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ABSTRACT.

Effect of space charge and cathode temperature on thermionic current and
yotential distribution. —I. Case of Parallel plarle electrodes. (a) Current Nmi ted

by space charge. The results obtained by E. Q. Adams (unpublished) „Epstein,
Fry and Laue are discussed and summarized, certain errors are pointed
out, and the equations are put in a form adapted to easy numerical calcula-
tion. Assuming the normal components of the velocities of the emitted
electrons have the Maxwell distribution, the integration of Poisson s equa-
tion between proper limits leads to a numerical relation between the new
variables & a(x —x„)f2~'e'i'm/O'T'PI4 and q = e(V —V )/kT, where x
and V give the position and voltage of the plane of minimum potential,
and k is the Boltzmann gRs constaIlt. Denoting VRlues Rt tlie cathode by
the subscript I, and inserting values of constants: qi = log po/i), where io
is the saturation current; V —VI ——T(g —qi)/I z,6oo; p —&I

——9.I'8o

X Io~T ~~4&t'(x —xi). These equations and the teMes of $(q) for various
values of q enable„ for a given cathode temperature T, the potential distribution
for a given current i, or vice versa, to be computed. An approximate solution
for the current is: i —f(z'/ /9m)(ejm)'I'(V V }3/~/(x x )2](I + y 66m)-'J )
which reduces to the usual three halves power law equation if we neglect V
and x and the correction factor in g. (b} Equilibrium coeditioe mitk anode
at greot distance, current sero. If the only retarding 6eld is that of the space
charge, the density of charge is: p = kTp&/f(kT)'~' + x(z~ep&)'"]' where

pI = iofavrte/kTp~~. Except near the cathode this is approximately equal to
kT/svrex~; hence p is proportional to the absolute temperature of the cathode
RIid inversely proportional to the square of the distance away. The potential
gradient at the cathode is Xi = f8vrpikT/ej'~2. Equations are also given for
the case where an external retarding field X~ is applied. II. Irl, the case of
eoncerltrI'e cylindrical electrodes, the current is: i = (8'~'/9)(e/m)'~'fV —V

+ ~4VOIlog (V/XV0) I']31'/r, where Vo is the initial energy of the electrons
expressed in volts (3kT/se), r is the radius of the anode, and ) is a constant
between I and 2, not yet experimentally determined. The deviations from
the three ha'ives power law are not more than one quarter as much as for
parallel planes and amount to only about 3 per cent at r3o volts.

HE effect of space charge on the potential distribution near an
electron-emitting plane cathode was calculated by Richardson '

for the case where the opposing electrode is,at infinite distance and the

Plill. Trans, ~ A„202')5I6 (I903).
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potential gradient at this second electrode is zero. The electrons were
assumed to be emitted with velocities distributed in accordance with
Maxwell's Law. Under these conditions no current flows between the
electrodes. Child ' and Langmuir ' treated the case where current flows

under the inHuence of an accelerating held insufhcient to cause saturation.
Neglecting the effect of the initial velocities of the electrons they found

that the current varied with the three halves power of the potential
difference between anode and cathode and that the potential varied with

the four thirds power of the distance from the cathode. '
Schottky ' made approximate calculations for the case of small currents,

taking into account the effects of initial velocities. Laue ' gives an

exhaustive treatment of the case where one or more heated electrodes
(parallel planes, concentric cylinders, spheres, etc.) are in equilibrium

with an electron atmosphere, i.e. , when no current flows.

Epstein ' gives a clear and complete treatment of the effect of initial
velocities for parallel plane electrodes when the current is limited by
space charge and tabulates a function by which these calculations are
facilitated. Unfortunately Epstein has committed either an error or an

oversight in the use of the Boltzmann constant k so that it becomes

necessary to substitute 2k in place of each k that occurs in his equations
in order to be able to use correctly the customary value k = j. 37 X xo

erg per degree. Since Epstein gives no numerical values of the constants
i PHYS. REV., g2, 492 (I9II).
2 PHYs. REv. , 2, 45o (I9I3); Phys. Zeitschr. , zy, 348 (I9I4).
' I..ilienfeld (PHYS. REV. , g, 364, I9I4; and many subsequent papers) claims to have

discovered the three halves power law in some of his work in I9Io. A very careful

study of Lilienfeld's I9Io paper (Ann. d. Physik, 3'2, 674, I9Io), made in connection
with an Interference before the U. S. Patent Office (Interference No. 4o38o, Arnold vs.

Langmuir, Langmuir Record, pages 352 to 395) shows that in I.ilienfeld's experiments
the current did not even approximately vary with the three halves power of the voltage.
The original data upon which Lilienfeld bases his claim are those given on page 698
of his I9IO paper. It there appears that. no current flowed until the difference of
potential between the sounding electrodes was Io2 volts. When this voltage was

raised to II6 volts the current increased I7-fold or with the 22d power of the voltage
instead of the three halves power.

Dr. A. W. Hull and the w;iter have constructed and studied a tube as nearly as
possible identical with Lilienfeld's tube of I9Io, with the result that we have found that
the type of discharge observed by Lilienfeld depends upon secondary electron emission

from the walls of the narrow glass tubes under the influence of electron bombardment.
Undoubtedly traces of residual gas are essential in starting the discharge, but it has
not proved possible to stop the discharge by improvement of the vacuum. These
experimental results are described in the Langmuir Record, p. 382. A discussion and
summary have been published by the writer elsewhere (General Electric Rev. , 2g, 5I3,
I920) .

4 Phys. Zeitschr. , I5, 526 (I9I4); Ann. der Physik, yy, IoII (I9I4).
' Jahrb. d. Radioakt. u. Elektronik, I5, 205 (I9I8).

Ber. d. Deut. phys. Ges. , 2I, 85 (I9I9).
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in his equations, his unusual value for k must lead to error in all numerical
calculations unless the whole laborious derivation is gone through.

Fry ' treats exactly the same problem. as Epstein apparently without
knowledge of this earlier work and obtains essentially similar results.
Fry's equations, however, are expressed in very unusual nomenclature
and this makes it not only dificult for others to apply his results but has
caused Fry himself to commit serious errors in all his numerical calcu-
lations. Thus 80 is de6ned (p. 444) as the oserege velocity component
of' the enured electron~ normal to the surface. Nowhere does he state
how this velocity may be calculated from the temperature. As a matter
of fact this kind of an average is totally different from those customarily
used in the kinetic theory. Before coming to his 6nal equations Fry
replaces Ho by another quantity which is dehned as the "potential change,
Vo, which would give to an electron an energy equal to the average energy
of those shot out from the cathode. " Now the "average energy" of the
electrons is not equal to the energy of an electron moving with the
average velocity Ho nor is it four times this energy as is implied by the
second of Fry's equations on p. 449. The third equation is also in error
probably due to confusion between the many possible kinds of averages.
These errors are all easily avoided if the temperature is brought into the
equations at an early stage.

In the summer of r9rg at the request of the writer, Dr. E. Q. Adams
undertook an analysis of the space charge problem, taking into account
the initial velocities in accordance with Maxwell s Law. He arrived at
the complete and correct solution but unfortunately failed to publish his
results. In view of the discrepancies which have occurred in the publica-
tions of Epstein and Fry, it seems desirable to summarize and compare
the results of these three sets of calculations and to present the equations
in a form adapted to numerical computation. At the same time it is
worth while to correlate these with the equations developed by Richard-
son and Laue. No attempt mill be made to give complete derivations
of the equations for these are very satisfactorily given in the publications
referred to.

CASE I. CURRENT LIMITED BV SPACE CHARGE.

Ke will consider here the case treated by Epstein, Fry and Adams.
Electrons are emitted in accordance with Maxwell's Law from a plane
cathode of infinite extent. The anode is a parallel plane surface at a
positive potential (with respect to the cathode) such that the current is
less than the saturation current.

' Pars. REv. , Ip, 44' (?9~1).
~ The nomenclature adopted is essentially that of Epstein except where confusion

might arise because of a different meaning given to the same symbol by Fry.
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In accordance with the usual derivation of the Richardson equation,
let us assume that each unit of volume of the metal contains X, electrons.
Then Maxwell's Law states that the number dX„ofelectrons in this
volume having veiocity components (in the direction of the x-axis) lying

between v and v + dv is

Here m is the mass of the electron (9.or X xo "g.); k is the Boltzmann

constant (r.g72 X to "erg per degree), and T is the absolute temperature

of the cathode.
The form of assumption above, which is that made by Epstein, is open

to'the objection that it postulates knowledge that we do not possess

of the internal structure of the metal of the cathode. The assumption

however is mathema', tically equivalent to the following which is free

from this objection and which has received a certain amount of experi-

mental verification on the part of Richardson and others. Let N, be

the number of electrons emitted per unit time per unit area from a plane

surface. Then according to Maxwell's Law ' the number dN, of electrons

emitted per unit time per unit area which have velocity components

normal to the surface lying between v and v + dv is

If the current Bowing to the anode is less than the saturation current

(corresponding to X,) it is evident tha. t this must be due to a retarding

potential gradient close to the surface of the cathode by which the more

slowly moving electrons are forced back to the cathode. If the potential

of the anode is positive, there must then be a surface between the cathode

and anode at which the potential is a minimum. Using x as abscissa to

measure distances in a direction normal to the cathode surface, we let

xi, x~ and x be the abscissas of the cathode, anode and the surface of mini-

mum potential respectively. Similarly, if V is the potential at any

surface represented by the abscissa x, then Vj, V~ and V are respectively

the potentials of the cathode, anode and surf'ace of minimum potential.

Let io be the saturation current from the cathode obtainable by use of

higher anode potentials. Electrons corresponding in number to io are

being emitted continuously from the cathode even when the current is.

not saturated, but a certain fraction of them are then made to return by

the retarding 6eld. The actual current i which Bows between cathode

and anode consists of those electrons which are emitted with sufficient

' See Richardson, Emission of Electricity from Hot Bodies, 1916, page z41.
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velocity components to enable them to move against the potential
difference V» —V .

By means of Equations (r) or (2) the following relation is obtained be-

tweeni, io and V» —V:

where e is the negative charge on the electron (i e , 4.7.7g. X ro "e.s.u.).
The treatment of the problem by Adams, Epstein and Fry is based on

the following facts. Between x» and x there are two groups of electrons,
those moving away from and those moving back towards the cathode.
Among the former all velocities from zero to ~ are present in accordance
with Maxwell's Law. Although each electron loses velocity as it moves
through the retarding field, the average velocity of all the electrons at
any place remains constant because the more slowly moving electrons
are continually being sorted out and sent back to the cathode. Con-
sidering only velocity components normal to the surface, among the
electrons returning to the cathode, we see that all velocities are not
present, for the velocity acquired by the electrons at any place of potential
V cannot exceed that corresponding to a fall through the potential
difference V —U . Between x and x& electrons are moving only away
from the cathode. At any point of potential V the normal velocities
may have any value above a certain minimum corresponding to a
potential difference V —V .

The above conditions regarding the distribution of velocities are taken
into account by means of proper choice of the limits in the integration
of Eqs. (r) or (2).

The first step in the mathematical treatment is to calculate the space
charge or the electron density at any point by means of the integrations
just referred to. Then by Poisson's equation

d'U/dx' = —gs.p.

To determine the potential distribution, two more integrations must
be carried out. The first integral can be expressed in, -terms of the
Probability Integral, but the second requires the numerical calculation
of a new function. In connection with these integrations it is necessary
to choose values for the integration constants. For the first integration
the conditions imposed are:

dU/dx = o when U= V;
and for the second integration:

when



The first of these conditions makes it impossible to apply the resulting

equations to cases in which there is no potential minimum between the
cathode and anode. For example the potential distribution between

two electrodes with a potential slightly greater than that needed to give
saturation cannot be calculated by this method, for the condition I ~

is not fulfilled. If in this case we impose the proper conditions for fixing

the integration constants even the first integration cannot be performed.
Similarly the equations resulting from these calculations must not' be

used where the retarding potential gradient extends up to the surface

of the anode.
Before carrying out the numerical calculations required in the second

integration it is desirable to reduce the equations to a form in which

only pure numbers occur. This may be accomplished by introducing

the new variables:

q = e(V —V„)/kT,
k = 4(x/2kT)3 mv4(ei)v'(x x )

(5)
(6)

It is seen that q is a measure of the potential of any point with respect

to that of the minimum potential surface, this potential difference being

measured in a new kind of unit. Similarly ( measures the distance of

any point from the minimum potential surface in units whose magnitude

depends upon the current and the temperature.
The quantities p and g are the same as those represented by the same

symbols by Fry although he expresses them in equations quite different

from (5) and (6). Adams uses exactly the same variables in his calcu-

lations. Epstein puts his equations in slightly different form, using the

variables r and G which are related to those used above as follows:

G = a —,'(.
(7)
(8)

Epstein adopts a different convention in regard to signs from that here

used. He takes G always positive while we shall find $ to be of the same

sign as x —x . Epstein however takes r to be of the same sign as x —x .
Epstein simplifies Eq. 6 by grouping together factors under the symbol

I. thus:

I. = 2(7r/2kT)"rn, "'(ei)'I'

Equation 6 thus becomes:

(ro)

By the introduction of the new variables g and $ the second integration
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referred to previously takes the form

r" —r a eI'(gq) W —Qrl

Here I' represents the probability function so that

P(gij) = — ~-"'dry.
$7r

In Eq. (rr) the upper or the lower signs are to be taken according as
x —x is negative or positive, respectively.

When the relation between $ and q has been found by Eq. (rr) then

Eqs. (5) and (6) contain the complete solution of the problem of the
potential distribution between the electrodes in terms of the current
and the temperature, etc. To make practical use of these results,
however, it is necessary to prepare a table of the function $(rl). Adams

in r9lg calculated this function to about four figures while Epstein and

Fry have given only rough values sometimes inaccurate to several per
cent, Adams's calculations have recently been repeated by improved
methods and to a higher degree of accuracy by Miss Katharine B. Blod-
gett. For small values of rl the method given by Epstein (in which r is

used as a parameter instead of q) is much more convenient for calculating

( than that used by Adams or Fry. For this reason values of $ corre-

sponding to values of v from —o.8 to + o.8 have been calculated by
means of Epstein's integral for intervals of o.r unit. These results are
recorded in Table I. From these by interpolation, using Newton's

method, the values of & corresponding to integral decimals of g have been
calculated. For ordinary use it is more convenient to use a table con-

taining ( as a function of q rather than of 7, since q is proportional to the
potentials measured from the minimum potential surface. For purposes
of interpolation for small values of q or v, however, the table having r
as a parameter is more accurate.

TABLE l.
Fin Terms of v.

O. I . .

0.3 . .
0.4 . .

o.I962I
0.38gy6
0.5654
o.7382 I

0.00000
0.203/2
o.4I48
0.633I5
0.8585

0.5, . . . . .
o.6, . . . . .
0.$. . . . . .
o.8. . . . . .

0.90283
I.O59I jI.207 I4
I 3465

I .09092
I.33009
I.5759I
I.8283o



IRVING LANGMUIR,

The final values of $ as a function of g are given in Table II. These
data are believed to be accurate to the number of 6gures given, as they
have been calculated to two extra decimal places and have been checked

by using both Simpson's and Meddle's rules in evaluating the integral
of Eq. (ii).

TABI.E II.
(in Terms of g.

( is always of the same sign as x —x .

0.00 . .
.05 . .
.Io . .
.I5 . .
.20 . .
.25 . .
.30 . .
~35
.40.
~45-.50 . .
.6
.7
,8
~9

X.o
I.I
I2
I4 ~-
I.6
I.8
2,0
2.2
2,4
2.6
2,8
3.0

34
3.6
3.8
4.0
45
5.0

'k ~

6.o . .

~ ~ ~ ~

0.0000
.428X
~ 594X
.7I.67
.SI70
.9028
9785

x.o464
I.I08X
1.I6$8
x,2 I73
I.3X20
I 3956
I.4704
x.538o
I 5996
I.656I
X.7o8x
I.Soo9
I.SSI3
I 95I5
2.0I34
2.o68I
2.I x68
2.x6o2
2.I990
2.2338
2.2650
2.2930
2.3I83
2.34IO
2.36I5
2 4044
2.4376
2.4634
2.4834

0.0000
4657

~ 6693
.8296
~9674

I.0909
I.2042
I,3098
I.4092
I 5035
I 5936
I.7636
x.c}224
2.0725
2.2 I54
2 3522
2.4839
2,6I Io
2 8539
3.o842
3.3040
3«5XSI
3 7I87
3.9I58
4.I07 I
4 2934
4 4750
4.6524
4.826I
49963
5 I634
5 3274
5.7259
6.I098
6.48xx
6.84I6

fj t

6.5. . .
7.0. . .
75 *

8.o. . .
.0. . .

Io

I3
I4
I5
x6
X8
20
25
30
35

45
50
6o
70
So
90

I50

'300
400
500
600
700
8oo
900

IOOO

2.4990
2.5I x2
2.52O6
2.528O
2.5382
2 5444
2.548I
2.5504
2.55I8
2.5526
2.553I
2 5534
2 5537
2.5538
2 5539

7+ I924
7 5345
7.869o
8.I963
8.8323
9.4465

I0.04I 7
xo,62o4
x X.I845
xx 7355
I2.2747
I2,8032
I3,83x3
I4.826o
I7.I93I
I9 4253
2I.5522
23 5939
25 5643
27,4740
3I.I4I
34.642
38.oo7
4X.258
44.4I2
59.o86
72 479

x X9.I85
I4o.o68
I59.»5
I 78.86I
X97.x46
2 I4.850
232.054

For large values of q the function $ has been calculated by a series

expansion.
The following expression for negative values of $ is accurate to one unit

in the 6fth decimal place for all values of q greater than g.o:
If= —'56s&s+ &''"' "0"s '+ —— -+ &)'"" ('3)

For positive values of P Adams obtained the following series which is
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accurate to one unit in the fourth decimal place when g is greater than 8:

$ = z.2552og'/' + x.66854''/' —o.5o88o —o.r677g / + Q.I44Ig
Q Q$ 45' 5/4 Q Q69g 7/4 + Q Q36~

—9/4 + Q Q83g I$/4 r4)

The coefficient of the first term is equal to (2/3) 42ir'I' so that as a
first approximation for large values of g we have

(2/3) 427r i rl i .

By substituting this in Eq. (6), squaring, combining with Eq. (5) and
neglecting V and x compared with U and x, we obtain

e U'i'
z

ns x
(z6)

which is the usual three halves power law equation as derived by Child
and Langmuir.

If we take into account the second term in the expansion of (r4,) and
consider that V and x are not negligible, we obtain

e (V —V )'" 2.66
9x m (x —x„)'

Numerical Calculations. —In applying the foregoing results to the
numerical solution of problems we proceed as follows:

By combining Eqs. (3) and (5) we obtain

ZQ

gg = log —.g

z

where io is the saturation current and i is the actual current between
anode and cathode. This gives the value of g corresponding to the
surface of the cathode.

Let us now place in Eqs. (3) and (9) the values of the constants
e = 4.7yg X zo "c.g.s. unit~; k = z.372 X ro "erg/degree; m = 9.OI

go—28 g
Then if we express V in volts, we find e/k = xi,6oo degrees per volt.

By applying Eq. (3) first to the surface of the cathode and then to any
other point we find

V —V, = T(il —g,)/rr6oo.

If we expressi in amperes, then Eq. (9) becomes

I = 4..$90 X Io'T I i/i cm

(r9)

(2o)

By applying Eq. (?o) first to the surface of the cs.thode and then to
another point we obtain, by subtraction,

2Z, (x —x,) = ( —],. (2r)
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These last four equations together with the relation between g and g

given by Table II. furnish the complete solution of the problem of the
potential distribution and the magnitude of the current between parallel
planes. Knowing the saturation current and choosing a value of the
currents we find ili from Eq. (?8) and L from Eq. (zo). From the table
we now look up the value of —$ corresponding to g1 and call this value

If we wish to measure distances and voltages from the surface
of the cathode, then UI and x& become zero. By choosing any value of x
we then find ] from Eq. (zr) and from the table obtain the corresponding
value of q. Eq. r9 then gives the voltage at this point.

If it is desired to use the approximation formula (r7), the value of
V is found from Eq. (i9) by placing U& ——o and ii„=o thus

U = —Tili/I 1600

in which rii may be found from Eq. (r8).
Similarly from Fq. (zr) we find

(zz)

x = —$,/zL, (23)

in which —$, is a number (always less than z.56) found by the table
from the corresponding value of rii, and I. is obtained from Eq. (zo).
The quantity g according to Eq. (r9) is then

ri = q, + (rr6ooU/T). (z4)

As an illustration let us take the example considered by Fry, of a
surface of tungsten at 2400 K capable of giving a saturation current of
o.z6 amp. per rm'. The anode is a parallel surface at a distance of o.5
cm. From Eq. (zo) we find L = r389pi. Taking the cathode as origin

we then obtain ' from Eqs. (r9) and (zr) for the surface of the anode
at x2 = 0.$,

V = o.zop(q —g,),
t2 = hi+ r389v's

(z5)
(z6)

' Fry obtains equations of this form but gets the coefficients o.3 and zoIo instead of
o.2op and j:339. These differences are due to two errors arising from confusion of
different kinds of averages. The average velocity of the emitted electrons which Fry
denotes by vo is actually equal to (ukT/2m)'/' but if we substitute this in Fry's equations
we get different equations from those obtained here. The potential change Vo ls defined

as that "which would give to an electron an energy equal to the average energy of those
shot out from the cathode. " This average energy as Richardson has shown is 2kT
whereas if we substitute the value of t!0 in the second equation on page 449 of Fry's
paper we find that his value for the average energy is 7fkT. The third equation on the
same page is also wrong for the exponent has the value V'e/7fkT whereas it should be
V'e/kT. On page 45o Fry states that the value of Vo for tungsten at 24oo' K is 0.3
volt. This corresponds to the value (3/2)kT which is the average energy of the elec-
trons in a given volume and not the energy of the electrons passing through a given
surface (2kT).
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TAmE III.
CNrreNI, between Parallel I'lane E/ecfrodes 0.5 cm Apart.

imp.

O.OOI
O.OI
O. I
I.o

Rmp.

o.oooI6
o.ooI6
o.oI6
o.I6

6.908 —2.509
4.605 —2.4I I
2.303 —2.094
0.000 —0.000

I$.4
5I 2

I67.3
535.6

I9.2
I22.4
638.6

3,I I7.$

Vg
volts.

2.5
24.4.

I3I.6
645.o

~

V
volts.

—I.43
o 95—o.48

0.074
0.0224
0.0062
0.0000

Io II

4,22 4.30
I.42$ I.44.
I.I3g I,I38
I.o45 I.o48

Taking the currents to be a decimal fraction of the saturation current io
as indicated in the first two columns, q, is calculated by Eq. (t8) (Col. 3).
From this, $, (Col. 4) is found from Table II., keeping in mind that $&

must be negative since at the cathode x is zero and therefore less than x .
From Eq. (26) the ~slue of f2 is found (Col. 5) and then g2 (Col. 6) by
Table II. The voltage given in Col. 7 is that of the anode with respect
to the cathode calculated by Eq. (25) from g2 and gi. Col. 8 gives the
potential of the minimum potential point with respect to the cathode,
calculated by Eq. (22), while x (Col. 9) is the distance of this point
from the cathode calculated by Eq. (23).

Col. xo gives data for comparing the results of these calculations with
those obtainable from the ordinary three halves power law. When i
and V in Eq. (r6) are expressed in amperes and volts and the values of e

and m are introduced, the equation takes the form

$3 = 2.336 X ro—'(V, '"/x') amp. /cm'. (27)

We thus denote by i3 the current calculated in this way from the corre-
sponding value of voltage given in Col. 7 (V~). The ratio i/f3 of the
actual current t' (Col. 2) to, that given by the three hal~es power law,
Eq. (27), is tabulated in Col. ro.

Col. it illustrates the degree of accuracy of the second approximation
equation (r7). Let us denote by i4 the currents calculated by Eq. (r7)
from the corresponding values of Vu (Col. 7). Col. r r contains the ratios
of i4 to-i 3. The close agreement between Cols. Io and I r shows that the
currents calculated by Eq. (Ip) are very nearly equal to the actual
currents i. The figures in Col. II give directly the factor by which the
currents calculated by the ordinary three halves power law should be
multiplied in order to obtain the results that could be got from the better
approximation of Eq. (r7).

The deviations from the three halves power law indicated in Col. xo
are very much less than those calculated by Fry from the same data.
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Fry states in his conclusion that the errors in current involved in the
use of the three halves power law (in the example here considered) "may
be close to 5o per cent for voltages as high as 4o or 5o volts. " Performing
calculations like those involved in Table III. shows, however, that the
actual current at an anode voltage of 5o is only 2p per cent larger than
calculated by the three halves power law.

The deviations are however rather large and would be very important
if space charge phenomena are to be used for the determination of e/m.

It must not be thought that the deviations are as large as this in the
case of cylindrical electrodes. The measurements made by Dushman '
of electron currents, Iimited by space charge, from a wire to a concentric
cylindrical anode, are quite incompatible with deviations as great as
those indicated by Table III.

Schottky ' pointed out that the correction of the three halves power law

for cylinders must be much smaller than for parallel planes. The term
corresponding to x should vanish since it could only change the effective
diameter of the cathode and this diameter does not enter the equation

for cylinders. The term containing V should remain subtracted from

the anode voltage as in the case of parallel planes.
The effect of initial velocities on. the current between cylinders will

be most marked near the anode where the field is weakest. The space
charge at any point wi11 be reduced approximately in the ratio

[(V/(& + &o)]'", w"ere Vis the voltage at the point and Vo 1s the voltage

corresponding to the average initial energy of the electrons in a radial

direction. Substituting this corrected space charge in the differential

equation and considering that the correction is small we are enabled

to obtain an approximate equation for the effect of initial velocities on

the current between concentric cylinders. This equation is

o/2
/V —V + —'

log ——

/
P'r,

) Vo

where' is the current per unit of length, V is the potential of the anode,

V is the potential at the minimum potential surface (given as before by
Eqs. (22) and (c8)), r is the radius of the anode, P is a constant nearly

equal to unity and X is a numerical constant whose value probably lies

between I and 2 and must be determined by experiment. Even without

knowing the exact value of ) the magnitude of the corrections may be

estimated from this equation. The average kinetic energy component

normal to the surface among the electrons leaving a surface is kT while

each component parallel to the surface is ~AT. In the case of a small

& PHYSICAL REVIEW, 4, I2I C, I9I4}.
' PhySik. ZeitSChr. , Ig, 624 (I9I4}.
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wire in a large cylinder not only the normal component but the component
tangent to a cross section of the cathode wire will be effective in producing
radial velocity components. Therefore the average radial energy com-
ponent is (8/2)kT,

Vo ——(8/s)kT/e = T/p, p88 volts.

If V and V in Eq. (28) are expressed in volts, r in cm, and i in amp.
per cm, then the coefficient in Eq. (28) becomes ig.68 X Io '.

As an example comparable with that illustrated in Table III., let us

consider a tungsten filament o.25 mm in diameter, at 2,4oo' K, in the
axis of a cylindrical anode, I cm in diameter. If the electron emission

at this temperature is o.x6 amp. per cm', the saturation current i between
cathode and anode is o.oI26 amp. per cm of length. According to Eq.
(29) we find that Vo ——O.8I volt. To find the anode voltage at which

the current becomes saturated, we place V = o in Eq. (28) and solve

for U. If weassume that P = I and ) = r, we find V = 55volts. The
current calculated from Eq. (s8) is 5 per cent greater than if calculated
from the ordinary three halves power law neglecting initial velocities.
This correction is several times smaller than that applying to parallel

planes as given in Table III.
In order to compare the corrections at voltages of 24.g and rgz, which

were used in Table III., we must carry out the calculation at higher
currents so that saturation does not occur. If the filament temperature
is raised to 2,5go' K, the saturation current will be o.o45 amp. per cm and
the saturation voltage will be I3I. The current calculated by Eq. (28),
taking ) = x and P = j:, is then r.o33 times greater than by the ordinary
three halves power law whereas by Table III. the ratio is l.Igzl. for parallel
planes. Thus the correction for initial velocities for cylinders is about
one fourth as great as for planes. A similar result is obtained for an
anode voltage of 244. Ke then find V = —o.5g volt, and by Eq.
(s8), f = O.oog amp. per cm, this calculated current being I.I2 times as
great as by the three halves power law, while Table III. gives I.424 for
planes. If we had taken ), = 2 instead of I the corrections for cylinders
would have been about one fifth those for planes instead of one fourth.

Experiments are now in progress to measure accurately the relation
between the voltage and the current in cylindrical anode tubes so as to
test Eq. (29) and determine the number represented by X.'

CASE II. CONDITION OF EQUILIBRIUM (ZERO CURRENT) WITHOUT

EXTERNAL FIELD (RICHARDSON-LAUE).

Consider a plane cathode with the opposing plane anode parallel to it
but at an infinite distance from it, and let the potential of the anode

' See Note at end of paper.
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be such that there is no potential gradient near the anode. Under these
conditions we shall see that the anode is at an infinite negative potential
so that no current flows between the electrodes. This condition may
be approached in Case I. if we increase the distance between the elec-
trodes and if we make the anode potential such that only a very small

current flows. The potential distribution near the cathode then becomes
close to that calculated by the method we shall now consider. However
the method of Case I. involves difficulties when the current is a very
minute fraction of the saturation current, for s& by Eq. (r8) becomes very
large, and thus $& (by Table II.) becomes almost exactly equal to
—2.5539, while I, by Eq. (2o), is close to zero. When it is attempted
to calculate the potential gradient near the cathode by Eqs. (t9) and

(2t), the Eq. (2x) is found to become nearly indeterminate and therefore
unsuitable for this calculation. The equations given below are then
more convenient.

Since we are dealing with equilibrium conditions, the distribution of
electrons is given by Boltzmann's equation

Ve

p p qIeT (3o)

where p~ is the electron space charge at the surface of the cathode, and

p is the space charge at any point whose potential with respect to the
cathode is U. Substituting this value of p in (4) (Poisson's equation),
integrating twice, and imposing the condition that dU/dx = o when
x= ~, wefind

k Z 2Vr8PI
V = ———log X —Xp

e kr (3r)

where xp is an integration constant. This is essentially the equation
obtained by Laue.

The space charge p, may be calculated from Eq. (2) by integration by
considering that d/l/, /s is the number of electrons per unit volume having
velocity components between s and (s + dv) and by noting that the
saturation current ip is equal to eN, . Thus we find

p, = io(2s.nr/kT)'~'.

We shall find it more convenient to use the same nomenclature. as in

Case I. Let us denote by I.o the value of L calculated from Eqs. (9) or

(2o) by placing i = io Using th.is we can eliminate io from (32) and

obtain
p, = (kT/7re)L(P (33)

The integration constant xo in Eq. (3r) can be eliminated if we measure

x and V from the surface of the cathode, for then U = o when x = o.
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Substitution of the ~slue of pi fmm Eq. (38) into Eq. (3r) gives

QZI. OX = « (8O)

From Eqs. (8o) and (3g) we may eliminate the exponential term and
obtain a convenient expression for the space charge at any point:

p = pi/(Qz Iox + r)'. (35)

When x is very large compared to r/I. o so that the term r in the de-
nominator may be neglected, Eqs. (88) and (85) can be combined to give
the simple relation

p = /tT/27/ex'.

Thus, except very close to the cathode, the electron density is inde-
pendent of the materia ~f the cathode, is Proportional to the temperatlre
and is inversely proportional to the s/Iuare of the Ckstance from the cathode

Eq. (8g) can also be obtained as a. limit for Case I. for large negative
values of $. Taking only the first variable term in the expansion (r8)
vm And

From Eqs. (9) and (r8)

$2(c-s/2 e
—ws/&)

I.' = I.o'«-'l.

(88)

(39)

Placing xi = o in Eq. (2r) and combining with Eqs. (88) and (89) we
6nd

Q2 L,ox = «-&"-"&»' —I,

which becomes identical with (84) when we substitute the value of r/
—ni

from Eq. (5).
The potential gradient /t V/dx at the surface of the cathode, which we

may call Xi, is found by ditferentiating (84) to be

—k "1
X, = —2gz I, —

e
(4o)

As an illustration of the use of these equations, let us consider a large
Hat tungsten surface at 2,4oo K in a large glass bulb. The conditions
then correspond closely to those assumed in Case II. %ith Fry we may
assume the saturation current obtainable from the tungsten to be
io ——O.I6 ampere per cn|.'. Substituting the values of e, m, and L,o in
Eq. {4o) as in Eqs. (r9) and {so) we 6nd

X, = —r r z.92 K'" Wi& volts per cm,

which in the example considered gives X~ = —pig volts per cm. This
is the electric held at the surface of the cathode due to the space charge
of the electron atmosphere near the cathode.
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Placing T = 2,4oo and pp
——o.I6 in Eq. (ao) we find Lp = 535 per cm,

which enables us to solve Eq. (34) for V, giving

V = —0.95 logip (758' + I) volts

The voltages calculated from this for several values of x are given in
Table IV.

The space charge pi at the surface of the cathode is found from Eq. (32)
to be

pi = I926opp/ JT e.s.u. per cm',

TABI.E IV.

Potential Distribution and Electron Density near a Tungsten Cathode at z,goo' K, without.
External Field.

Distance from
Cathode, Cm.

O. . . . . .
O.OOO I
O.OOI
O.OI. . .
O. I
I

IO

Potential
Volts.

O.OO—0.03—0.23—o.88
I.79
2.74
3.69

Electrons
per Cm'.

I.32 X Io"
I.I4 X Io"
426 X Io
I.79 X I09
2.23 X Io'
228 X Io'
2.29 X Io

when io is expressed in amperes 'per cm'. Inserting the values of io and
T gives p = 62.8 e.s.u. per cm' or I.3I5 )& Io" electrons per cm'. The
electron densities for other distances from the cathode calculated by
Fq. (35) are given in the last column of Table IV.

CAsE III. CQNDITIoN QF EQUILIBRIUM (ZERo CURRENT) wITH

RETARDING FIELDS.

Consider an electron-emitting plane surface (cathode) and a second

parallel plane electrode (anode) at a great distance. Let the anode be
at such a large negative potential that the electrons are pressed back
against the cathode so that only a negligible number pass beyond a
certain distance from the cathode. Beyond this distance there is a
uniform potential gradient which we may represent by X„.Laue has

given the solution for the potential distribution in the form

If we put

Ve . X„e(pp—xp) ' X„'e——= log sinh "———— —log
kT 2kT 8xkTpI

X, = —(8n/pTp, /e)"'.
(42)

Eq. (42) can be transformed into the more convenient form



EFFECT OF SPACE CHARGE AND INITIAL VELOCITIES. 435

t' X„——' . , X„X„ex
sinh '

i

—"c s~~ —sinh '
I, XI XI 2kT (44)

It should be noted that the X, defined byjEq. (43) is the same as that
given by Eq. (4o), as can be readily proved by substituting the value
of I« from Eq. (33) into Eq. (4o). For values of X„sosmall that only
the 6rst term in the series expansion of sinh ' is needed, the above
equation reduces to Eq. (34) of Case II. after the value of X& from Eq.
(4o) is introduced.

By differentiation of (44), the potential gradient d V/dx at the surface
of the cathode, which we may call X„is found to be

X, = —VXP + X„'.
These equations lend themselves readily to numerical calculations.

The value of X& is found from Eq. (4r) and it is then only necessary to
place e/k = rr, 6oo degrees per volt in Eq. (44), in order to calculate
the potential distribution.

REsEARcH LABQRAToRY, GENERAL ELEcTRIc CQMPANY,

SCHENECTADY, N. Y.,
November I4, I922.

'Note added Jan. 8, I923. Recent mathematical analysis shows that an error
was made in the calculation of p in the writer's paper on space charge (PHYsIcAL REv. ,
2, 450) I9I3, and Physik. Zeitschr. , 15, 348, I9I4), in which p was found almost exactly
equal to unity for all cases where the radius of the anode (r) is more than twenty times
that of the cathode (a). The following table gives the new values of P2 for several
values of r/a.

r/a. p2 r/a. p2 r/a. P2

I6.o
20.09
29.96
44.70
66.69

I2I.5
22I.Q
735.I

2 )440
22,026

7.0. . . . . . . o.887o I.05I3 I.0722
8.0. . . . . . . 0.9252 I.o7I8 I.o53I
9o . o 9547 I.o9o8 I.0225

I0.0. . . . . . . 0.9782 I.0945 I.0064
I2.0. . . . ~ . . I.OI22 I.o889 o 999o

The function P approaches unity in a series of oscillations of decreasing amplitude.
The agreement observed by Dushman between experiment and the ordinary space
charge equation for cylinders (taking P equal to unity) was due to two compensating
errors. The corrections corresponding to the terms containing V and V0 in Eq. {28)
amount to 8.I per cent at 35 volts on the anode, 5.0 per cent at 75 volts and 3.5 per cent
at I3o volts (assuming X = I). The correction due to p2, which should have been
put equal to I.o79 instead of unity, is 7.3 per cent in the opposite direction. In the
range from 35 to 9o volts the currents calculated with these two corrections agree with
Dushman's observations within the experimental error. At I3o volts the observed
current was about 4 per cent higher than that calculated. This may have been due to
a trace of ionization of residual gas.


