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PROBLEMS OF QUANTUM THEORY IN THE LIGHT OF THE
THEORY OF PERTURBATIONS.

By PauL S. EPSTEIN.

SYNOPSIS.

1. It is shown in the following paper that the physical purport of Delannay’s
method in the theory of perturbations consists in successive approximation of a
given motion by means of a set of conditionally periodic motions.

2. It is further shown, that at every degree of approximation two possible cases
must be taken into account. In the one the motion of the system is periodic with
respect to a certain variable, in the other this variable performs a libration.

3. In both cases formule for carrying through the calculations are given, fit
for the purposes of the theory of quanta.

4. A modification of Delaunay’'s method, due to Whittaker is applicable to one
of the two cases only and is therefore incomplete.

5. Delaunay’s method (in our modification) quite automatically yields at every
degree of approximation the special coérdinates, looked for in the theory of quanta.

§ 1. INTRODUCTION.

HE method explained in the following pages was worked out by
the author several years ago for the purpose of quantizing the
helium atom.! Its principle, however, turned out not to be new? and
to have been already the foundation of a procedure applied by Delaunay?
in the theory of the moon. Though Delaunay did not use the notions
of the “conditionally periodic system’ and of the ‘‘angular variables,”
the introduction of these concepts changes only the formal side of the
line of thought. We shall therefore in the following refer to our pro-
cedure as ‘‘Delaunay’s method.”

In the meantime methods of the theory of perturbations were intro-
duced into the theory of quanta by others also: J. M. Burgers* adopted
a manner of treatment due to Whittaker, while N. Bohr® dealt with the
problem of finding the coérdinates suitable for quantization in slightly
disturbed systems. The rules given by Bohr were applied with great

1 An exposition of the method with application to the problem of three bodies was given
by the author in October, 1917, and the two following ones were communicated by him to the
Association of Swiss Naturalists in 1919 (Cf. the brief report: Verh. der Schweis. Natur-
forschenden Ges., 2. Teil, p. 83, 1920).

2] am indebted for valuable quotations of literature to some letters of Mr. J. M. Burgers
in fall of 1917.

3 Delaunay, Théorie du mouvement de la lune (Mémoires de 1’ Académie des Sciences,
Vol. 28, 29), Paris, 1860, 1867.

4 J. M. Burgers, Verslagen Amsterdam, XXXVI., p. 115, 1917.
5 N. Bohr, Kgl. Danske Vedensk. Selsk., Nat. Afd., 8. Raekke IV. 1, 1918.
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success by Kramers! for explaining the gradual increase of the Stark
effect with the electric field. This work however does not by any means
make superfluous the publication of my modification of Delaunay’s
method. I believe on the contrary, that it can claim some interest for
several reasons:

First, this procedure is particularly applicable to the theory of quanta
because of the fact that the real motion can be regarded as successively
approximated by conditionally periodic motions. A way is given for
finding a set of conditionally periodical motions which approximate the
real motion successively closer and closer. These systems are, however,
not of the simplest type studied by Haeckel, and there therefore arises the
problem of investigating a more general kind of conditionally period
motion (§§4, 5). We shall see that all theorems which are valid in
Haeckel's 2 case can be extended also to the new type. In particular
there still remains the possibility of describing the motion by angular
variables (§ 6). The principles of the theory of quanta, as they were laid
down by the author? for conditionally periodic systems, can therefore
be applied unchanged to whatever degree of approximation one desires.

Second, at any step of approximation there may appear two essentially
different types of motion which determine the method of passing to the
next step. Both Delaunay himself and Poincaré 3 pointed out this
alternative, but, as it seems, not with sufficient emphasis; at least, this
important discrimination is entirely ignored in Whittaker’s modification*
already referred to. Therefore this modification does not exhaust the
problem and is in many cases inapplicable (§ 9). To show this we lay
stress on making clear the physical meaning of the transformations used.

Third, the special forms, in which the theory of perturbations is carried
through, start from the existence of a small constant parameter, by which
the perturbation function may be developed. Such a parameter however
is not available in all problems of the theory of quanta. Whittaker’s
method is free from this restriction, but comprises, as already mentioned,
one of the two possible cases only. The center of gravity of our con-
siderations lies therefore in showing how the numerical calculations can
be carried through in the second case, not included in Whittaker’s theory,
without using a constant parameter (§§ 7, 8).

In so far as these three points are concerned, our investigation lies

! H. A. Kramers, ibidem, 8. Raekke, III. 3, 1910.

2 P. S. Epstein, Ann. d. Phys., 50, p. 815; 51, p. 168, 1916.

8 H. Poincaré, Les méthodes nouvelles de la mécanique celeste, Vol. II, §§ 200 and ff,
Paris, 1893.

+E. T. Whittaker, Proc. London Math. Soc., 34, p. 206, 1902; Analytical Dynamics, p.
404, Cambridge, 1917.
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in the region of general dynamics and will be only partly new to the
astronomer. :

Fourth and last, the method opens interesting aspects of the theory of
quanta, dealt with in § 10. It is shown there, that the problemi of co-
ordinates suitable for quantization, is solved quite automatically by the
method: it is sufficient to go on from approximation to approximation
in order to find always the right variables. In the special case when the
undisturbed motion is periodic, the codrdinates found by our method
agree exactly with those resulting from the rules given, for this case, by
Bohr. Also for some other cases discussed by Bohr our method gives
closely similar results. There exists, however, a difference, for Bohr
regards the possibility of exact quantization as an exception, and gen-
erally expects, for a disturbed motion, indeterminate values of energy;
whereas from the point of view of our theory, exact quantization is the
normal case, and indeterminate values of energy are at least much rarer
than Bohr implies. The decision between the two points of view seems
to lie within experimental possibilities.

§ 2. FroM THE TRANSFORMATION THEORY OF DyNAMICS.

We proceed to put together several theorems, to be used in this and
in the following communication.

Let the differential equation of a mechanical system of f degrees of
freedom be given in the canonical form

;| dg; oH

dt__ag,-’ —(E=api: (7'=I,2,3,"‘f),

(1)

where the Hamiltonian function H(p, ¢, t) depends upon the momenta p;,
upon the codrdinates of position ¢; and upon the time ¢ By the system
of equations
) {Pi = pi(Py, +++ Ps; Qn, -+ Qp; D),

gi = qi(P1, »++ Ps; Qu, +++ Q; 1)

one may pass to the new variables P;, Q;. It remains to be determined,
in which case the codrdinates P;, Q; are again canonical variables.

In the following we shall have to deal with the two special cases, in
which the functions (2) are either independent of time, or contain time
in the form of a linear term A, (resp. Bit), where 4; and B; are con-
stants. The criterion for P;, Q; being canonical codrdinates can then
be expressed by means of the so-called ‘ Lagrange’s parenthesis”

L (0P 9q: 9 Ops
(3) (d,b)=2(3;'35—5(;' ab)

i=1
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in the following way

{22

(4)

il

0, (Pi, Q1) = {o for j # h,
0, 1 Y j=h
(hvj=1v2!"'f)'

We shall discuss the above two cases separately:
I. A transformation, independent of time

{Pi=Pi(P1, cor Ppy Qo vt Q)
qi =gi(P11 "'Pf; Qh Qf):

satisfying conditions (4) is called a ‘‘comiaci-transformation.” * The
most interesting property of these transformations is, that both systems
$i, ¢; and P;, Q; have the same Hamiltonian function: the Hamiltonian
function 1is invariant with respect to contact-transformations. We see
further from the form of equations (4) that they are entirely independent
of the special form of the Hamiltonian function, so that they can be
satisfied by a proper choice of the transformation equations (2’) alone.
We can express this important circumstance by the following statement:

Let a system of coérdinates p, q be given, canonical with respect to two
Hamiltonian functions H and H*. If we succeed in finding another system
of coérdinates P, Q, which are canonical with respect to H, they will be
canonical with respect to H* also.

By a well-known theorem of Jacobi’s the contact transformation can
be defined by one single function of the variables P; and g;

(2"

(5) W = W(Py, -+ Pr; qu, "+ @),

from which the transformation-equations can be derived in the form
’ oW _ow

(5" =G O=ip

2. The case in which equations (2) assume the form

(2" {Pi = p/(P1, +++ Py; Q1, -+ Qp) 4+ A4,
g = g'(Py, +++ Py Qu, +++ Qp) + B,

where 4; and B; are constants, and conditions (4) are satisfied, we shall
name a ‘‘Delaunay-transformation.”” The difference between this and
the first case is that here there exists no invariancy of the Hamiltonian
function. On the contrary, the new variables, P;, Q;, are canonical with
respect to a changed Hamiltonian function

b

1 E. T. Whittaker, Analytical Dynamics, Chapter XI. Cambridge, 1917.
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A glance at conditions (4) shows us that they do not restrict the choice
of the constants 4;, B;. The applications below deal with the case in
which the dependence on time only of the codrdinates of position g; is
given by the values of the constants B; (¢ = 1, 2, --- f). It follows
from the remark just made that the choice of the quantities 4 is entirely
at our discretion. In particular we can put these constants equal to
zero, which leads to the following simplest form of the Delaunay-trans-
formation

2
(7) qi

PPy, o Pr; Quy o0 Qp)s
q¢:*(Py, -+ Py an - Q) + B,
H* = H — Y. Bps.
=1

p:*, g:* are functions which, taken alone (i.e., putting B; equal to zero)
yield a contact-transformation.

§ 3. DELAUNAY'S METHOD.

Let the motion of a system be given by the Hamiltonian function

H(py, -+ b5 @ - @p)-

For the sake of simplifying our considerations we suppose forces to be
conservative, and therefore time to be lacking as an explicit argument
of H. But we shall see that these considerations can be enlarged with-
out any essential change for certain forms of explicit dependence on time.

To carry through the integration of this problem, we shall, with
Delaunay (I.c.), use the following method of approximation: we choose
a conditionally periodic motion, having the Hamiltonian function Hj,
in such a way that it is as near as possible to the given motion, and if
we split function H in two terms

(8) H = Hi + Ry,

so that the remainder Ry, or the ‘‘perturbation function,” becomes as
small as possible. The motion, defined by I3, is called the “first inter-
mediate motion.”

One of the important features of conditionally periodic motions is
that they can be described by so-called “‘angular variables,” i.e., it is
possible to introduce by means of a contact-transformation

W = W(“h s Upy Gy gf):
() 1l 14

;= wW; =
aq; 0u;
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a new set of canonical codrdinates (w;) and momenta (u;), possessing the
following properties:*
1. The state of the system (for instance its original cosrdinates p;, ¢:)
is a periodic function of the variables w1, w,, - - - wy, having the period 2.
2. The variables w; are linear functions of time

(10) w; = Qt + 6.

The coefficient Q; is called the ‘“‘average motion.”

3. The momenta u; are constant and are proportional to Planck’s
quantum of action 4:

(11) Uy = — Ny,
27
n; meaning whole numbers, the so-called “ quantum-integers.”

4. Transformation (9) being accomplished, H becomes a function of
the momenta #; only and is independent of the variables w;.

The theory of conditionally periodic motions (cf. § 6) affords the means
of establishing transformation (9) for the intermediate motion defined
by function Hj. Usingfhe theorem stated in § 2 we see, however, that
the variables introduced by those transformation-equations prove to be
canonical with respect to the whole Hamiltonian function H also. Of
course they lose their physical meaning: referred to the system deter-
mined by H, neither are the quantities w; linear functions of time, nor
are the quantities #; constant. But since the form of functional de-
pendence is retained, p; and ¢; remain in a formal respect periodic func-
tions of the variables w;. If within the limits of variation of p; and g;
the perturbation function is a regular function of these coérdinates, as
we shall suppose it to be, it will be itself a periodic function of the angular
variables, and in most cases it may be expanded into an f-fold Fourier-
series. At least the possibility of such an expansion is supposed in all
that follows.

On the other hand, the term H; of the Hamiltonian function will
continue to depend on the quantities %; only:

(12) H=H(u,- - .uf)+‘m:’ % . -%bml, S ""fgions (mywi+ - - - +mawy),
where the coefficients b are functions of the momenta ;.

Let b be that one of the coefficients which has the largest numerical
value. We are to consider the system defined by the Hamiltonian func-
tion

(13) Ha = Hi(uy, -+ vy) + 0(us, =+ uy) g?j (mawy + -+ + mwy).

1 Cf. C. G. Charlier, Die Mechanik des Himmels, Vol. 1., p. 94, Leipzig, 1002; also P. S.
Epstein, Ann. d. Phys., 51, p. 176, 1916.
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We shall prove in §§ 4, 5 that such a function again represents a
conditionally periodic system. This we can choose as the second inter-
mediate motion, putting similarly to (8)

(8" H = Hy(u, w) + Ry(u, w),

and denoting by R, the remaining part of the Fourier-series. Instead of
#, w we have now to introduce the angular variables #’, w’ of the con-
ditionally periodic motion, given by (13); then H; is dependent on the
quantities #" only, while R, must be rearranged in a new f-fold Fourier-
series, proceeding by the arguments w’.

By this transformation the periodic term of the Fourier-series (12)
having the largest numerical value is taken away and converted into a
part of the aperiodic term. The same procedure applied to the periodic
term, second in absolute value, leads to the third intermediate conditionally
periodic motion, and takes away this term also. Going on successively
in such a way, we can make the numerically important terms of the
Fourier-series vanish one after another (retaining only their aperiodic
parts), and we can proceed to conditionally periodic motions which
approximate more and more closely the real motion, until the desired
degree of precision is reached.

This procedure is particularly well adapted to the theory of quanta,
operating with that particular function which is the most important one
for that theory. In most applications, indeed, the problem is to find the
expression of energy in terms of the quantum-integers (11), and to ex-
press in terms of the momenta %; the Hamiltonian function of that in-
termediate motion by which one wishes to close the approximation.

Of course the question remains unsettled as to whether the procedure
sketched in this paragraph is a convergent one. We can point out only
that Delaunay used it in the theory of the moon, and arrived at a good
agreement with observation, and that the theory of quanta does not by
far aspire to the degree of precision achieved by Delaunay and his
successors. We shall briefly revert to this question again in § 1o0.

§ 4. EXTENDED THEORY OF CONDITIONALLY PERIODIC MOTIONS.

We are now to supply the proof that the Hamiltonian function, given
by equations (13) § 3 defines in fact a conditionally periodic motion.
We confine ourselves to the case of the cosine, because that of the sine
results from the first one by a simple shift of phase of the argument.
We start from the equation of energy

(14) Hp = Hiy(uy, +++ us) + b(uy, - up)cos(muwy + -+ + mpwy) = a,

because the Hamiltonian function, if independent of time, is known to
express the energy « of the system.
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Our first object is to bring about a separation of variables, and we
succeed in this by a simple contact-transformation:

J
W = uy (mwy + -+ + mpwy) + Zzuilwi,
(15) )4 , _ oW

i = i ;

6w,~ c')u,

’

from which,

I

/ !
(16) { U1 = My, sy = s’ + mouy/, s uy = uy + myu,
wy

"= maw, + -+ mpwy, wy = Wy, e Wy = Wy,

We introduce the quantities u;/, w;/, instead of u;, w;, into our equa-
tion (14)

(17) Hy = H(us, -+ uf) + ' (ud, -+ 4) cosw) = a.

Now only one single codrdinate of position appears in the energy
equation; the other codrdinates do not enter in the Hamiltonian function
at all, and are therefore called ““cyclic variables.” It follows from this
that their corresponding momenta are constant (in virtue of the canonical
equations u;, = — 0H/dw;'). Thus the separation of variables is accom-
plished: Equation (17) gives us the relation between the two variables
u,’ and w,, while the quantities «, %/, --+ %/ must be considered as
constant.

We will now investigate equation (17) in order to determine if it repre-
sents a conditionally periodic motion. Some properties of that type of
motion we have already mentioned in § 3. But their characteristic
feature is this, that the codrdinates, determining the position of the
system, are either already of such a nature that the state of the system
is periodic in them when they grow without limit (in the manner of a
plane angle), or that they perform “librations,” i.e., swing backwards
and forwards between two fixed limits. In the special case in which the
Hamiltonian function is quadratic in terms of the momenta, the condi-
tions for the occurrence of such motions and the properties of the same
were studied by Haeckel (cf. § 3). In particular Haeckel showed that,
separation of variables being possible, one can always choose the con-
stants of the motion in such a way that it assumes the characteristics of
conditional periodicity. We shall prove that the conditions in the case
of the form of Hamiltonian function given by equation (17) are quite
similar. This form is on the one hand more special than Haeckel’s, the
dependence on the codrdinate w,’ being a fixed one, but on the other
hand it is more general, leaving entirely open the dependence on the
cobrdinate #,’.
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For the sake of simplifying our notation we shall again drop the accents

on the letters. #s, us, - - - %y playing only the part of constants, we write
for short
(17) H = Hy(uy) + b(uy):coswy = a.

This equation establishes a functional dependence bet ween #%; and w;,
of which, on account of the physical meaning of the problem and on
account of the symbol %, referring to a mechanical momen tum, we can
conclude in advance as follows: (1) #;is an analytic, not infi nitely many-
valued function of cos wy. (2) It follows from this that we know the
whole path of #; if this quantity is given between the limits 0 = w; = =,
the values of #; in the adjacent intervals — = = w; = 0, 7 = w; = 2w,
etc., resulting from the former ones by reflection. (3) #; has, at least in
part of the region between o and =, real values. We shall suppose it to
be real in the vicinity of w; = o, a restriction which does not limit the
generality of our conclusions.

If in a diagram we plot w; as abscissa and #; as ordinate, the tangent
of the angle at any point of the curve is

0H
dul__ __551
dw,  oH
duy

The maxima and minima of the curve are given by the condition

o

= — b(ul) sin w; = o,
8w1

(18)

the turning points (i.e., the maxima and minima of w;) by

OH _ oMy 3 o
(911/1 a’llq 6u1 ! ’

(19)

To simplify our argument we shall suppose that b does not vanish in
any point of the curve, and that u; assumes no infinite values, though
our conclusions would be the same if these possibilities were admitted.
‘The maxima and the minima of the curve lie at sin w; = 0, 7.e., w1 = 0
and w; = 7. Starting from w; = o, the value of #; changes in a mono-
tonic way until the curve reaches w; = m, or returns to w; = o. There
are several possible cases of this: (1) dH/du; has no roots within the
real interval 0 = w; = w, then the variable w; increases also monoton-
ically (Fig. 1, Curve 1.). (2) 8H/du, has in the above interval one
simple root at w; = w;°; then the curve turns back at this point (Curve
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I1.). (3) 0H/du; has two roots or one double root (Fig. 2, Curve III.).
% 4

T ! r

Rl

o 0 T A 5 : —
“ .
Fig. 1. Fig. 2.

(4) 0H/0u, has three roots (Curve IV.), and so on.!

The question now arises as to whether it is possible to realize by a
proper choice of the constants « the cases of the curves I. and II. I have
not succeeded in answering this question generally for any functions
H, and b, but in every special case the investigation is carried out easily.

§ 5. TuEorY oF CONDITIONALLY PERIODIC MOTIONS (CONTINUED).

We will discuss the above question in two instances typical for practical
problems.
(a) Let equation (17’) be given in the form

I
2(uy + u9)?

where 8 is a constant. According to (19) a turning point can only appear
when condition

—I—g(ul + #9)? cos w; = «,

m + B(u1 + us) cos wy® = o

is fulfilled.

The elimination of #; 4+ us from these two equations yields for the
position of the turning point

-

(20) CoSs Wy 5

We thus arrive at the result: If a® > |8/, there exists no turning point
and the curve is of the type I., running monotonically from w; = o to
wy = 7. If a? < |B| there exists one and only one turning point between
o and =, for cos wi? by (20) is uniquely determined for every value of a.
Therefore we have the curve of type II. The cases III. and IV. cannot
be realized by any choice of a.

1 If the assumption, that ui is real for w1 = o, is omitted, there exist still two other types
of curves for one and fwo roots of dH [0u1.
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(b) Let the Hamiltonian function be expressed by

I
2(%1 + 1/!2)2

H = - wul—{—zﬁ\@; cos W1 =a,
and let 8 be a small quantity and #; be restricted also to small values
only, w being a positive constant.

Condition (19) for the turning point yields

I _ B _
m w+Va_ﬁ1'COS‘wl—O.

We expand both equations in powers of #; and confine ourselves to
terms of the first order only

«,

1 I —
-4 = - w u1+26\/u1cosw1°
2’1412 Uo®
(21)
I B 0
—~3—w +~——__COS‘ZU;[=O.
u2 ul

Eliminating #; and writing for short @ = 1/u4,?, we obtain

I I I
COS2'ZU10 = ~ a+—2 R
ﬂ Q—ow 2Ug

According to condition 0 = cos? w,® = 1, which must be satisfied for
all real values of w,°, we are led to the result (putting @ > w):
In the cases
I
0‘<"[52(Q-—w)-{—iz] and a> — —
2Ug

2’1422

there does not exist any turning point; in the opposite case

there is a turning point.

On the contrary, if we put @ < o, the signs > and < in the inequalities
must be exchanged. That no more than one turning point can exist,
results from the following consideration: supposition #; = o would lead
to @ = — I/2us® and cannot be generally satisfied. Therefore vu; has
always the same sign, and according to equation (21), cos w’ is also
restricted to one sign. The limits, within which #; is contained, if the
case of Curve II. is considered, with both suppositions & > wand @ < w
become
(23) 0=u =B
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The Curves II1. and IV. are not to be obtained in either of our in-
stances. They appear indeed to belong to rare exceptions, and the
author did not meet with them in any application studied by him. We
can therefore leave these possibilities out of the following considerations.
Our result therefore may be stated thus: 4% a certain interval of values of
the constant « the case of Curve I. is valid, for all other values the case is
that of Curve I1.

In the first case the variable w; increases without limit, for, according
to the canonical equations, velocity w; can change its sign only if the
condition dH/du, = o is fulfilled. The momentum #; is then a periodic
function of the codrdinate w; and can be represented by a Fourier-series.

(24) %1 = Co + €1 COS Wy + €3 cos 2wy + - --.

We shall call this case the ‘“‘case of periodicity.”

In the second case w; varies between two fixed limits, or, using an
expression of Charlier, w; performs “‘a librational motion.” We call this
behavior therefore the ‘“case of libration.” One sees best the analytical
character of the function #, if he supposes its dependence on w; to hold
for complex values of w; also, and if
he accordingly studies the distribu-
tion of #; in the complex w;-plane
(Fig. 3). In the segment of the real
axis between the points w; = — w,?
and w; = -+ w;® the variable #; has
two real values, as results from Curve
II. (Fig. 1). In the vicinity of the Fig. 3.
turning points (%%, w,°) and (%)’

— w,%) Curve II. can be approximated by the two parabolae

w — 4 = cVwy — wy® and w — u® = ¢ Vwy + wy,

the contact being a simple one by supposition. This means that the func-
tion #; of the complex variable w; has, within the interval —r =w; = 4+
of the real axis, two branch-points w; = w,° and w; = — w,% each one
having the exponent 1/2, so that the totality of all values of this function
can be represented by means of a two-sheeted Riemann-surface. If
one connects, in the usual way, the two branch-points by a strait cuz,
function #; assumes a set of real values at the lower bank of the cut and
another set of real values at the upper bank, which joins continuously
the first one at the branch-points. We can, therefore, regard the change
of the variable w; from the value — w:® to + w,° and back again as a
circutt around the branch-cut.
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Summarizing we can say: according to the value attributed to the
constant « two cases occur. In the first case w; increases without limit
and #; is a periodic function of w;, having the period 27 (case of perio-
dicity). In the second case w; swings monotonically forward from the
limit — w," to the limit w," and backward from w,® to w,°, and the
analytical behavior of #; in the complex w;-plane can be represented by
use of a two-sheeted Riemann-surface (case of libration). The circum-
stances thus agree with those found by Haeckel for the special form of
kinetic energy studied by him; we are therefore also justified in naming
systems, defined by the Hamiltonian function (17’) or (13) conditionally
periodic systems.

By these considerations we have come to a knowledge of the path of
the variables #; and w;. We are now to say a few words about the cyclic
variables ws, w;, « -+ wy. In the usual case of a Hamiltonian function,
depending on the momenta quadratically, the cyclic codrdinates can
increase monotonically only; whereas in our case matters are more
complicated, and it is advisable, in order to elucidate them, to use
Jacobi’s function of action, having here the form

(25) W = Sudw, + usws + -+ + upwy.
The equations of motion then are known to be

oW
a%i

<

i (’i=2,3,"'f),

the symbols @; being used to indicate f new constants; or from (25)

(9741

dw;.
aui !

wi— W= — S

In the first (periodic) case, when expression (24) for u; holds, it follows
that
— aCo 661

w sin w I9¢c
W; — W; = — 1 — 1 —
¢ ¢ ou; ou; 2 Ou;

sin 2wy + ---.

The first term of the right side increases monotonically and without
limit. To this one-sided increase a periodic change is superposed, having
the rhythm of the variable w,, so that dw;/dw; may have different signs
for different values of wi, from which only the average change of w; is
one-sided. In the special case, where ¢y is independent of #; (dco/du; = 0),
the average change of w; vanishes, 4.e., we arrive at an oscillation between
two fixed limits, or a libration. The period of this libration coincides
with the period of the variable wi, whence we draw the conclusion that
this case occurs in so-called ‘‘degenerate’ systems only.
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Not very different from these are the conditions in the second case,
when w; performs a librational motion. #;, and consequently 9u:/du;,
can then be divided into a regular part, having the same value on both
banks of the branch-cut of Fig. 3, and into a branched part, having
opposite signs on the two banks. The contribution of the second part
to the integral is permanently positive, while that of the first one is
periodic and changes its sign synchronously with w;. Librational mo-
tions result, when the branched part does not depend on #%; Here,
too, this possibility is restricted to cases of degeneration.

It is known that degenerate systems can always be reduced to non
degenerate ones with fewer degrees of freedom.! We suppose this
reduction to be accomplished, and we are then permitted to put aside
the possibility of cyclic coérdinates, performing a libration. We arrive
then at the statement that, though these variables do not always increase
monotonically, their eventual fluctuations are of a regularly rhythmical
kind, so that their behavior is in agreement with their designation as,
““conditionally periodic motions.”

§ 6. INTRODUCTION OF ANGULAR COORDINATES.

As one of the chief properties of conditionally periodic motions, we
pointed out the possibility of describing them by angular codrdinates.
We now proceed to show that these coérdinates and the corresponding
canonical momenta can be found in our more generalized case in just the
same way as in the case studied by Haeckel. We shall, moreover, show
that everyone of the properties of these variables enumerated in §2
continues to hold. To avoid the asymmetry of notations coming from
the fact that the momentum #, is invariable while the other momenta
are constant, we shall consider the general case, denoting the codrdinates
of position by gi, g2, + ++ g7, the momenta by p1, - -+ p; and the constants
of integration by a1, @z, +-- a; (a; meaning the energy of the system).
We start by considering the function of action

f
(26) Wi(gs, -+ q7; az, +++ af) = ,Z,l./‘;bi(gi; ai, ++ op)dgs,

in which separation of variables is accomplished. Hence the equations
of motion follow by Jacobi's method of integration in the following form

AW L 9p;
4= = 3 s
day i=1 doy

oW L 9p;
=S =2 idg, (h=23 --f)
ap =1 Oap

dgiv
(26")

B: denoting f additional constants.

1 Cf. P. S. Epstein, l.c., p. 179.
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For the behavior of every individual variable g; we found in § 5 two
different possibilities: either the state of the system is a periodic function
of the same with the period 27 (i.e., the physical region of variability of
g: equals 27); or the variable ¢; performs a libration, while the corre-
sponding momentum p; is a function of ¢; br anched in a certain manner
(Fig. 3). In the last case the partial derivatives 0p;/das evidently
belong also to the same branching type. Therefore while g; performs a
libration and comes back to the initial value (resp. while g; increase
by 27), the integral

(27) Sin = f dgn ('Lv h = I, 2: Tt f))

changes by the ‘““modulus of periodicity "’
(28) Win = §6P1 d

The path of integration, symbolized by the circle at the sign of in-
tegration is, in the case of a branched integrand (lsbration), an arbitrary
circuit about the branch-cut of the integrand in the complex g¢;-plane
which, however, is not permitted to include other singularities of the
integrand.! In the case of unlimited increase of ¢; (periodicity) it is the
real path of integration from o to 2r.

On the other hand, if one inverts equation (27) and regards the variable
¢: as a function of s;, ¢; turns out as a pertodic function of this quantity
with the period w;;.2 This kind of dependence makes it possible to intro-
duce new variables by the relations

ow 1 &
— =i+ + —-Zwifwi,
day

g% = B = iﬂ_ Z WipWi,
due to Weierstrass, in such a way, that the state of the system becomes
periodic with respect to the same, having the period 2#. These are the
angular coordinates looked for, which, as follows from equations (29),
are in this case also linear functions of time.

Also the canonical momenta, corresponding to the angular codrdinates,
are expressed in the same way as in Haeckel's case. For it was shown
by the author (l.c.), that there they are given by the expressions

(30) u¢=—1—‘¢‘p1dgi, (1,: 1,2, ...f)’
27

1 Such an integral was called by Riemann a ‘‘complete’’ integral.
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the symbol of integration having the same meaning as in (28). These
equations can be regarded as f simultaneous relations between the con-
stants ai, ag, - -+ a5, on which the momenta p; are dependent, and can be
resolved with respect to these constants. It follows that

(31) ap = a,;(u]_, Ugy ** uf), (t=1,2,--- f),

where the first of these expressions gives the Hamiltonian function as
we shall see immediately.

We now multiply the equations (29) by das/du s respectively and add
all these equations

LOW dan 1 L o
2 —_— e = — w; ih— °
(32) ;aah dayp 2mi=1 =1 ¢ hauk
The path of integration in the formule (28) and (29) can be regarded

as a fixed one, independent of the constants «;, from which results:

au,;
aah

Wip = 2T

The second sum on the right of (32) hence becomes

L du; dan _ dus
h=1 day, Ouy auk’

while the left side is reduced to dW/duy:

oW _ o
Our i=10uy

1o

The quantities u; are independent, all derivatives vanish, therefore,
with the exception of the case 1 = k, in which the derivative becomes
equal to 1. From the sum on the right there remains the single term w;.
We can therefore draw the following conclusion: if in the expression (26)
of the Hamiltonian function, the constants a; are replaced by the new con-
stants u; by means of equations (31), the following relations follow

W = W(le tre gry Uy vt uf)y
ow

(33) pi =W 2
g ou;

According to §2 these equations give the analytical expression of a
contact-transformation, arranging the transition from the coérdinates
#;, wi. It results from this, that these latter variables are canonical
coordinates of the system. We have already pointed out, that the co-
ordinates w; are linear functions of time, and that the momenta are con-
stants. Lastly, the first of relations (31) shows, that the energy a; is
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expressed by the momenta #; only, and does not depend on the variables
Wi.
§ 7. CompuTATION IN THE CASE OF PERIODICITY.

The carrying through of the calculations given in § 6 generally presents
difficulties. In the special case, however, where the second term of the
Hamiltonian function is small compared with the first one (which is
always the case in the theory of perturbations), it can be carried out by
successive approximation. We shall show this first to be true in the
case of periodicity. Returning to the notations of § 4, let the original
codrdinates be #;, w;. By contact-transformation (15) we arrive at the
system #;, w;/, while u;”, w;” are the angular variables.

To begin with, we shall show how the momenta u; can be expressed
by the new ones #;” and how the energy « can be calculated in terms of
the momenta u;//. We shall however restrict ourselves to the degree
of precision required for the applications of Part II. (dealing with the
theory of dispersion).

The cyclic variables wy/, ws’, ---w; are disposed of in a few words.
Since librational motions are excluded (cf. the end of § 4), the integration
in (30) goes from o to 2w, and the momenta u; being constant, this
equation immediately yields

(34) u; = u;, (G=2,3 1)

This result remains true for the case of librations dealt with in the
next paragraph.

We now turn to the non-cyclic variable w," and consider the case in
which the corresponding momentum #,’ is periodic. The limits of in-
tegration of equation (30) are again o and 2=; if we introduce for u;

expression (24), there follows
7

U; = Co
and
(35) uy = uy" + ¢; cos wiy’ + ¢ cos 2wy’ + .-+,
where the coefficients ¢; depend on the constants u,”, - -+ u;”.

We now make use of our supposition that the quantity 5’ in the Hamil-
tonian function (17’) is small compared to H,’. This means that even
H{, neglecting the second term, gives a certain approximation to the
real motion, at least for short times, and that momentum u,” differs
only by a small quantity of the order &’/H, from the momentum u,’
defined by the first term
(36) w' = uy + 5,
where
(36" 8 = ¢y cos wi -+ ¢y cos 2w, 4 - - -.
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We suppose functions H,’ and 4’ in the vicinity of #,’ = u,”" to be
developable in powers of the small quantity &

{Hll(ul/) = Hl’(ul” + 8) = Qo + a16 + 0262 + ]
b/(ull) — b/(ulu + 5) = bl + b25 + b352 + vy

where we put for short

1 (omHY ) 1o
(38) an = — ( ’,, ) N n_’( s
6%1 uy/ =y aul uy/=wy’’

The indices are so chosen as to indicate the order of magnitude of
the term in question.
When inserted in equation (17) this leads to

g + @18 + @282 + -+ + (b1 + bed + -+ -) coswy = a.

(37)

We substitute series (36’) for § and arrange the expression according
to cosines of the multiples of w,’:

22151 +{7_z£1

(ao—a—l—
2 2

4 ---)+(a161+b1+ -+ +) cos wy
+G?+%?+m@+~)ammm+~-=a

This relation being valid for any value of w,’, the coefficients must
vanish individually, and this yields an infinite series of equations for the
calculation of ¢y, ¢s, ¢3, - -+ and @. Restricting ourselves to terms of the
first and second order, we have

b1

b
(39) €1 = — (1_1’ C2 = 50—113((11[72 — asby),

b
(40) @ =ay+ - (@shs — abs) + -+ -.
207

The problem of expressing @ and #;” in terms of #;” is thus solved,
but there remains that of expressing coérdinates w;” in terms of the
angular variables w;”” and of the corresponding momenta #;”’. According
to § 6 we have to apply contact-transformation (33), while Jacobi's
function (26) assumes the form

W= Suw'dw' + % w'w/,
=2
or by use of formule (34) and (36)
(41) W =Y u"w + c1sin w,’ + cs sin 2wy’ + -+ - -.

=1

Contact-transformation (33) yields besides the relations (34) and (36),
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already known to us, the new ones

361 . 1 J¢
sin wy + - -2

2 J= )
“2) w’=witg 2 ou

Sin2w1,+ Y (i=1y2,'.'f>,
whence by inversion (neglecting terms of the second order)

(43) w = w! — —'—95%; sin w,”.
0u;

The transformations, hitherto used, are well fitted for studying the
character of the motion, but they have the disadvantage of treating the
pair of codrdinates wi, #; in a different way from the rest. By this an
asymmetry is carried into the final formula which is not justified by
physical reasons.

For kinematical and dynamical conclusions it obviously does not
matter what kind of codrdinates are used in describing the motion, but
this is not so for the theory of quanta: as soon as quantum conditions are
involved an arbitrary procedure may have dangerous consequences.
The asymmetry should therefore be avoided, and this is easily accomplish
The asymmetry should therefore be avoided, and this is easily accom-
plished by use of a third transformation which is the inverse of (15):

W = ul”(mlwl’” 4+ .0+ mfwf///) + Z w'w!,
=2
(44) oW o_ L, W _ o,

] = Wi .
6wqj”/ auill

The formula for the direct transition from u;, w; to "', w;’"’ can be
drawn from (15), (35), (36), (42) and (44). Using the abbreviations

(45) —3& = maw; + mows + -+ + myWr,
—o(u", «+ - u"; 9) = cysin & + $cp sin 29 + ¢z sin 33 + - -,

where coefficients ¢; are to be regarded as functions of the new constants

us""!.  The formula looked for are found to have the perfectly symmetric
form
’"e do 7z dp .
i = U - i =W T W=1,2, 000 7).
46) wi= w5 W = w2 1)

These equations form a contact-transformation, which may be written
thus
s
W = Z ui,"wi + ¢(u1’/l, et uf”,; 0)7

=1
(4‘7) aW _ o aW _

- 1 ?
22 dw;

Ui
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In fact this transformation was introduced by Poincaré and adopted
by Whittaker, the form of the function ¢ being left provisionally in-
determinate. Whittaker’s results agree completely with the formule
of this paragraph, but assumption (45) for the form of function ¢ is
made by him quite arbitrarily, and it does not appear from his treatment
whether this assumption is always admissible; whereas from our treat-
ment it follows that this assumption is possible for a limited region of
values of the constant « only, but that it is necessary in this region.

Equations (39) and (40) continue to hold also if transformation (44)
is applied, @, and b, now meaning

9 a\"
(/2% =7—,LI~'[<m1E; -+ .. +m,5;> Hl] ’
49) e vy

1 d a \"
bapr = — | (m1 2+ oo, 2 )8 :
e n! [( ' Ouy + ! au}') ]u,,-:u;’”

§ 8. CoMpUTATION IN THE CASE OF LIBRATION.

The problem becomes more complicated than in the last paragraph
if the variable w," performs librational motions. Theoretically it is
always possible to represent the integrand of (25) in terms of a single
variable, introducing %, by means of the equation of energy (17):

_ ’
wy = arccos%w—l)
whence
a — H1I(u1,) .

’ [ ’
Su/dw, = fu,'d arccos o)

But practically this way turns out to be very tedious. In computa-
tions of moderate precision one succeeds much more quickly by using a
method explained in the following lines which forms an important part
of our communication. But I have had no experience as to which pro-
cedure is more convenient in calculations of great accuracy.

To make clear the idea of our method, we shall consider the special
form, under which the case of libration appears both in the theory of
three bodies and in the theory of dispersion (keeping in mind that the
scope of application of this method is a much larger one). In the prob-
lems mentioned, librations occur only when the equation of energy (17’)
assumes the special form

(49) HyY + 28Vuy -cos wy/ = a,

where #;" has a small numerical value and H, and B8 are functions
developable in powers of #:/, which may depend on the constants
uy’, -+ u as well.
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We make use of the expansion

H{'(u) = ao + a1us + asus” + - -+,
B(u1) = B1 + Baui' + B3u1’2 4o

where 8 is not equal to zero. It follows from the equation of energy that:

(51) (a0 — o+ 28 w/if{ cos wy + aluﬁ
+ (Qﬂl \1%1, COS wl’ "I- dzu1’)%1' + e = 0.

(50) {

This series converging more or less rapidly, we can provisionally neglect
terms of higher order in #; in order to get an approximate value of #%; by
solving the remaining equation, and then build up an expansion of #; by
taking into account the neglected terms one after another. We have
seen in § 5, that, looked at as a function of the complex variable w;,
the momentum #; has two branch-points with the exponent 1/2. The
point of our method is to form the expansion in such a way that every indi-
vidual term of 1t shall be of this type of branching.

We easily arrive at such an expansion in the following way: We denote
the totality of all terms of relation (51), with the exception of the first
parenthesis, by A

(52) A '=,(262 Vuy' cos wy + asu)uy + - -
and thus write that equation in the form
a— a-+ A+ 261\/u_1' cos wy’ + awuy’ = o,

which can be formally solved for V'u;

) Vu)/ = — B cos wy’ =+ L B2 cos? wy + ai(a — @) — aiA.
53 o 4,

If squared, and at the same time expanded in powers of the small
quantity A, this equation gives
u = %{ ® + B2 cos? w, F 261\/5 cos w,’
1

(54) ¢ , ,
B1 cos w; 1.a,%3; cos w;
—a1(1¥ N3 )A ;. em YT
with the abbreviation:

(55) ® = B2 cos? wy’ + ai(a — ao) = B2 + ai(e — ao) — Bi* sin® wy'.

One gets the first approximation by entirely neglecting the quantity A

(56) u, = ié {® + B2 cos? wi’ F 2B V@ cos wy’},
ay
(56" Vi = — B cos wy’ & ~ Vo,
aq ay
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This approximation is sufficient for treating the case given in Com-
munication III. The following point in these equations is remarkable:
1, being real by its physical meaning, Y& cannot become imaginary, and
consequently Vi’ always remains real also. It follows from this that
u,’ is always positive and never passes through the value .’ = o.

The second approximation results, if the first one is carried into the
correction term of the first order with respect to A, and if correction
terms of higher order are neglected. To obtain the tkird, the second
must be carried into the terms of first order and the first into those of
second order, and so on. In any case u; is represented_by a series,
expanded in integer powers of V&, and this latter function V& is evidently
of the type of branching desired.

At every step of approximation the momentum acquires the form

(57) u) = F(cos wy’, V®),

where F is a rational function of the two arguments. Hence, according
to (30), momentum #,", corresponding to the angular variable results in
the form

(58) w' = ;— ‘SEF(cos wy', N®)dw,'.
™

The path of integration in the complex w,-plane is here a circuit
around the two branch-points A, A, of the exact function %, which
do not coincide exactly, but only approximately with those (Bj, By) of
the square root V@ (Fig. 39). A closed curve (c), however, which embraces
the first two branch-points, if plotted in a suitable way, encloses also
the latter two. We can therefor regard (58) at any degree of approxima-
tion as a ‘“complete” integral, encircling the branch-cut of function Ve,
which means a considerable simplification of the considerations.

Equation (58) gives us therefore ;" as a function of energy a. By
inversion (e.g., using successive approximation) the looked-for dependence
of energy on the momentum u, is found. For the purpose of Com-
munication II., the first approximation given by equation (56) is suffi-
cient: the part which is rational with respect to cos w,’ yields no con-
tribution to the integral, and this reduces to

(59) u! = —61—25§ VB2 + ai(a — ao) — B sin® wy'-d sin wy'.
Tay

Account is already taken in this expression of the double sign of the
square root, because, proceeding along the path of integration, the sign
changes automatically at the moment of passing from the lower to the

! We recall that in § 5 the accents at the letters were dropped.
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’

upper bank of the branch cut. We shall agree, that %, is positive,
which is true, if, 8; being positive, we attribute to the roots (56) and (56’)
the lower sign on the lower bank of the branch cut!. The integration
is easily accomplished and yields:

n _ B+ ai(a — ag) ,

(60) Uy ;
ary

from which the expression of energy looked for is obtained in the form

_ B

ay

(61) a = ap + au,”.

Without entering into the particulars of the deduction, we will give
the second approximation of the energy also:

2 3
a=ay— 5—1— - % (2182 — @9B1) + auy”
62 1 1
o - 461‘ (@182 — asfrus’’ + 5¥¢2’1/51"2-
at 8a7
It must be kept in mind that, for the momenta u,’, us’, - - - u;" corre-

sponding to cyclic codrdinates, relations (34) remain valid
(34) ui = ui’, (G=23""f)

and that the quantities ao, @, 81 are expressed in terms of the constants
ws', ', -+ u/. By (61) or by (62) the energy « is therefore given as a
function of the momenta #,"'(4 = 1,2, --- f).

In order to pass from the variables w.’, %" to the angular coérdinates
w;"’, we make use again of the contact-transformation (33). The func-
tion of action

s
W = Su/dw! + D u'w/
i=2

is now to be expressed in terms of the variables «;" and w,” which yields
according to (56), (61) and (34):
3 By ,
63) W= u'w/ + —= cos 2w,
=2 1

2t NaE Tt d s ,
+a_2 S Vatuy" — B sin? wy-d sin wy’,
1

) , oW

(64) Wy e u; = Swi

1 If By is negative, in all following formule of this paragraph the sign of 81 must be changed.
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From the first of the equations (64) there follows for ¢ = 1

. 1 .
(65) w," = w,’ — arcsin ( B__ sin w{) )
al\’ul"

or

Br . ] .

— sin w,! = — sin w,"-cos w;’ + cos w,"’ -sin wy’,
0'1‘\/%1

whence

sin wl' = - dl'\/ul’, sin ‘w1" ,

‘/ﬁf + aluy’ — 206 Vu," cos wy"’!

B1— a1 Vuy'" cos wy"’!

'Jﬁlz + alzul" —_ 20161 'J%l” COos ‘wl”

(66)

cos wy

Introducing these expressions into equation (56’) and taking into
account our convention with respect to the sign, we have

. I ——
(67) Nu = — o ‘/312 + atuy’ — 2a:8:Vu," cos w,".

Our relations (66) assume therefore the form

Vu," sin w,"’,

'J’I/tl, Sil’l ‘ZU1,

(68) Vu, cos w, = — b + Vui" cos w,”.

ai

If B8: is not positive, but negative, the upper sign of formule (56) and
(56”) must be chosen. Then in equations (59), (65), (66) the constant
B and in (67) the square root also undergo a change of sign, whereas the
final formule remain unchanged.

By means of the transformation (63), (64) it is also easy to express
the variables wy/, w3/, - - -w,’ in terms of the angular coérdinates. This,
however, is not necessary for the applications of Communication II.

By the special form of the energy equation (49) codrdinate %, is really
emphasized so that the asymmetry involved in contact-transformation
(15) is physically justified. A further transformation of these equations
is therefore superfluous in the case of this paragraph.

§ 9. WHITTAKER'S MODIFICATION OF DELAUNAY'S METHOD.
In our introduction we have already mentioned an investigation on
the theory of perturbations, due to Whittaker. The chief assumption
of his method consists in using expansion (45) for function ¢ of the

1 We write (—), making use of the abitrariness of sign at 1/#2”". The sign of 1/ %’ being
negative according to (56”), we shall ascribe to 1/ #+"/ also the negative sign.
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contact-transformation (47). As we showed in §7 this amounts to
supposing the momentum #,’ to be always developable into the Fourier-
series

1’ = ¢y + ¢1 cos wy + ¢p cos 2w, 4 - - ..

Whittaker thus makes the assumption that momentum u, is always a
periodic function of the variable w,’, whereas we showed in §§ 4, 5, that
besides this possibility there exists the other one of librational motion
and that in every individual case it depends on the numerical values of
the constants whether the one or the other alternative is obtained. We
see from these facts, that Whitiaker's method exhausts the problem not
totally but only in part.

That the case of libration is by no means of minor importance we
conclude from its occurring both in the problem of three bodies and in
the theory of dispersion (cf. Communications II. and IV.). Using
Whittaker’s procedure of approximation uncritically one always runs
the risk of applying expression (40) outside the limits of its validity, for
these limits cannot be determined from that procedure, but only from
general considerations such as those of our §§ 4, 5. We will discuss the
simple instance of the physical pendulum in order to show to what
mistakes one is liable to fall a victim.

Let ! be the reduced length of the pendulum in its mass, « the energy,
¢ the acceleration of the field of gravitation, and ¢ the angle of displace-
ment measured from the cénter of oscillation. Then the energy equation
is

(69) P+ pcosd =C,

putting, for short, u = 2m?gl* and C = 2mPa. According to (30) the
momentum corresponding to the angular codrdinate is then

1 ' I -
(70) u = jgpdz? = ;56 VC — p cos ¢ dd.

Even in this simplest case the two paths of integration, mentioned in
§8 4, 5 must be discriminated:

1. C > u, i.e., the pendulum swings over and performs a rotational
motion. This is the case of periodicity, for p is then a periodic function
of the angle & and the integration must be extended from o to 2w. We
reduce the elliptic integral (70) to its normal form

C%—”}LIZ" [ L, 9 dY \/ 2u
=T NI — k¥sin? - —, k= .
" \/71' 0 V! L CH+pu

With the assumptions made k is less than unity and the integral by a
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usual method becomes
= NC+ult — 32+ -],
whence
= g2 4+

(71) + 4u2 +

2. C < pu, this is the more usual case of the librational motion or oscilla-
tion of the pendulum. As shown in § 6 the integral must then be taken
in the complex plane around the branch cut of the integral. The modulus
kis larger than 1, and it is advisable to transform the integral, introducing
a new variable by the substitution % sin ¢/2 = sin ¢:

C+uf cos? Ydy -C—I-u[ I+“']
SN G L o

I — — sin?

and
(72) C=vz¢(1~;1:+.”>_%

We have therefore in the case C > u an expansion in decreasing powers
of %2, in the case C < u one in increasing powers of #. It is here quite
evident that the case of libration should not be overlooked and that
applying the expansion in decreasing powers to the case C < u is not
permissible. In most problems of the theory of perturbations the circum-
stances are not so transparent and must be carefully analyzed.

We admit that this case, discussed for illustration because of its sim-
plicity in calculations, does not entirely correspond to the conditions of
the perturbation theory: librational motion only occurs when the term
u cos ¢ is no longer small compared with p? but has the same order of
magnitude. One can therefore scarcely regard the oscillation of the
pendulum in the field of gravity as a perturbation of the rotational
motion without field. There are however enough cases in the theory of
perturbations in which a very small term produces a decisive change of
the analytical character of the whole problem. We have seen in § 4
that the derivative 8b/du; discriminates between periodicity and libra-
tion. Now just in the special case studied in § 8, we have b = 2B+Juy
and 0b/du; = B/Jui (neglecting small terms). Thus, if #; has a very
small numerical value, a very small perturbational term may have a
numerically large derivative and may exercise considerable effect.

10. ASPECTS OF THE THEORY OF QUANTA OPENED UP BY THIS METHOD.

In our preceding considerations we tacitly supposed that the un-
disturbed motion, given by the Hamiltonian function H; of equation
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(12), does not belong to the class of ““degenerate’ motions. With this
supposition we arrived at the conclusion that in passing from one approxi-
mation to the next one the momenta, suitable for quantization according to
(11), change by small correction terms only.

We will now drop this restriction and extend our considerations to
degenerate systems. The property of such systems which is most im-
portant to us! is the existence of one or several commensurabilities be-
tween the average motions (10), having the form

(73) BiQ + kaQ + -+ + B = o,

where ki, ks, -+ ks are whole numbers. The number of existing com-
mensurabilities we shall call the “degree of degeneration.” The highest
degree possible is obviously f — 1, only one of the variables w; remaining
independent. This highest degree of degeneration is reached by periodic
motions.

Among the terms of perturbation function (12) such may occur which
have just the argument

kywy 4 kows 4 - -+ 4 krwy,

where by k; are denoted the same numbers as in (73). Such terms can
properly be called “degenerate terms.” The special properties of these
degenerate terms appear, when transformation (16) is applied, for the
canonical equations yield

0H,

'(74) '5;;;=wll=k191+"'+kfﬂf=0.

Function H; is thus altogether independent of #," and is therefore a
constant, all other arguments (%, #s’, - -+ u/) of this function being
constant. We can combine this constant with the energy and write

(75) o =a— Hy,
whence (17’) assumes the simpler form
(76) b(’l/h) Cos Wy = o,

Now in this equation the term &(u,) cos w; is no longer a small correc-
tion term, but the only variable term. This circumstance requires that
a degenerate term produces not a small correction of the special codrdinates
justified for quantization, but a decisive change of the same.

For the convenience of the following communications we shall put
together -the formule for the treatment of degenerate terms. The
methods used in §§ 7, 8 cannot be applied here, and we will follow the

1 Cf. P. S. Epstein, Ann. d. Phys., 51, p. 179, 1916.
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procedure briefly mentioned in the beginning of § 8. We obtain

1 db
(77) e
Vpt — o
and according to (30) and (34)
I 1 db
(78) ’1/L1, = - — - du1
oS b0 e, =23, ).
Vb2 — o

By means of these relations «; must be determined in terms of the
quantities #;". The angular codrdinates then result from the contact-
transformation

f
W = Sudw, + Y uw;
=2

ow W

! = == U; =
aui’ t ow;

W;
where #; must be regarded as a function of %;’ and w; given by equations
(76) and (78). In this manner we obtain

’ 6%1

wy = fmdwlr

(79) 9
w,’:w.--l-f%dwx, (1=2,3 1)

Taking the logarithm of equation (76), we have
log & = log &’ — log cos wy,
and differentiating partially with respect to u,’

I 8b Ou, I db 1 da’

_b_ E‘);l au/ b au,-' - o au,-’

In particular: db/0u,’ = o, from which

Ouy b 1 9d’

ou’ ~ 9b o duy’
(80) Ouy
Qup _ b [10a” 1 0b
dui ~ ob|a du’ b ou)’

au,-

(7'=213:f>
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Finally:
[ i a_a.,__ —d———,_..ul_ ’
wy = o aul’ -f \/272 _ a/2
(81) 9o L
’ aui ’ _b.auli du
w/ =wi+ w4 S NS R
ouy’

From the above it appears that the degenerate terms are the most
important for determining the codrdinates of quantization. It is there-
fore desirable to have a method of separating them from the perturbation
function when the Fourier-expansion of the same is not yet found. To
such a separation the following simple consideration leads: Let the
perturbation function of equation (8) be formally expressed in terms of
the angular coordinates #;, w; of the first intermediate motion. Ascribe
to the variables u;, w; that dependence on time which they possess in the
first intermediate motion, 4.e.: #; = const., w; = Qi + 6;. If you form
the time average of R; for an infinitely long time, you obtain besides the
constant term of R;, independent of the variables w;, just the sum of the
degenerate terms which also are constant, the time dropping out from
them according to relation (73).

In this way we write

T
0 =Ry = lim —

R.dt.
T'=w T, 0 !

The time average being independent of the choice of cotrdinates, we
can express Q by any other set of codrdinates instead of the angular
variables provided that we ascribe to them that dependence on time
which they have in the first intermediate motion. In particular the
number of coérdinates of a degenerate conditionally periodic motion can
always be reduced by the degree of degeneration and there can be found
a special system of f — s separation variables.! Let these special co-
ordinates be denoted by ¢1, ¢s, - -+ gs—s, and the corresponding canonical
momenta by pi1, pe, -+ Prs, S0 that p; = pi(gs; a1, @, -+ - as_) where a;
denote the constants of integration. Then the time average (82),
according to a theorem due to Burgers,? can be expressed in the following
form, convenient for computation

— I
(83) Q=Ri=3 88 FRiFlgdg - dgs-s

1 P. S. Epstein, Lc., p. 179.
2 J. M. Burgers, Verslagen Amsterdam, 1917.
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where F and A are the two determinants

ap;
F= dap

dp;
A= Ifaah dg

When the highest degree of degeneration appears the undisturbed
motion is a periodic one, and the average for a long time can be replaced
by the average for a period. In this case our function Q is identical with
Bohr’s function ¥ by which the choice of coordinates is determined
according to his rules. Though Bohr's rules ave derived from an entirely
different point of view, they agree substantially with ours.!

Also in the other cases discussed by Bohr the directions given by him are
closely similar to ours. If the undisturbed motion is non-degenerate,
the effect of a very small perturbation depends essentially on the aperiodic
term (4.e., the constant term, independent of wy, - -- wy); for according
to formule (40) and (61) all other terms yield changes of energy, con-
taining the small quantity b; (resp. 81) quadratically. This aperiodic
term, if quantities of the second order are neglected, must be expressed
by the original coérdinates of the undisturbed motion so that the changes
in the motion produced by the perturbation need not be investigated
at all in this case.

In motions entirely or partially degenerate the degenerate terms must
be discarded one after another in the way described. If we denote by s
the degree of degeneration, the problem is reduced to a non-degenerate
one in s steps.? Therefore every motion to which the general theory of
this paper is applicable is in principle liable to rigorous quantization;
and in this consists the chief difference between our view and that of
Bohr, which makes us expect rigorous quantization to be impossible in

" most cases, and therefore, spectral lines to become diffuse. It is, how-
ever, to be pointed out that the convergence conditions of the procedure
become extremely unfavorable if several degenerate terms exist; so that
the determination of quantization coérdinates may become impracticable,
owing to difficulties of computation. But in any case much is already

’

(84)

(G h =12+ f—5).

1 We believe that in the text of this paragraph general and unambiguous directions as to
how such terms are to be treated are for the first time given. Boht’s (l.c., p. 55) assertion that
the integral must be taken between the limits 6 and 27 of his variables 3¢ appears to be a
mistake, for generally 8 has not the dimension of an angle. In discussing instances Bohr
and Kramers make use of special artificial met/hods, applicable to the cases in question only.

2 The case may occur that the disturbed motion is also degenerate, having a degree of
degeneration S (< s). Then the reduction is accomplished in s — S steps. This involves no
change in our conclusions, a degenerate system being formally reducible to a non-degenerate
one of fewer degrees of freedom.
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gained if a method is known by which the treatment can be attempted
generally, and carried through in part of the problems. In Communica-
tion III. we shall discuss aninstance of practical importance for this
case: the combined effect of magnetic and electric fields on a hydrogen-
like atom.!

It is an important question as to whether the resulting codrdinates
are independent of the arbitrariness, lying in the unrestricted choice of
the first intermediate motion and of the order in which the degenerate
terms are taken into account. As a matter of fact by a rather simple
consideration this independence can.at least be made very probable.
We shall, however, return to this problem at a later opportunity, and
will only mention here that in most of the applications the first inter-
mediate function has a physical meaning: it represents the original or
normal motion of the system, while the perturbation function gives the
effect of some external source of disturbance. By this the arbitrariness
is practically removed. It is moreover obvious that the order of treat-
ment is of no consequence if a greater number of operations is carried
through than the number giving the degree of degeneration; the system
is no more degenerate at this step of approximation and has therefore
one set of separation variables only.

As mentioned in the introduction, the above considerations were
worked out in 1917. The lack of agreement with experiment in the case
of the helium spectrum caused me however to reject the whole theory.?
But when Bohr in his above mentioned papers established nearly the
same quantization rules which follow from my method, my confidence in
it was revived. The scope of this method seems however to be confined
to motions of a single electron in a stationary field.

I should not like to conclude without expressing my sincere thanks to
Mr. I. S. Bowen, who kindly looked through the manuscript of this
paper, correcting and smoothing my English style.

CALIFORNIA INSTITUTE OF TECHNOLOGY, September, 1921.

1 Bohr declared this system to be non-quantitable, l.c., p. 93, 94; Abhandlungen iiber Atom-
bau, p. XVII, Braunschweig, 1204, if the directions of the two. fields enclose a finite angle.
But we shall see that it can be rigorously quantized from the point of view of our method.

2 Cf. P. S. Epstein, Die Naturwissenschaften, p. 230, 1918.



