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ACOUSTIC WAVE FILTERS.

BY G. W. STEWART.

SYNopsIs.

Acoustic Wave Filters Composed of a Series of Like Secti022s.—(I) Theory. Taking
the impedance of any part of an acoustic circuit to be equal to the complex ratio of
the applied pressure difference to the rate of change of volume displacement, it is
shown that, neglecting dissipative forces, it is possible to construct a filter having

limiting frequency values of no attenuation determined by the formula. Zi/Z2 = o
and Zi/Z2 = —4, where Zi is the ™pedanceof the transmitting conduit circuit and
Z2 of each branch of each section. The impedance of any section depends on the in-

ertance M of dimensions mass per unit area squared, and the capacitance C which

has the dimensions of stiffness per unit area squared. If M and C are in parallel,
Z = iMcv/(I —MCco2), whereas if they are in series, Z = i(Mar —I/C~). For
instance, in the case of a closed chamber or resonator, M and C are in series and are

equal to p/C and V/pa2 respectively where p is the density of the medium, c is the
conductivity of the mouth, a the velocity of sound and V the volume. Formula. .
are derived for various assumed cases. On account of the uncertainty as to whether

a tube may be considered sa having the equivalent inertness and capacitance con-

nected in parallel or in series, the application of these formulae to actual cases is

somewhat empirical. (2) Constructi on aiid test offilte's of three types. Low-frequency-

pass filters were made, for example, by two concentric cylinders joined by walls

equally spaced and perpendicular to the axis. Each chamber thus formed had a
row of apertures in the inner cylinder which served as the transmission tube. In
one case the volume of each chamber was 6.g cm. ', the radius of the inner tube I.2
cm. the length between apertures, I.6 cIn. A chamber and one such length of the
inner tube is called a section. Four such sections were found to transmit go per
cent. of the sound from zero to approximately 3,200 d.v. where the attenuation
became very high, resuiting in zero transmission up to about 4,6oo d.v. where

transmission again appeared, Other similar filters of different dimensions attenu-
ated through wider or narrower ranges. The lower limit of attenuation was found

to correspond within 8 per cent. with the formula: f = (I/~) (MIC2 + 4M2C2) i/2.

The upper limit was not predicted theoretically. High-frequency pass filters were

made with a straight tube for transmission and short side tubes, for example, o.g
cm. long and o.28 cm. in diameter, opening through a hole with conductivity o.o8

into a tube Io cm. long and I cm. in diameter. Six sections of such a filter would

transmit about 9o per cent. of sounds above 8oo but would refuse transmission to
sounds of lower frequency. As would be expected, the cut off is not sharp. Filters
with other dimensions were found to have an upper limit of attenuation varying
from 45o to 2,3oo d.v. , agreeing with the formula f = (I/2vr)(I/4M2Ci + I/MiC2)i/2,

within about I3 per cent. , on the average. The single-band filters made were a
combination of the other two types, having side tubes leading to chambers of con-

siderable volume. For instance, three sections each g cm. long and o.g cm. in diame-

ter, with side tubes of the same size and 2.2 cm. long leading to a volume of 28

cm. 2, transmitted between 270 and 37o d.v. The frequencies of the edges of the

band of small attenuation are determined by the following formulae,

27rf = [M2C2(I + M2 /M2)] & and

27rg = [M2C2(I + 4M'/Mi) i(I + M2 /M2 + 4M2'/M&)1 2. Such filters
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exhibit the same variations from theoretlcai performance as would be expected from

a combination of the other two types. However, the agreement of each type with

theory is sufficient to enable filters to be designed to fulfill set conditions. The at-

tenuation secured with only four sections is very great, the transmission being cer-

tainly less than xo 'in the attenuated region, while it may rise to go per cent. in

unattenuated regions. Possible applications of these simple filters in laboratory work

and in connection with specking devices, are briefly suggested.

I. GENERAL INTRODUCTION.

HE selective transmission of an acoustic wave of a given frequency

is well known. A Helmholtz resonator with a small ear opening

is such a filter. Cylindrical tubes such as shown in Fig. I will also

serve as 61ters, (a) transmitting chieffy the resonating frequencies of

cd and (b) giving poor transmission especially for the resonating fre-

quencies of cd. The acoustic wave filters'which this article describes

(a)

Fig. 1.

are different in principle and in performance in that they do not depend

upon resonance itself, but upon the interaction between recurrent similar

sections of a transmission "line, " these sections containing the elements

upon which free vibrations are to depend, and having over-all dimensions

that are small in comparison with a wave-length of the sound.

These new filters are remarkable in that selected groups of frequencies,

extending over a large range, can be eliminated in the transmission.

Up to the present time, three kinds have been constructed and tested.
The low frequency pass filter will give approximately zero transmission

at all frequencies above, and a fairly good transmission below a certain

predetermined frequency. The high-frequency filter will transmit above

a minimum frequency. The single-band filter will transmit a group of
frequencies. In all cases, the frequency limits are ascertained approxi-

mately by calculation from the dimensions so that the filters may be
designed to fit specifications. In these filters, the cutoffs are not sharp

and the performances are not exactly as just stated, but, as will be

shown, the explanation is found in the fact that the experimental condi-

tions only approximate the theoretical ~

II. THEoRv.

A. General.

An exact theoretical discussion of the acoustic wave filter may be
possible, but certainly there is much to be gained in securing a theory
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which, though only approximate, will aid in understanding the operation
of the filters and in developing new designs. The well-known electric
wave filters suggested to the writer the possibility of analogous effects
in acoustics. Naturally, the theory' of the electric filters has been of
much assistance.

Certain limitations will be imposed in our discussion. We will assume
that the length of any selected section of an acoustic "line" or conductor
is so small in comparison with a wave-length that no change in phase
occurs therein. We will consider only sinusoidal waves. The term
"acoustic impedance" will be used. Its absolute value is the ratio of the
maximum pressure difference applied to the maximum rate of change
of volume displacement. When complex notation is used for simplicity,
as in alternating electric current theory, the acoustic impedance is the
complex ratio of the pressure difference applied and the rate of change

of volume displacement. The mathematical procedure will be based

upon three hypotheses which are obviously reasonable approximations.
They are: (t) the rate of volume displacement in any selected portion
of the line, with a harmonically varying applied difference of pressure,
can always be expressed by Ie' ' where I is complex; (2) the product
of acoustic impedance and rate of volume displacement in any selected

portion of the line equals the difference of pressure applied; (3) the alge-

braic sum of the volume displacements at any junction of lines is zero.

By acoustic "line" is meant a bounded region of Huid or solid, forming a

tube or channel and capable of transmitting sound waves in the direction

of the tube or channel only.
We will consider an acoustic wave filter consisting of equal acoustic

impedances in series, divided into sections by acoustic impedances in

what might be termed shunt branches. In Fig. 2, let a sound wave of a

z,
A

I~-r

Zj

ln

z
C Ig. p

Z2 Z2

Flg. 2.

frequency co(2n. be transmitted through the line AG, a portion of an

infinite line, containing a series of equal impedances, Z&. Let each branch

line AB, CD, EF, GII; etc. , contain an impedance Z~ and terminate in a
' U. S. Patent I,227, II3 by George A. Campbell. Chapter XVI. Of Pierce's "Electrical

Oscillations and Electric Waves, ' I920.



Vor. . XX.
No, 6. ACOUSTIC WA VZ FILTPRS.

volume of gas otherwise at rest, so that there is a common constant
pressure at or near these termini. Let I„e'"', etc. , represent the rates
of change of volume displacement in the corresponding lines, I„being
a complex quantity, and let the positive direction be from A to G.
From the three conditions stated in the foregoing paragraph the following

equation may be secured:

Z, (I„,—I„) = Z2(I„—I„~,) + Z,I„

Zl
I„+g— 2 + —I„+I„g ——o.

This equation does not require an infinite line, but we will for con-
venience impose that condition. We may then write, using AP as the
complex pressure difference over a branch,

and
DPcn = I„(Zg + Z„)

APsr = I„~,(Z, + Z„),

wherein Z„ is the impedance of the inhnite network to the right in the
6gure and has the same value in both equations. ' Substituting the
values,

EPcn = Zg(I„g —I„),
APsp = Z2(I„—I„+,)

and dividing we have. ,
I„+i I„—I„+i
I„ I„ g

—I„
or

I„+g I„
I„ I„ )

Let us call the ratio of these successive I's, e, where V is unknown
but in general is complex. Substitute in (z), and we have,

Qf

cosh F= x+-, —.y Zl' Z2'

i The filter through its branches terminates in the undisturbed medium. The pressure
at R can be expressed by I Zoo. From the equation of motion of a portion of a vibrating
medium having a sinusoidal impressed force, and possessing mass, stiffness and dissipation,
it can readily be shown that the impedance Z is a function of mass, stiffness, the dissipative
factor and frequency only, In as much as these factors are the same for our Zte, whether
tal-en from F or from G or any junction point, the assumption of identity of the Zoo's is justified.
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If V is a pure imaginary the rates of volume displacement in two ad-

jacent sections differ only in phase. If Y is not a pure imaginary the

rate of volume displacement is diminished in transmission, obviously the

diminution occurring away from the input end. If Y is a pure imaginary,

since cosh ix = cos x

and hence the limiting values of no attenuation are determined by the

following:
Zl—= 0
Z2

ZI=
Z2

(6)

We can find the limiting values of no attenuation in a filter by utilizing

the actual values of ZI and Z2. It would therefore appear that an

acoustic wave filter can be constructed, the only uncertainty being the
manner of constructing Zj and Z2. In order to determine upon the
practical development of the filter, idealized conditions will first be
discussed.

B. Inertance and Capacitancein Parallel.

Consider two idealized diaphragms, a and b, supposed to move as a
whole, the former having mass, .m, and not stiffness, and the latter
stiffness, fb, and not mass. Let them have areas S and Sb and dis-

placements ( and (b and let them be connected in parallel as branches

of an acoustic line so that they are subject to the same quid pressure
differences, Pe'"'. Then,

d2(
m = S,Pe'"' and

dt2
fb(b = Sd'e'"',

the latter being merely the definition of fb.
If we are concerned with the total volume displacement of the gas

at the diaphragms, X, and Xb, these equations become:

m d'X,
S' dt'

and fbXb
S2

We wish to obtain an expression for dX/dt or the rate of change of volume

displacement in the main line at the junction of these two branches.

By integration we find,
m, dX I'
S 2 dt ice
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the constant of integration vanishing since we are dealing with a varia-
tion in dX/dt caused by P and vanishing with P By. differentiation
we obtain,

dXb
'dt = issue'"'.
g2

But we know that at the junction of the branches the algebraic sum of
the rate of volume displacements must be zero, or

dX dXb dX
di dt dt

(ro)

Substituting the values of dX,/dt and dXs/dt just found, we obtain,

dX,.„, r —3fCaP

wherein

M = —-',

g 2
and

C Sb2

We will call 3f theinertance, C the capacitance, both defined by (r2) and

(y). We thus have for the impedance of the combination of the two

circuits in parallel,
23Ico

x —&Cod

Let us now assume that our impedances Z~ and Z2 are each composed
of two such branches in parallel. The branch having mass, m„will
vanish when m = ~ or 3EI = ao and the branch having stiffness, fb,

will vanish when fb = ao or C = o.
If we apply condition (5) to Z& and Z2 as just determined in (xg) and

we have as a limiting frequency, f~.

2 I
M

3I2C2
or

I I.
M2C2

(r4)

If we apply condition (6), we have:

3' + 43II2

tIdlt)d2(4C1 + C2)
or My+ 43d2

( )
3II)M, (4C, + C,)

In (r4) and (r5) the subscripts of M and C correspond to those adopted

for the Z's. These frequencies f& and f2 are those that limit the range in

which there is no attenuation. It is to be observed that the range of

no attenuation is one in which I + ——' can change from + I to —I.'Z
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But, from (r8), Z~/Z& is a continuous function of cu or 2rrf and hence
there is a continuous frequency range wherein there is no attenuation. A
filter in which ZI and Z~ each consists of an inertance and capacitance in
parallel is thus possible.

C. Inertance and Capacitance in Series.

Consider each ZI and Z2 to be an inertance and capacitance in series.
The current must be the same throughout Z» or Z2. Let EI be the
pressure difference over the inertance, MI, and P2, over the capacitance,
C, . Then, from (7) and (8)

Hence

E1 P2
ice 3III

CjiGD

01

I
ia)MI, + .

i Caco

(r 6)

If we now ascertain the limits of no attenuation, we have from (5),

and from (6)

I I

Cg + 4CI
C&Cp(Mg + 4%2)

(r 7)

(r8)

Again we have the possibility of a filter.
A special and yet a common case of inertance and capacity in series

is one wherein 3EII is the inertance of an orifice entering a chamber and

C& is the capacitance of the chamber. The condition for resonance,
or Z = o, occurs as shown by (r6) when,

I
2III GO

CI G7

or
I If=

MI CI

But in orifices which are short compared with their diameters we cannot
use for 3f& the mass divided by the square of the area, for this expression
neglects the end e8ects of the channel. The well-known formula for
the vibration of such a system is, ' neglecting dissipation'

' Rayleigh, Theory of Sound, Vol. II., p. xmas.

' Insertion of dissipation seems to lead to difficulties which are avoided by this approxi-
mation.
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—X +—X = I'e'"t
c U

(2o)

from the solution of which we get,

hei~ t

Zp

In these equations p is the density, c is the "conductivity" of the channel,

a the velocity of sound and U the volume of the chamber.
It is evident that the new value of Zx viz. ,

Z = zp

differs from (r6) only by the apparent substitution of p/C for M& and
Vjpn' for C, .

D. Inertance and CaPacitance of a Tube.

In order to assist in constructing a filter, we will now discuss the
nature of a column of gas, which we must use as Zx in our conducting line. '

Assume an acoustic plane simple harmonic wave passing along a tube
in the direction of x. Let $ be the displacement of a particle from its
mean position; p the density, a the velocity of sound, and p the excess
pressure over the mean.

Then
8'$ Bp

p Bt' BX

(an exact equation) and for small vibrations, '

g2( g2$
a2

8t2 BX2

From (23) and (24.)
8'$ BPpa2 —=
BX BX

The integration of (26), since

(24)

(25)

at all times when p = o, gives

pa = —P., 8$
(9X

(26)

f Similar discussions occur in Drysdale, Jl. of Inst. Elec. Engs. , July, x920, Vol. S8, p. S9x,
and Kennelly and Kurowaka, Proc. Am. Acad. , Feb. , x92x, Vol. 56, No. x. , p. 29.

' Lamb's Hydrodynamics, x9x6, p. 474.



We may write (26) as follows:

and if we represent the volume in a length dx by p U, we have,

, AU
pG = —PU

or pa' = —E where E is the modulus of elasticity of volume. Since
the compression is due to p and not to changes of pressure along the line,

the stiffness can be considered as analogous to stiffness in the walls of
the tube upon which the pressure difference p acts. Our tube possesses

inertance and capacitance as we know, but the above shows that these

are not the equivalent of inertance and capacitance connected either in

parallel or in series. Indeed, the capacitance can be thought of as
between the inside and outside of the tube instead of along the tube.

Inasmuch as we must use tubes in a practical construction it is essen-

tial that we consider whether or not a tube can be used for either Z~,

or Z2, arranged as in the preceding theory. Consideration shows that
Z& cannot accurately be composed of a tube, for Z& is wholly in the line

and not between the line and the outside. Hence we must ascertain
whether or not such a substitution would be a sufEicient approximation.
In short, can we consider a tube as having the equivalent of inertance

and capacitance connected in parallel or in series, or may we consider

it as having inertance only or as capacitance only?

Assume that any tube we may use will be short as compared with a
wave-length. Consider the gas to move as a whole. Then the 6p is

due to inertance. Or consider the gas to be stationary acting as a cushion.

Then Sp is due to capacitance. In both cases we have neglected the

change of phase along the tube. Whichever case is the better approxima-

tion will depend upon the service the tube is rendering, or, in other

words, will depend upon the adjacent construction or the composition

of the 61ter. It might appear that the tube can be approximated by

lumping the capacitance. This cannot be done at the center of the

section for the general theory does not permit of a side branch other than

Z2. It cannot be lumped at Z2 as can be shown by comparison of the

resulting theory with experiment. The assumption of 3II& and C& in

series does not appear reasonable for the total pressure over the section

certainly acts on 3f&. We are therefore forced to the policy of using

SEE and CI in parallel in the line with the understanding that experiment

will determine empirically whether 2'& or C& or both shall be used in the
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computations. As will subsequently be shown, experiments thus far
seem to demand the introduction of C& in only one of the three types of
filters. Thus the somewhat arbitrary manner of introducing C& in

parallel is minimized. It is fair to say that, in this one case, the assump-

tion seems not without a theoretical justification. It is thus observed

that at the outset we are driven to an approximation which demands

an empirical selection of formula. .

III. CoNsTRUGTIQN oF FILTERs.

A. General Limitations.

If we are to construct an acoustic filter that will have good trans-
mission we must avoid any changes in the nature of the medium and in

the diameter of the transmitting conduit or conductor. If the filter is

to have good attenuation, similar conditions would hold for the branch
lines. For first experiments, then, a single medium and a transmitting
line of constant cross section are chosen. These selections suggest, from

the standpoint of convenience, the use of air and the use of a cylindrical
tube as the boundary of the transmission line.

The only limitation to our application is that there be a series of like

sections with Zi in the main line and Z~ in the side branch. With no

limitation placed upon the constitution of Zi or of Z2, an infinite number

of designs may be possible. But, as already stated, considerations lead

to the selection of a cylindrical tube containing air as the transmission

line. The impedance of a short section of such a line cannot be accu-

rately expressed by an equivalent 3II& and C& connected either in series

or parallel. We will assume 3II& and C& in parallel, for thereby we can
make SIC = ~ or Ci ——o or remove them from consideration without
obstructing the transmission of the line. But even with these limita-
tions the number of filters is infinite, for Z2 can be formed, theoretically,
in any manner one chooses.

B. Low Infrequency, High Infrequency, and Single Band Pass Filters.

In order to determine the construction of low frequency and high

frequency pass and single band filters in as simple a manner as possible,
an additional provisional limitation will be made, viz. , to filters in which

Z2 consists of an equivalent JI2 and C2 connected either in series or
parallel. We shall then have four quantities M&, 3II&, C& and C2. If
either Mi or M2 is absent, i.e. , removed from consideration, its value is
infinity. Under similar conditions the value of a capacitance is zero.
We have then to ascertain the possible combinations of



Taken singly there are four combinations in pairs, six in triplets, four
with one only, and one with none, making a total of fifteen possible
combinations. If we remove those combinations which remove the
line or the branches entirely, we have left nine designated as follows:

2.
3 ~

5
6.

All present,
Mg ——~,
3/I2 = DO,

Cg ——o,
Cg ——o,
3IIg ——3llg ——

3II2 ——~,
Cg ——o,

C2 = 0,
C&

——o,
C2 ——o.

By the preceding, our values of acoustical impedances are limited to the
following:

In the transmission line,

In the branch,

ZMI Gl

1
I —3/Ii Cia

' z2UI2co
2 ~ C ~2

(r3) bis

(xg) tris

Zg —z M2o)— (x6) bis

If the limits of no attenuation are now ascertained by the application of
equations (5) a.nd (6) we find the values in Table I. for the nine cases,
each having the possibility of Z2 in parallel or in series.

The explanation of most of the blanks in the fourth and fifth columns
is that, assuming 3xI2 and C2 to be in series, our original arrangement of
Z2 providing for the same pressure in common at the termini, requires
the following:

x. There must always be an 3II2 at the junction point, forotherwise
there could be no X and hence no use of the side branch. Hence 3II2

is at the junction point and C2 is next i:n the branch.
2. 3II2 cannot be infinity, for if infinity, the side branch would not be

used at all.

3. C2 cannot be zero for this would prevent any value of X and there-
fore any use of the side branch. Thus six of the nine cases are eliminated
from consideration leaving only cases I, 2 and g. Case I leads to the
possibility of an imaginary frequency and introduces two values of f2,
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TABLE I.

Case.

Parallel. Series.

1 &~+4'

1 1

2m 3II-Cs

1

m&(4C& + C2)

jC2+ 4Ci

2~ V43f2cicg

1 4.

~2' M)(4cg + C2)

1 1

2x M'. Cg

1 Mg+4M2
2m Mgllf2C2

4

C2(Mg + 4&2)

1 M)+4&2
2~ 4MgMg Cs

1

2~ 43f2cj

4
2m. M(C2

which are not found in experience. Knowing that the assumption of C&

in parallel with M & is arbitrary, we are justified in acknowledging the
incorrectness of the assumption in this case and omitting the formula. .
from consideration.

These considerations lead to the development of the three following
types of filters:

r. Low-frequency pass filters; case 3, parallel; case 4, series; and
case 8, parallel.

2. High-frequency pass filters; case 2, series; case 5, parallel; case 7,
parallel.

3. Single-band pass filters; case I, parallel; case 2, parallel; case 4,
parallel.

Conditions of construction suggest that an additional formula for the
single-band filter be determined. The three cases in which we have a
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single-band filter as above stated, are those in which we have 3II2 and C2

in parallel. But in actual construction it is impractical to have truly a
C2 without an orifice into a volume and in this orifice we have an 3EI2

in series with C2. A simple construction is thus suggested of taking
Case x and adding an M2' as an orifice into C2. The impedance of the
orifice and C2 will be, according to (x6)

Z2' = Z 3I2 ~—

This impedance is in parallel with the inertance 352, the impedance of
which is,

Z2 = ZM3E2.

As readily follows from the definition of impedance and the fact
that the sum of the two currents is the resultant branch current, the
combined impedance, Z2, is determined from the following relation,

or

I I I
Z2 ~~2& ~

C20)

f I

Z2 —Z +
3II2co + 3II2'o)—

C2M

According to equation (t3) if we make C1 arbitrarily zero for the sake
of simplicity, we have

Z] = 'L31yGD. (28)

If we now use the values of (z7) and (z8) for the conditions (5) and (6)
we will have, respectively,

I I
27l' C2(M2 + M2 )

I M&+ 4&2
2ll' C2(M1M2 + M1M2 + /&2&2 )

(8o)

C. ComPutation of Ir1ertance and CaPac2ty

By comparison of (z8) with (7) we see that the inertance for a straight

tube, assumed to move as a whole, is,

m plS
S' S' S
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In the case of an orifice, 3II, as already shown, is expressed by p/o

where c is the conductivity. The expression for c in terms of the radius,

R, and length, l, of the channel is'

7I8.'
c =

With I large in comparison with s R/s, this reduces to 5/I and
3f = p(t/8) as already stated.

As shown in the discussion of (22) we should substitute V/ptt' for C&.

Therefore our equations for substitution are:

(34)

D. Form of the Filters

(tt) Loso Fregu-ertoy Pass Filter. In a prec—eding section we found at
least three formula for a low-frequency pass filter. They are as follows:

fi = oi

requiring that C~ be the only portion of the branch;

fg = o,
I I I

fs = — — — = — — I (8)sr Cs(3t'g + 43IIs) s. MgCs + y3E, C,

requiring that M2 and C~ be connected in series and that CI be zero;

f~=o fs= I

3fI C2

requiring that C2 be the only portion of the branch and that CI be zero.
All these formulas are dimensionally correct and there is no conclusive

evidence showing that one is superior to another save by actual experi-
ment. Attention may be called, however, to
the dif6culty of constructing a C2 without an

M& in series. With C~ only the most favor- LJ Lj
able cross-section of construction would be Flg. 3.
similar. to Fig. g. But there would be an
Hag and the justification for neglecting it would be raised.

I Ray1eigh, Theory of Sound, Vol. II., p. 18x.
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Fig 4.

If the construction is made as in Fig. 4, the 3EI2 is better defined and
can be determined from equation (3g). These considerations point to

the use of (B).
(b) High Frequ-eucy Pass Filter —

W. e pre-
CJ viously found three simple cases of a high-fre-

quency pass filter. The formulae are as follows:

fi = oo,

requiring that Mi ——~.,

z C2+ 4C& I+ (D)
43.'I2C& C2 2~ 43II2C& 3IC»

I 2IIIi + 43II2 I I I
fi = ~ ) f2 = +

43IIg3f2Ci 2~ 43XI2Ci 3IIg C2

requiring that C2 ——o;

fi —oo, (F)

requiring that M& = ~ and C& = o. Formula (E) and (F) indicate

that it might be possible to construct such a filter with a straight tube

and side branches consisting of 3II2 only, or consisting of orifices. This

plan has been followed in the filters herein described.

(c) SAzgte Band Filter -We prev. —iously found four simple single-band

filters. The formula. are as follows:

fl
2m

3IIi + 43II2

MgMs(gCg + Cg)

I
27i

I+
I

3IIgC2
I +

3IIg'

7

Ci
4C

requiring that all of the four elements remain in consideration;

= I I
2'

I If-
Ms(4Cg + C,)

requiring that 2lII& ——~,

I
2'

If ——
27r

I
27r

I I
3II2C2 Ci

I +4-'g
3IIi + 43II2

43IIiM~ C2

4M&
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requiring that C& = o. The fourth pair of values requiring that C& = o
is found in equations (29) and (3o) or

If ——
27r

x t
3f 2' AIBA'

I +—
SIC

I I+4-
3SIg

~2C2 ~2 $~2
352 AXIS

E. Empirical Character of Formula, .

We are prevented from securing accurate formula by the following
circumstances:

I. Our dimensions cannot be vanishingly small as compared to a
wave-length and therefore appreciable phase differences occur in any
section or branch.

2. We cannot get an accurate expression for the impedance of a short
tube because our theory assumes that this impedance is strictly in the
line, whereas a tube has distributed capacitance virtually between itself
and the undisturbed surrounding medium.

3. One hypothesis upon which the theory is based assumes that the
junction points are really points, i.e. , there can be no accumulation there.

In respect to these circumstances stated, it is fair to say that the
accuracy of the approximations cannot be estimated save by experiment.
It is allowable, therefore, to take the position that we are to seek, in the
case of each construction, that pair of formula" .which seems best to agree
with experiment. In other words, the formul3 are somewhat empirical,
though their manner of derivation gives a reason for their forms. This
attitude of empiricism does not, then, hide the nature of the phenomena
but rather decides as to the best approximation.

IV. COMPARISON OF THEORY AND EXPERIMENT.

A. Measurement of Transmission

An apparatus, Fig. 5, similar to that used by Drs. Gray and Roebuck,
but not described in print, gave sufficiently accurate measurements of

Fig. 5.

the transmission of the filters. T~ and T2 are similar telephone receivrse,
V is a valve connecting a pair of stethoscope binaurals to either T2 or



544 G. W. STEWART. t
SECOND
SERIES.

the tube which connects to the filter F and r~, the resistance boxes are
marked by the R's, and the source of sinusoidal currents is an oscillator
loaned by the Western Electric Company. The circuits of the latter
consist of an oscillating circuit, an amplifier, an electrical low-frequency

pass filter of two sections, a resistance R4, and inductances and capacities

by means of which it was possible to get fairly pure tones from 9o to
r,5oo vibrations and tones up to 5,ooo without the use of a filter.

R2 was small in comparison with RI and the latter about ten times the
impedance of T& for a frequency of I,ooo cycles. R5 was never greater
than one tenth the impedance of 12 and R~. The brass tubing on either
side of F was .557 cm. in internal diameter and 2.5 meters long. The
method pursued was to adjust the values of the R's so that, without the
acoustic filter present, the values of R5 required to produce the same

intensity at the stethoscope with either acoustic connection, were not
in excess of the limit above stated. Each filter had its conducting tube
of approximately the same diameter as the tubes from F& to T& and U.

Settings of R5 were recorded for the various frequencies with and without

F, in the latter case a tube of the same length and internal diameter

being substituted for F. The transmitted intensities were assumed

proportional to the square of R&. Thus the percentage transmission of
F at a certain frequency would be the ratio between the squares of R5

with F and with its substitute tube. Obviously, the tubes in the appa-
ratus have resonance and this will greatly reduce the accuracy of the
transmission values. For frequencies lower than 2,ooo, pieces of hair

felt were inserted every r5 cm. or so to increase the viscosity and reduce

resonance. Improved readings were then obtained. The curves here-

with presented must be examined with the understanding that resonance

does exist. Since our immediate object was merely to get an estimate of

the filtering action rather than an accurate measure of transmission, no

effort at further refinement was considered. Experiments showed that
even with the felt present, variations of ?o per cent. to 2o per cent.

apparent transmission with frequency might occur.

B. Low-Frequency Pass Filters.

The general construction of the low-frequency pass filters and the

experimental transmission curve is shown in Fig. 6. .The accompanying

Table II. gives the dimensions, the computations and certain experi-

mental facts concerning a number of low-frequency filters, In this

Table/, r, and U refer to the length of section, internal radius and volume

respectively. The subscript I refers to the conducting line or tube and

the subscript z to the branches or in the case of the form here used, to
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the surrounding tube. The value f is the value of the frequency at
which the transmission is 5o per cent. of the "unattenuated" trans-
mission of the filter. Inasmuch as the beginning of attenuation cannot
be sharp, this mean value is perhaps the fairest selection of an experi-
mental value. The computations indicated by the letters, A, 8, and C
were made according to the formula. so marked in the preceding theory.
These formula. when expressed in terms of the dimensions become, after

f.O& OF ERFOUENCIr

Fig. 6,

substitution in accord with (3x), (33) and (3g), respectively, (A'), (8')
and (C') as follows:

fI =0

fy=0 a
f2

Sg
1

li V~ /IS1
I +4-

V2.

S~
'

x
r

I +/-
el&

(A ')

fI=0 c 5&
f2 =

14

It is evident that the formula. (8') is to be preferred since it gives
approximately the experimental values of f and also explains satis-
factorily the variation of the frequency limit of attenuation with the
conductivity of the orifices leading from the transmission conduit to the
volume in the branch.

Attention should be directed to several other facts shown in the table.
The percentage transmission in the "unattenuated " region given in
column "T," seems to depend upon the ratio between r2 and r&, the
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TABr.E II.

No.
of

No. Sec-
tions.

2 3
3 5

13 4
15 4
15 4
16 4
16 4
17 4
17 4

R1 3
R2 4
R3~ 4
R4 4
R5 6
R6 6

Faf

f

.20 5,250 708

.36 3,100 933

.80 3,300 106

.80 5,150 106
2,900 38
6,200 55
4,000 29

2.66 .243 1.71
5.0 .243 1.71
4.0 1.42 2.57
167 .75 142
1.67 .75 1.42
1.67 .75 1.15
1.67 .75 1.15
1.67 .75 1.30
1.67 .75 1.30
1.58 1.19 1.82
1.58 1.19 1.82
1.32 1.19 1.82
1.45 1.19 1.82
2.58 1,19 1.82
1.58 1.19 1.82
1.58 1.19 1.82

462 624 2

291 321 4
880 2,075 6

2,710 4,620 16
2, 120 4,620 8
4,085 6,960 16
3,200 6,960 8
3,175 5,400 16
2,480 5,400 8
2,840 6885 8
2,840 6 885 8
3,170 8,300 8
3 010 7 520 8

2,095 4,180 8
2,700 6,885 4
2, 100 6,885 4

450 595
230 308
920 1,140

2,200 2,670
1,700 2,670
3,200 2,965
2,500 2,965
2,700 2,800
2,200 2,800
2,700 3,080
2,750 3,080
3,350 3,700
3,025 3,370
2,000 1,890
2,700 3,080
2,075 3,080

21.6
43.1

44.4
5.94
5.94
2.62
2.62
4.36
4.36
7.1
7.1
5.87
6.48

11.82
7 ' 1

71

.65 5,200 66
, 3 000 25

.90 3,500 9.4

.72 4,000 25
18.7.72 4,750

.90 4,600

.90 3,000

.90 4,750

.72 3,100

65
25
44
24

No.
I,t ry r2 ~3 fthm f2(A') f2(B') f2(C') of T

cm. cm. cm. cm. d.v. d.v. d.v. d.v. Aper-
tures.

number of sections constant, the greater the ratio the less the transmis-

sion. In the last two columns labeled "Faf," the one under "f"refers

to the first audible frequency above the cut-off, and under "%" the

ratio between the range of inaudibility and the actual cut-off. Here

we note that while filters in which r2/ri is large have inferior transmission,

yet they have a surprisingly great range of frequencies above the cut-off

where the hlter operates successfully. In Alters 2 and 3 this range is

at least over ten times the cut-off frequency. As the ratio of ri/ri

becomes smaller, this cut-off range decreases but the transmission in the

"unattenuated" region improves. It is impossible to select, without

speci6cations and trial, the most successful design for a given frequency

cut-off, for success depends upon both the range of cut-off and upon the

percentage of transmission in the unattenuated region desired. The

remarkable feature is that the high attenuation in the region above the

theoretical lower limit, f&, is ever. as great as ten times this limit. In

fact, in the case of No. 2, that frequency having a wave-length of approxi-

mately the length of a section is highly attenuated. The performance

is better than one would hope. Attention is directed to R I, a tube

about 6 cm. long and 2.4 cm. in diameter yet capable of having an

attenuation producing inaudible transmission for a considerable range

above the cut-off. Such a performance is a surprise to one accustomed

to the dif6culty in preventing the passage of sound through holes and

channels.
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C. IIigh-FregNency Pass Filters.

We previously have mentioned three possible simple cases of a high-

frequency pass filter but two of these seemed to consist merely of a
straight tube with side branches each having an 2lxI2 or orifices, only.
The cross-section of such a filter and its transmission is shown in Fig. 7.

L SD

R o4
II

LOS OF FRfqfJEhlCY

Flg. 7.

If we substitute in the formula'. , (Z) and (F) in accord with (3g) and (34),
we obtain the following:

fI —QQ
a ~cf = —

Q4' '

wherein c is the conductivity of the orifice as defined in (Z2).
Data of several filters of differing dimensions are given in Table III.

The last column found in Table II. is here omitted because these filters
gave transmission up to the highest frequency tried —5,ooo—7,ooo d.v.
The experimental results are therefore strictly in accord with the limits
of attenuation set by the theory from f& to zero. A reason is doubtless
that the less the frequency the more nearly the experimental conditions
meet those assumed in the theory.

The general conclusion is that the formula (8') is very satisfactory.
It is to be noted that in (Z) we have used Cz. This is the only case of
the three where experiment has indicated that C~ should be used. As
stated in the discussion of the theory, the assumption of C& in parallel
with 2III is arbitrary. A justification may now be seen in the following
fact. The branch lines, M~, are short. Thus there is a much greater
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TABLE III.

No.
No. of

Sections.
lz rI l2 r2

cm. cm. cm. cm. f ~ f (&'). f (I")

15 II. . . .
19.. . . . .
22 . . . . . .
1,2)3)4 . .
50. . . . . .
50. . . . . .
50 . . . . . .
50 ~ ~ ~ ~

8

8
8

12
6

3

2.5 .243 0.5. .115
5.0,243 0.5 .115
2 5 .243 0 5 .152
4 0 .483 1.22 .278
5.0 .483 0.5 ~ 139

10 0 .483 0 5 .139
15 0 .483 0 5 .139
20.0 .483 0.5 .139

i

.061

.061

.099

.146
~ 0845
.0845
.0845
.0845

2,300 2,400
1,500 1,300
2,200 2,520
1,500 1,490

920 1,170
810 620
525 436

988 .75
699 .60

1,262 .50
610 .75
415 .85
293 .90
240 .90
207 .90

I

beca p
D. Single-Bund Filters.

We have already presented four pairs of formula' . fo
'

gf r sin le-band filters.
If we now have a filter of the construction shown in Fig. 8 and denote

pressure gra ien in ~ an
'd' t '

M th n in the conduit or conducting line itself.
The particle velocity in 352 is therefore much greater than in the conduit.
If the particle velocity in the line were actually at rest, the conduit would
serve as a capacitance for 2VI~. Thus, t..eTh he existence of an effective

~ ~capacitance is not surprising.
Attention should be called to the fact that experiment showed that as

3II2 was made longer or very narrow, introducing visco
'

y,sit the cut-off
me less shar .

aw

a3

I.Og OF' FPEQUEA'CP'

!. i I(I&

Fig. 8.

~ ~

by l2 52 the length and area of the side tube and by c the conductivity2)

of the holes from the side branch into the chamber U2, these four formula. '
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may be written after substitution according to (33) and (34) as follows:

a S2
f1

2lV2
'

Cf2-
27r

12S1
'

S, '+4~S,
t

l2 V2 l1S1I 1 4 ———
V2 .

(If')

c S2
1 =

2x 12V2
'

I
$2

l1S1
l2U2 I+4

2

a $2
1

l2V2
'

a cS2
/1

Ug(l, c+ Sg)
'

l2S1I +$
S2 /1Sg

l2 U2 S2 4S1
12c c/1 .

Fig. 8 also shows the transmission curve of one of the filters, $89,
with which the range of highly attenuated frequencies above f& is rela-

tively small. The two-column "Faf" in Table IV. is similar to that in

Table II. The reasons for the lack of attenuation in these high frequen-
cies are doubtless the same as in the case of the low-frequency pass filters
described in a previous section. For, as will be observed, the single-band
filter may be looked upon as a combination of the two other types. The
experimental results show the (X') formula. to be the most satisfactory.

V. DISCUSSION AND CONCLUSIONS.

The high attenuation secured with but few sections was not anticipated.
General experience in acoustics increases the remarkableness of the
action of the filters. The agreement with the theory is, in view of the
assumptions made, fairly satisf'actory for it is possible to construct filters
that meet specifications.

The physical action considered herein is clearly not dissipation but
interference. Kith a source transmitting energy through a filter, the
action of the latter is to prevent the emission of energy from the source
in these frequencies for which there is attenuation. There is dissipation,
or at least a decrease in transmission in the filters, extending over the
unattenuated region and this seems to be the greater, in the case of the
low-frequency-pass filter, the greater the ratio of r2 and ri.

The extent of the usefulness of the filter will be determined by experi-
ence. Its simplicity and cheapness of construction make it a serviceable
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device. In the laboratory it can be used in the elimination of undesirable
components in a sound wave, and for certain types of sound analysis.
In the latter case its advantage over a resonating device is its selection
of a band of adjustable width. Its possible fields of usefulness in practical
instruments may be merely mentioned. In the rendition of records on
the phonograph and in the wireless telephone many undesirable fre-
quencies can be removed. In wireless telegraphy an acoustic filter makes
possible the simultaneous reception of an indefinite number of messages
with the same antenna. In connection with a megaphone on a loud-
speaking device, the filter has also ao application. The introduction of
this new filtering phenomenon may in time affect the design of musical
instruments. Although the future use of the acoustic filter cannot be
foreseen, there is one fundamental fact to be recognized, namely, that
an aerial wave is used in audition and that a modification of this wave
by a strictly acoustical method wherein the air is the medium, gives an
opportunity for the energy to flow directly from the filter to the ear
without any transformation which would introduce undesirable modi-
fications. These acoustic filters have a great acoustic interest and the
investigation of them, both theoretical and experimental, is being
continued.

PHYSICAL LABORATORY,

STATE UNIVERSITY OF IOWA.


