, which may be adjusted to give the frequency of'

vibration any desired value. The equations of motion resulting from
the law stated above are mathematically of the same general form as
those which govern the motion of an electron around a single hydrogen
nucleus when the relativity correction is taken into account. Conse-
quently by postulating a force of the form given in (r) we can carry
through the determination of the energies of the permitted Inotions
without fU1 ther approximations. Of coUrse this law ls not to be coIl-

sidered as actually correct, but fortunately auxiliary computations
indicate that an accurate formula for large displacements is not needed
over the range of temperatures considered in this article.

Let the angular and radial momenta be denoted by p„and p„respec-
tively. Denoting the masses of the nuclei by ml and m2 and introducing
the abbreviation p = m&mo/(mz + mo), we readily derive the following
expresalon for the energy {Hamiltonian function):

The application of the VA'lson-Sommerfeld quantum conditions yields
the relations '

m = o, r, 2, g, , (3)
and

p,C
Prdf = 270 +P~ + pGf 0

42p(a/pro
I Q I 2 $ ~ e

Solving the above equations for the total energy 8' as a function of the
quantum numbers m and I, we obtain

6 gm pang
I ——

2ro k'(I + Vm' + 47r'puro/h')'

Ke denote by vo the frequency of vibration of a non-rotating molecule
with an infinitesimal amplitude. This may be proved to be

ro ——(r/2or) la/proo.

From the de6nition of the. allgU1Rr GiomeIitUm p+ tile following explesslon
for the angular velocity is readily deduced:

~o = P„/pr' = mh/2~pr'.
~ In the earlier work by Kemble the condition (g) was derived from Planck's cell

theory by introducing the assumption that the permitted stationary states are those
whose representative points lie on the cell boundaries. Cf. M. Planck, Verh. d. D.
Phys. Ges. zy, p. 4o7, I9I5.
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Hence, to a close approximation, the frequency of rotation of a non-

vibrating molecule with a single unit of angular momentum is

v I ——h, t4zr'pr p'.

The frequency of rotation for a rigid molecule would be an integral
multiple of v&. With the aid of Eqs. (6) and (p) the expression for the
energy can be thrown into the form

hVI VP I

v, {(v&/vo)n + lr + (v&/v&)'m'{'

In most applications of this theory the ratio v&/vo will be a small number.
The value derived from the infra-red band spectrum of HC1 is o.o076.
In applying the above expression to hydrogen we may treat vI and v p as
adjustable constants whose values may be chosen to 6t the experimental
specific heats. From the values of these constants used in obtaining
the curves given later in this article and from the assumed law of force
we may compute the energy required to break up the molecule, ' This
has the right order of magnitude, being about 4o per cent greater than
the heat of dissociation as observed by Langmuir. No better agreement
could be expected in view of the fact that our law of force makes no

pretence at accuracy for large values of r.

CALCULATION OF SPECIFIC HEAT

Let N denote the number of molecules in a gram molecule and. let p "
denote the intrinsic probability of the stationary state mn. The rota-
tional and vibrational energy 8 of a gram molecule of gas at the tempera-
ture T may be computed from Planck's formula '

+PAL ~gr ~ —&v~.f&r

—{Vm /kZ'

in which the average energy of the molecules in the "region element"
mn (Planck's second theory) is replaced by the energy W " of the mole-

cules in the stationary state associated with this region element. '
The corresponding expression for the specific heat is obtained by

differentiation with respect to l. It is

(zo)

& The formula for energy of dissociation is (kvj/2)(vo/vq)g.
' Planck, Verh. d. D. Phys. Ges. x7, p. 4I2, I9I5.
' Each of the quantum conditions defines a family of surfaces in the state-space of

statistical mechanics. These surfaces divide this space into cells which may be identified
with Planck's region elements.
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where J = mechanical equivalent of heat; P& ——P Pp "e

Z, = p gp -. .e- -; ~., = p p p„.(. .) . .-—; ~ - = W„-~f T

In evaluating the above series, the stationary state (nz = o, . m = o) is

assumed to have zero probability as indicated by the infra-red absorption
bands of diatomic gases. ' At the highest temperatures used the series
need to be summed to I3 terms in m, and 3 terms in n. It is of interest
to note that strictly speaking they are only semi-convergent since W' "
and the exponential factor approach finite limits as m and n become
infinite.

It remains to discuss the formula to be used for the intrinsic probability

p ". Planck assumes that the probability of each cell is proportional
to the volume of that cell as in the classical statistical mechanics, and
we follow the line of least resistance in identifying the cell probability
of his theory with the probability of the corresponding stationary state
in the new theory. Since, however, the stationary state of zero energy
(I = o, e = o) is arbitrarily ruled out, there is more than one way of
assigning the remaining states to the cells, and consequently this point
of view leads to an ambiguous set of values for the p's.

Reiche makes use of the fact that an external electric or magnetic
field will break up each of the stationary states into new ones having
(on the basis of Planck's hypothesis) unit intrinsic probability. He
therefore identifies p " with the number of new states between which
the molecules having ns units of angular momentum are divided by the
field. ' The application of the quantum conditions to the angular
coordinates in the presence of a magnetic field involves the use of two
quantum numbers. One, which we denote by the symbol m&, gives the
number of units of angular momentum parallel to the field. If the
stationary states corresponding to all values of both numbers are recog-
nized as equally probable, the value of p " is easily shown to be 2m + I.
On the other hand, if we rule out those states for which II is zero, fol-
lowing an argument due to Bohr, p "works out to be 2'. Specific heat
calculations based on a rigid model of the hydrogen molecule favor the
latter formula for p ".

COMPARISON OF THEORETICAL AND EXPERIMENTAL VALU'ES

Hydrogen. —The form of the specific heat curve for hydrogen between

35 K and 3/0 K has been pretty well established by the experiments of
Since Reiche deals with rigid molecules the quantum number n does not appear

n his analysis.
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Eucken, ' Scheel and Heuse, ' and Escher. ' Less trustworthy determi-
nations of the specific heat at higher temperatures have been made by
Crofts ' from observations of the ignition temperatures of adiabatically
compressed mixtures of electrolytic gas and hydrogen, and by Pier ' and
others using the explosion method.

While the observations of Pier are the latest and apparently the best
for very high temperatures, his formula does not agree at low temperatures
with the well-established results of other investigators. We therefore
attempted at first to fit our formula at high temperatures to a point
taken from the work of Crofts. ' The result of these initial calcu'lations

was unsatisfactory. Whether the intrinsic probability p " is set equal
to 2m (curve 8' in the accompanying graph} or to 2m + r (curve 8),
it is impossible to pass a curve through the Crofts point which will also
fit the observations near 3oo' K.

We have accordingly made a study of Pier's data which shows that
the discrepancy between his formula (see Eq. (r4) below) and the well-

established points in the neighborhood of 3oo' K is not inherent in his

observations. By combining the value of the specific heat at 28g' K
given by Scheel and Heuse with Pier's data we have derived a new

empirical formula which fits the latter set of points better than the
original one. Pier determined the average specific heats at constant
volume of various mixtures of water vapor, argon, and hydrogen between
I7' C and temperatures ranging from I4oo' C to 2350 C. We have
assumed the specific heat of argon to be 2.98 calories per mol and have
set the specific heats of water vapor and hydrogen at I7' C equal to
6.r ' and 4.88 (Scheel and Heuse) respectively. The following formulas

were then deduced by a semigraphical method which need not be de-
scribed in detail: For water vapor, o & t & 2300 C,

C„= 6.03+ 4..2 X lo r —4.07 X lo 'P + r.95 X Io 'P, (II)

For hydrogen, o & t & 23oo' C,

C„ = 4.87 + 0,539 )( Io t + 0.I46 && Io-'t',
' A. Eucken, Sitz. d. Kon. Preus. Akad. d. Wis. I, p, I4I, I9I2.
' K. Scheel u. W. Heuse, Ann. der Phys. (4) 4o, p. 473, I9z3.
' W. Escher, Ann. der Phys. (4) 42, p. 76?, i9I3,
4 J. M, Crofts, J. Chem. Soc, zov, p. 29o, z9i5.
~ M. Pier, Zeits. f. Elektrochemie, x5, p. 356, i9o9.
' Crofts gives 5.zo calories per mol as the mean specific heat between I5' C and

532 C. We have assumed that this value can be used for the specific heat at the
average temperature 273' C, or 546' K.

7 Cf. H. Levy, Verb. d. D. Phys. Ges. zr, p. 33I, I909. All specific heats are for
the ideal gas condition.



Pier s own formulas are, ' for water vapor

C, = 6.o65 + I.o g Io-9+ o.8 g Io-9'

Rnd fof hydrogen
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heat at high temperatures. ' The formula for p " used in calculating
the theoretical specifxc heats confrrms the conclusion of Reiche but
confIicts with the result previously obtained by Kemble.

Table I. gives the numerical values from which the graph was plotted.

T&Bi.E I.

Absolute temp. ~ A

60
65
8o

IOO
I IO ~ i ~ ~ ~ ~ ~

I45 . 0j

.OI

.o6

.I6

.64

.o6o

.I83

.44I
~ 590

059
.I82
~44I
.588

.052

.I67

.44 I
~ 599

I.I47

~ I33
.404
.52 I

x.o58

Rofationol end vikctioncd spec@a heel of hydrogee

t

A' '
.8 8' O' Observed Source

t

.020 (r)
(I)
(I)

~44 (I)
(r)

x49 e, ~

I965 . . . - .
I96.5
273
289
333

r.098 I.I09
I .449 I.622 I.488

x.858
I 77
x.84

I.584 I.4I
I.40I

I.9I I.872 I.86
x.94 r.898 I.897
r'.99 I x.'9g8 t.'9gs

(I)
(2)
{x}
{2)
(3)

2.07
2.I2

2.03
2.22

450
546 2, I24P (4)
625 2.o7 2.ro {5)

IOOO 2 28 2 36 (5)
x 349 2.66 2.64 (5)
2oo5.6 . . . . . . . 3.532 3'63 (5)

Sources: (I) Eucken; (2) Scheel and Heuse; (3) Escher, mean value 293 -373',
(4) Crofts, mean value 288'-8o5'„(5) Empirical equation (x2) from Pier's data.

From the values of the constants used in adjusting the curve C' we

deduce the following mugn&Ndes for the hydrogen nzolemle:

)0 = wave-length corresponding to the normal vibration frequency of

the H~ molecule = 2.o5 p,
Jo ——normal moment of inertia of H~ molecule = I.975 g lo~' gm cm',
ro = normal nuclear spac&ng = o.488 g Io 8 cm.

Reiche's value f'or I.o is 2.o95 g lo~' gm cm'.

It is worthy of note that up to xg5o', at least, the rotational specifrc

heat exceeds the limiting value for a rigid molecule (r.985 cal/mol) by
more than the corresponding vibrational specifxc heat. This shows the

impossibility of calculating high temperature specifxc heats of gases by

'Pier's work has been criticized by Bjerrum because of his failure to take into
account the heat lost to the walls of the calorimeter before the pressure maximum,

but the hypothesis that this loss is small is supported by Siegel in a later paper. The
experiments of Womersley also seem to indicate that the heat loss to the avails is small,

though his report is so brief 'that it is obscure. Cf. N. Bjerruin, Zeits. f. Elektrochem,
X7', 73x {r9xr); W. Sic@el, Zeits. f. Phys. Chemic, 87', 64r (I9r4); %. D. Womersley,
Proc. Rov. Soc. A. Ioo, p. 483 (I922).
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simply adding the speci6c heat of one or more ideal linear oscillators of
suitable frequencies to the classical speci6c heat for a rigid molecule of
the type in question.

Other diatomic gases. —WhIle we have much less complete data on

other diatomic gases than hydrogen, abnormally low speci6c heats have
been calculated by Scheel and Heuse from their. observations on nitrogen,

oxygen, and carbon monoxide in the neighborhood of 92 K. Assuming

that the Reiche formula for the speci6c heat of a rigid molecule (p = 2m)
can be applied to these gases we may calculate the moments of inertia
and nuclear separation from the observations in question. Table II.

TABLE II.

Gas

N2. . .
Og. . .
CO. .

-I8I' C—I8I—I8o

iy, calculated
by Scheel and

Heuse
cal~mol

4 733
49I
4.758

Rotational
sp. heat

ca1/mol

I 755
I 93
I.78o

Moment of
inertia J

IO 4' gm cm2

5.I6
8.II
53

Nuclear
spacing

Io 'cm

2.47
2.I6

shows the result of such a calculation. The values of the distance
between the atomic nuclei are absurdly small in comparison with the
nuclear spacing for H2 or with estimates of the radii of the atoms of
oxygen, nitrogen, and carbon made in other ways. They force the
conclusion that either the assumed speci6c heats are wrong, or that the
theory is not applicable to these gases.

It hardly seems probable that there can have been any considerable
error in the observations of Scheel and Heuse, which were made on c„at
atmospheric pressure. The calculation of the speci6c heat at constant
volume in the ideal gas condition involves a considerable correction for
pressure, however, which may be inaccurate.

As regards the applicability of the theory to these gases it should be
observed that we have assumed our molecular model to be non-gyroscopic.
The positive magnetic susceptibilities of 02 and N2 suggest that these
gases do not fall in the non-gyroscopic class and it is possible that carbon
monoxide does not lie within the scope of the present theory for the
same reason.

Our thanks are due to Mr. K. C. Mazumder for his assistance in

working up Pier's data.
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