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THE ELECTRON THEORY OF METALS IN THE LIGHT OF
NEW EXPERIMENTAL DATA.

BY P. W. BRIDGMAN.

SYNOPSIS.

Deviations from Ohm's Law at High Current Densities of g )& ro' amp. tcm. ' have
been detected in the case of Au and Ag foils, of the order of I per cent. Details will
be reported elsewhere.

Egect of Mechanical Tension on Electrical Resistance. —For Li, Ca and Sb, as in the
case of most metals, the resistance increases with the tension, whereas for Bi and Sr
the coefficient is negative. Details will be reported elsewhere.

Modified Electron Theory of Electrical Conductivity has already been suggested
by the author. It is assumed that the number of free electrons is relatively small;
that their mean free path is many times the atomic diameter and depends on the
amplitude of atomic vibration; and that the natural velocity of the electrons has the
equipartition value. It is here discussed in the light of the above new experimental
data. The deviations from Ohm's law support the theory since they require long
mean free paths. For normal atoms for which the resistance decreases with in-
creasing pressure, the electrons must pass directly from atom to atom through
intervening atoms; but for the abnormal atoms Li, Ca and Sb, with both pressure and
tension coefficients positive, the electrons seem to pass in channels between the
atoms, somewhat as in Wien's theory. Diagrams are given showing the relation of
the channels to the crystal structure. This simple conception enables the various
coefficients of resistance to be connected quantitatively. The tension and tempera-
ture coefficients are calculated in terms of the pressure coefficients and the elastic
constants and are found to agree approximately with the observed values.

Pressure Coegcient of the Wiedemann-Franz Ratio has been found to be negative
for nine out of the eleven metals tested; that is, the thermal conductivity increases
with pressure less rapidly than the electrical conductivity. Details will be reported
elsewhere.

Elastic 8'ave Theory of the Atomic Part of Thermal Conduction in Metals. —The
above result for the pressure coefficient means that an important part, probably at
least one third, of the thermal conduction in these metals is performed by atoms, a
conclusion confirmed by a comparison of Lorentz's theoretical value of the Wiede-
mann-Franz ratio with the experimental value. As a crude picture of the atomic
conduction, it is suggested that the atoms are arranged in coherent strings separated
from each other by gaps which each shift in position by the diameter of an atom
each time the string on either side is hit, just like gaps between strings of billiard
balls. Thermal energy is transferred when the gap shifts. By calculation, the
maximum rate of propagation of a gap comes out about half the speed of sound in
the metal, much less than the electronic velocity. The theory of electrical con-
duction already presented suggests that the length of the coherent strings of atoms
is the same as the free path of the electrons, thus making possible a connection
between the electronic and atomic contributions to thermal conductivity. If the
number of atoms is of the order of ao times the number of free electrons, as is to be ex-

pected from the above theory of electrical conductivity, then atomic conductivity
comes out of the proper order of magnitude. A discussion of the temperature and
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pressure coeKcients of the atomic conductivity adds further evidence in favor of the

probability of this theory. Comparison with other theories. It is similar to Debye's

concept of thermal cogduction in a crystal, but differs from Hall's ionization theory
which, it is concluded, probably can account for only a small part of the conduction.

INTRQDUcTIo¹

"N two papers in preceding numbers of this journal ' ' I have presented

certain theoretical considerations with regard to the electron mech-

anism of electrical and thermal conduction in metals. Since writing

these two papers, I have obtained three new sorts of experimental evi-

dence bearing on the electron theory. In the first place, I have succeeded

in detecting and measuring a departure from Ohm's law at high current
densities in metallic gold and silver. In the second place, I have meas-

ured the eifect of pressures to rs, ooo kg. )cm. ' on the thermal conductivity
of eleven metals. And thirdly, I have measured the effect of mechanical

tension on the resistance of those metals which are abnormal in that
their resistance increases under hydrostatic pressure. It is the purpose
of this paper to discuss the bearing of these new data on the electron

theory of conduction as I have previously given it.
The theory which I have presented is a free path theory. It differs

from the classical theory, which is also a free path theory, in the follow-

ing respects: the number of free electrons is supposed small compared
with the number of atoms, so that the free path is long compared
with the distance between atomic centers, and the variations of re-

sistance under changes of temperature or pressure are computed in terms
of the variation of free path, which may be found from the variation of

amplitude of atomic vibration, and in terms of the natural velocity of
the electrons, . for which the equipartition value is assumed, as in the
classical theory. The evidence for the equipartition velocity is two-

fold: it is required to account for the universal value of the Wiedemann-

Franz ratio, and it is also required to account for the universal value of
the temperature coefficient of resistance.

The evidence seemed to be that there are two essentially different

types of mechanism by which electrons pass through a metal. By far
the most usual type is that of those metals whose resistance decreases
with increasing pressure. In these metals it is probable that the electrons

pass d'irectly from atom to atom through the substance of the atom itself.
There are a few metals, however, whose resistance increases under

pressure. There are two possibilities in the way of mechanism for these
abnormal metals. In the first place, the mechanism may be like that

' P. W. Bridgman, PHYs. RHv. , 9, 269—289, I9I7-
2 P. W. Bridgman, PHYs. REv.p I7, I63—I94, I92I.
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above in that the electrons pass from atom to atom through the sub-
stance of the atom, but the law of force between atoms may be abnormal
so that there are abnormalities in the way in which the amplitude changes
with pressure (bismuth type), or the electrons may pass between the
atoms in natural channels, much after the manner of the theory of
Wien ' (lithium type).

The Evidence frogs Ohm's I.am.—The data are to be presented in detail
in another place. The experimental fact is that the resistance of gold and
silver in the shape of thin leaf has been found to increase by something
of the order of one or two per cent. at current densities of the order of

5 X to' amp. /cm'. Now J. J. Thomson ' showed long ago on the basis

of the classical theory that the resistance would be expected to increase
at very high current densities, because the velocity of drift imparted to
the electrons by the external field ~ould no longer be small compared
with the natural velocity of the electrons. It is evident that the velocity
of drift imparted by the external field will be greater the longer the free

path, that is, the longer the time in which the field has a chance to act
on the electron without interference. On the basis of the length of
free path assumed by the classical theory, which is equal to or less than

the distance between atomic centers, the departures from Ohm's law

would not begin to play an important role at currents below ro" amp. /cm'.

Since I am also assuming a free path mechanism, the fact that I find

departures from Ohm's law at densities so much lower than predicted by
the classical theory must mean that the free paths are much longer than

the distance between atomic centers. Now this is exactly the kind of

free path that other kinds of evidence have already made seem probable

to me, so that this new experimental fact affords confirmation of the

theory.
It is unfortunate that I can see no way of calculating exactly what

the free path is in terms of the departures from Ohm's law, Such a
computation involves a knowledge of the small departures from Max-
well's distribution law for the electrons at high fields, and this again

I believe involves a detailed knowledge of the whole atomic structure.

I am compelled therefore at present to leave this new experimental

evidence with the bare statement that it makes exceedingly probable a

long free path, and is in so far in accord with my theory.

Pffect of Pressure on Thermal Conductivity The data for.—eleven metals

are to be published in another place, to which reference must be made for

the details. Only normal metals, whose electrical resistance decreases

3 W. Wien, Columbia Lectures, I9I3, 29—48.
4 J. J. Thomson, The Corpuscular Theory of Matter, I9o7, p. gg.
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under pressure, were measured. The broad facts are that the thermal

conductivity may either increase or decrease under pressure. For only

two metals was the increase of thermal conductivity greater than the

increase of electrical conductivity; for these two metals (lead and tin)

the Wiedemann-Franz ratio increases under pressure, for the other metals

it decreases.
In my theory I took over without essential modification the classical

picture of thermal conduction as performed by the same electrons that
carry the current. The reason for this was that I could see no other

way of accounting for the approximate constancy of the Kiedemann-

Franz ratio for different metals, and this seemed to me the one most

striking and outstanding fact with regard to thermal conduction. So
far as the conduction of electrical current and heat is by the same mech-

anism, one may expect the effect of pressure on the electrical and thermal

conductivity to be the same, and hence the pressure coefficient of the
Kiedemann-Franz ratio to be zero. The new experimental evidence

requires therefore a reconstruction of our previous picture of the mech-

anism of thermal conduction. The modification is not very serious,

however, and does not require us to abandon anything of our previous

position. It has of course always been known that the picture of thermal

conduction offered by the classical theory is not complete in that it
neglects the part of the heat carried by the atoms. We now have to
inquire what the probable magnitude of this neglected part of the thermal

conductivity is, and whether it is not capable of explaining the new facts.
Kith regard to the probable magnitude of the atomic part of thermal

conduction, it is well known that the original value of the Wiedemann-

Franz ratio deduced by Drude from elementary considerations agrees
with the experimental facts much better than the more rigorous value
deduced by Lorentz, ' Bohr, ' and others. Lorentz's value is only two
thirds that of Drude, and Drude's is slightly less than the experimental
value. If we accept Lorentz's value as the one properly to be deduced
from the theory, and his work has been abundantly checked by others,
this would mean that the atomic part of the electrical conductivity may
be at least half as large as the electronic part. This is a fairly large
part to have at our disposal.

Now the electronic part of the thermal conductivity must increase
under pressure at the same rate as the electrical conductivity. But
the atomic part may conceivably either increase or decrease, and so the
pressure coe&cient may be either positive or negative. The only ab-
solute requirement here is that the total decrease of conductivity under

5 H. A. Lorentz, The Theory of Electrons, p. 6S.
N. Bohr, Studier over metallernes Elektrontheori, Copenhagen, rgxr.



P. W. BRIDGMA N. t
SECOND
SERIES.

pressure must never be so great as to more than use up the initial atomic
contribution, because the atomic contribution must always remain
positive. In the experimental paper this question is examined in detail,
and I have shown that there is never any trouble on this score.

Ke now have to consider more in detail what the nature of the atomic
part (more specifically, the part not determined by the classical electron
free path mechanism) of the thermal conductivity may be, and what
may be expected as to the sign of its pressure coefficient. The following

picture seems to satisfy the requirements as far as order of magnitude

goes, and has the advantage of using part of the same mechanism that
we have invoked to explain electrical conductivity. In the normal

metal I have thought of the electron as passing through the substance
of the atom, with a free path a good many atomic diameters long. A
crude picture of this state of affairs is that the atoms in a metal are
separated into many coherent strings, one string separated from the
next by a distance greater than the normal, that is, by a "gap." These
strings are in a constant state of flux, as the position of the gaps is con-

tinually changing. The length of the string is the free path of the
electrons for electrical conduction. The mechanism by which the gap
wanders about in the metal is an elastic mechanism; we imagine the
head of the string being struck by the rear atom of the string ahead of

it; the impacting atom sticks to the string, an impulse travels along the
string, and the rear atom Ries off, exactly as when a row of billiard balls

in contact is struck by a single ball head on. Under the most favorable
conditions the gap cannot travel ahead by more than the diameter of
an atom during the natural period of atomic vibration. Now the natural

period is known for a number of metals, and a numerical calculation
shows that for all metals this maximum velocity of propagation of the

gap is about one half the velocity of sound. This is much less than
the velocity of free flight of the electrons. At O' C. this latter is about
r.7 X to' cm. /sec. , and the maximum velocity of sound for any metal is

about 5 && ro5. This means that for the electrons the gaps are practically
stationary, so that our former picture of conduction is not at all affected

by the motion of the gaps.
Now the mechanism of translation of the gaps, that is, the sticking

of an atom to the head of the string and the flying off of one from the
rear, is evidently one that is capable of conducting heat, if there is a
temperature gradient in the metal. Precisely the same analysis may
be applied'to this case as to the ordinary kinetic problem of heat transfer.
The important feature is that the free path for heat transfer is the same

as the free path for electrical conduction. In my theory of conduction I
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have assumed that there is equipartition of energy between the atoms

and electrons. Let us call f(0) the energy of either atom or electron as

a function of temperature. Then for the part of the thermal conductivity
due to the atoms, the ordinary transport analysis will give the formula

8f
p~ = nl

d8

and for the part due to the electrons the same analysis will give

I
p, = —N,v, l —.'' d8

Here Ii/, is the total number of free electrons (that is, electrons which

take part in the conduction process) per cm. ', s, is the velocity of the
electrons, l is the free path, and n is the number of atomic transfers of

energy per second across unit section. Of these quantities n is the only
one requiring further discussion. Its exact value will depend to a high

degree on the structure of the crystal and the perfection of the 6t be-

tween neighboring atoms, but we can at least set an upper limit. The
maximum number of transfers of energy down each string of atoms is

evidently the frequency of atomic vibration, v, for this is the maximum

number of collisions of the head of the string with the rear of the next.
The number of strings crossing unit section is the number of atoms in

unit section, or N '/', where N, is the number of atoms per cm'. Hence
an upper limit for n is vN, '/'. If now we substitute this upper limit for n
in the formula for p„and take the ratio of the atomic to the electronic
conductivity, we get

The reasonableness of this may be checked as far as order of magnitude
goes as follows. In the first place, p,/p, must be in the neighborhood of
o.5, for the actual Wiedemann-Franz ratio is usually about 5o per cent.
greater than Lorentz's theoretical value. In the second place, my
theory of electrical conduction demands that N, jN, be large, perhaps
of the order of too or r,ooo. If the velocity of migration of the gaps
through the metal is the maximum, then ¹/N, given by the above formula
must also be of the same order, but since the migration velocity may well

be much below the maximum, we may expect Ii/, /E, to be smaller than
the above, but still materially larger than unity. I have made the calcu-
lation in this way, putting p,/p, = o.5, for the metals Al, Cu, Zn, Ag, and
Pb. Nernst gives the value of the frequency of these, and the other

W. Nernst, Wolfskehlstiftung Vortrage, Gottingen, xg14, p. 77.



constants are well known. I 6nd the following values respectively for
P /X. ; Io, 15, Ig, lg, go. The order of magnitude of these is hence about
what would be expected.

Another check as to the probability of this point of view is afforded

by the variation of thermal conductivity with temperature. My theory
of electrical conductivity gives a variation of electrical resistance as the
absolute temperature, which of course agrees very approximately with

the facts. Now theoretically the Wiedemann-Franz ratio is propor-
tional to the absolute temperature; this means that that part of the
thermal conductivity due to the electrons is independent of the tempera-
ture. This enables us to 6nd at once the temperature coefficient of the
atomic part of the thermal conduction. To find this, differentiate y,
logarithmically, obtaining

x dp, r dN, id', d df+ ——+ —1og

~e suppose, as always, that X, is constant, and since dp, /d8 is to be zero,
this gives

d df r dv. x
log

d8 dO v. d8

since v, is proportional to 8. Now differentiate p,„ logarithmicaHy,

obtaining

Now assuming that n is a fixed fraction of its maximum value, the varia-

tion of I with temperature is small, since that of its factors N„and v is

small, and may be neglected. (I have previously discussed the variation

of v with temperature. ) 8 Hence 6nally,

I dp~ I
p„d8 20

If now we attempt to allow for a change with temperature of the frac-

tional part of its maximum value which n assumes, the probability seems

to me that this fractional part will increase with rising temperature,

since the change in amplitude of atomic vibration with rising temperature

is large compared with the change in the distance of separation of atomic

centers. This would mean that the temperature coef6cient of the atomic

part of thermal conductivity is more nearly positive than —r/28.

8 Reference x, equation (4), p. 27x.
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We have now found that the atomic part of the thermal conductivity
decreases with rising temperature. The other part remains constant,
and hence we would expect the temperature coefficient of thermal con-

ductivity of all metals to be negative, and to be largest numerically
in those metals in which the atomic share in conductivity is largest.
Now a large Wiedemann-Franz ratio means a larger proportional atomic
conductivity. Hence if we plot Wiedemann-Franz ratio against tem-
perature coefficient of thermal conductivity, we would expect the high
values of the one to go with the high values of the other. I have plotted
these values in Fig. x for most of the metals of this paper. It js known
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Fig. 1.

Temperature coefficient of thermal conductivity (ordinates) against Wiedemann-Franz
ratio times xo (abscissae). The metals shown are as follows: x Cu, 2 Zn, 3 Ag, 4 Pb, 5 Ni,
6 Cd, vSn, 8Fe, 9Bi, xoPt.

that the temperature coefficient is extremely subject to experimental
error, and different observers do not always agree. I have used the
data of Jaeger and Diesselhorst, ' by far the best, who made all the dif-
ferent sorts of measurements on the same samples of metal. Only for
nickel do Jaeger and Diesselhorst not give the coefficient, and I have
taken the temperature coefficient of conductivity from another observer. "
All the metals of my pressure study are here included except antimony.
With the exception of platinum, whose temperature coefficient of thermal
conductivity is + o.ooo5, and hence is entirely out of the class of the
other metals, the correlation is strong between Wiedemann-Franz ratio
and temperature coefficient, and hence lends probability to our view.
With regard to platinum it may be said that its electrical resistance also
behaves abnormally with regard to temperature, since it is one of a very
few metals for which the curve of resistance against temperature is
concave toward the temperature axis.

W. Jaeger und H. Diesselhorst, Phys. Tech. Reichsanstalt, Wiss. Abh. 3, 269—425, x900.
M. F. Angell, PHvs, REv. , 33, 42x—432, x9xx.
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This point of view imposes a limit on the possible temperature coeffi-
cient of thermal conductivity. This must not be so high that the coeffi-
cient of the atomic part alone gets numerically greater than —x/20,
or about —o.oor. 8. This is true for all the metals above except bismuth,
which of course is abnormal in other respects. The restriction is most
exacting in the case of tin, but is still met with a few per cent. margin of
safety.

So much for the inherent probability of our picture of the part of
thermal conductivity done by the atoms. Now with regard to the
effect of pressure on this part of the conductivity, we may recognize
two opposing tendencies.

Differentiate p, and p, logarithmically at constant temperature,
obtaining

and

+ — —' +—Iog

We suppose that N, remains constant, and our assumption with regard to
equipartition also means that v, is constant at constant temperature.
Hence ( /ry, ) (Bp,/Bp), differs from (t/p, ) (Bp,/Bp), only by the term

(t/n) (Bn/Bp), . Now in general we may pnt n = pe%,"', where p is a
factor which at the maximum can reach only unity. The variations of

with pressure are comparatively unimportant, so that if P does not
change, the proportional change of n is determined by the proportional
change of Ir. This has been computed in a previous paper. " It is the
negative of the proportional change of amplitude, which in turn is ap-
proximately one half the pressure coef6cient of resistance. v therefore
increases under pressure, and at such a rate as to contribute to the atomic
part of the conductivity an increase about one half as rapid as the in-
crease of electrical conductivity. The other factor, P, however, is the
one that is likely to be important. Our previous discussion of the order
of magnitude of N, /Ã, shows that P is probably much below its maximum
value of I, so that there is plenty of room for variations in either direc-
tion. I do not believe that we can predict its precise manner of variation
until we know a great deal about atomic structure and the arrangement
of the atoms in the crystal. The factor P is a measure of the frequency
with which energy is handed on from one string of atoms to the next,
and it is also a measure of the speed of migration of the gaps through the
metal. Now a gap is a joint or 6ssure in the atomic structure due to

"Reference I, equation (g), p. 27I.
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temperature agitation. Its permanence, or its ease of migration, will

obviously depend on the details of the structure. It seems quite plausible
to me that the speed of migration or mobility might either increase or
decrease under pressure, with the probability that in most cases it will

decrease, because with increasing pressure a group of atoms must find

it more. difficult to escape from their lack of fit by handing it on to the
neighbors. An escape from lack of fit would seem to involve a local and
temporary increase of volume, which is against the urge of the external
pressure. The mobility of the gaps may involve something analogous
to the internal viscosity of the metal. This has never been measured
under pressure, but it is known that the viscosity of liquids increases
greatly with pressure, and that the increase is proportionally greater for
those substances with a high absolute value of viscosity, so that it is not
unreasonable to expect a comparatively large pressure effect on the
internal viscosity of metals.

As a matter of fact, it does turn out in the majority of cases that the
increase of thermal conductivity is smaller than the electrical conduct-
ivity, or else is negative, so that the atomic part of thermal conduct-
ivity in many cases must decrease. In the case of lead and tin only is
the increase of thermal conductivity so large as to indicate that for them

P may increase with pressure.
This picture of the atomic part of thermal conduction is in many

respects hke Debye's" concept of thermal conduction in a crystal. He
has heat conducted by elastic waves, which are dissipated by the lack
of perfect homogeneity of the material. The waves have an equivalent
"free path" defined in terms of the distance between inhomogeneities.
He finds the cause of the inhomogeneities in local chance variations
from the mean density, which he calculates by the thermodynamic
formulas for "Schwankungen. " His local inhomogeneities evidently
function as my gaps, and in fact may be the same thing physically.
Debye did not discuss metallic conduction. My assumption that the
free path of the elastic waves is the same as that of the electrons seems
a most natural one, but so far as I know, has not been employed before.
Notice in this connection that the purely atomic part of the conductivity
in a metal is large compared with the total conductivity of such crystals
as rock salt.

There are other possible factors to be taken into account. In the
first place, the free path is not actually so cleanly defined a thing as we
have supposed above. As the electrons pass from atom to atom they
are subject to a certain amount of interference at every passage; there

~ P. Debye, Wolfskeblstiftung Vortrage, Gottingen, x9x4, 43—6o.
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is no catastrophic change every now and then as we have supposed, and
the free path idea can only be a rough description of an average state
of affairs. The same sort of thing must of course be recognized in apply-
ing kinetic theory to condensed gases or liquids. Kleeman has empha-
sized in his recent book' this indefinite character of the concept of a
free path, and has shown that a great many kinds of free path must be
recognized For any particular sort of phenomenon, mean free path is

defined in a corresponding particular way. The free path for viscosity,
for example, is defined in terms of velocity transfer, and for heat con-

duction in terms of energy transfer. Kleeman has shown that different
sorts of free path may differ in rare cases by factors of as much as ro.
We would expect to find the same sort of thing in a metal, so that the
free path of electrical conductivity (which is concerned with a velocity
transfer) would not be the same as the free path of thermal conductivity
(which is concerned with a kinetic energy transfer). This may account
partly for the difference between the observed and computed Wiedemann-

Franz ratio. It is also possibly conceivable that the two different kinds

of path should be differently affected by pressure, so that the pressure
coefficients might have opposite signs. The theory is not far enough

advanced, however, to allow us to make any quantitative use of it. All

that has hitherto been done is to calculate back from the experimental

data to show that there must be different kinds of path if the kinetic

formulas are correct. We cannot yet solve the direct problem of pre-

dicting in terms of the atomic structure what the relation between the
different sorts of path will be, and it is the direct problem that must be

solved for the present purpose.
There is a second possibility that I have considered. Professor Hali "

has a theory of thermal conduction in terms of the heat of ionization of

the atoms. This sort of a mechanism seems at first sight exactly what

we need to explain the pressure coefficient of thermal conduction, be-

cause it is natural to suppose that the heat of ionization becomes less as

the pressure becomes greater, and for this reason the thermal conductivity

would decrease with rising pressure. But there is another factor to
consider, namely, the number of ions per cm'. If this number is con-

nected with the heat of dissociation by the ordinary formula I = noe
—'"'

a decrease in the heat of ionization will be accompanied by an increase

in the number of ions, so that for this reason the thermal conductivity
will increase. A numerical discussion with probable values, for instance

assuming such a heat of ionization that the atoms are r/r, ooo ionized,

shows that the increase of numbers far overbalances the decrease of
' R. D. Kleeman, A Kinetic Theory of Gases and Liquids, Wiley and Sons, I920.
E. H. Hall, PHYs. REv. , II, 329, I9I8.
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heat of ionization, so that on the whole the conductivity will increase

under pressure, instead of decrease. Another objection to Professor
Hall's theory is that it gives no account of the Wiedemann-Franz ratio.
Of course a mechanism like that of Professor Hall's theory must be present
in the metal, simply because the presence of free electrons involves the

presence of ions, but my own feeling is that this part of thermal conduc-

tion is not so important as some others.
Effect of Tension on the Resistance of the Abnorrna/ Metals The.—ex-

perimental results are published at length in another place. Briefly,
the essential facts are these. There are five metals known to be abnormal

in that their resistance increases under pressure, Bi, Sb, Li, Ca, and Sr.
Of these only two, Bi and Sr, are abnormal also with respect to the eAect

of tension, in that their resistance decreases under tension. The re-

sistance of Li, Ca, and Sb increases under tension, as is normal. In the
detailed paper I have shown that the metals with a "Bismuth mech-
anism" would be expected to act as Bi does under both tension and

pressure, and that metals of the "Lithium mechanism" would be ex-

pected to act like Sb, Li, and Ca under tension and pressure. Considera-
tions were given that made it likely that both sorts of mechanism were
involved in Sr.

It is my purpose here to consider further the three metals Li, Ca, and

Sb. The account which I have previously given of the effect of pressure
and temperature does not apply to metals of this type. Further, the
three metals are of particular interest in the apparently great simplicity
of their mechanisms. This simplicity makes possible a deduction of
expressions for the temperature and tension coefficients of resistance in

terms of the pressure coe%cient and other unrelated data.
In metals of the lithium type, the electrons are to be thought of as

travelling in channels between the atoms. Under external changes,
the channels change in dimensions, both because the centers of the atoms
are changed in position and because the amplitude of atomic vibration
is changed. For those changes which take place at constant temperature
our problem is to deduce the changes of resistance in terms only of the
changes in cross section of the channels; if the temperature changes also,
the change of resistance involves both the change of dimensions of the
channels and the changes of velocity of the electrons with tempera-
ture.

The details of the computation will involve a knowledge of the crystal-
line structure and the relation of the channels to that structure. The
structure of lithium is known to be space centered cubic; '" the structure of

i5 A. W. Hlllt, PHYS. REV. , Io, 6S9, I9I7.
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calcium is face centered cubic; "the structure of antimony is complicated, '
consisting of two interpenetrating lattices, but it is very approximately
simple cubic in structure, and for our purposes it will be good enough to
treat it as simple cubic.

In Fig. 2 is shown a view of spheres piled in space centered cubic

Fig. 2.

One view of spheres in contact in space centered cubic arrangement. The shaded areas
indicate open channels.

arrangement, the diameters of the spheres being such that they are in

contact with each other. The dotted circles show the spheres in the
layer below the full spheres. The diagram shows that there are open
channels between the spheres through which the electrons may pass.
Of course if the atoms are not large enough to be in mutual contact, the
channels are even larger.

In Fig. 3 is shown one view of spheres in mutual contact in face centered

Fig. 3.
One view of spheres in contact in face centered cubic arrangement. Channels open where

shown by the letters if the distance between atomic centers is slightly increased.

A. W. Hull, PHYs. REv. , I7, 42—44, I92x.
R. W. James and N. Tunstall, Phil. Mag. , 4o, 233—239, x92o.
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cubic arrangement. Now in this structure there are no open straight
channels, but if the centers of the spheres are held fast, while their radii

decrease, channels open in the locations indicated by the letters, and the
plane section of the crystal becomes similar to that of the space centered

clystal of Fig. 2. Iri fact Flg. $ goes into Flg. . 2 on rotation through 45
(The distance of separation of the planes of the full and the dotted spheres
does not become the same for the two kinds ot' crystal, however. ) Now

the crystallographic evidence proves that in the crystal of metallic
calcium the atoms cannot be in contact, " arid hence we assume the
channels in metallic calcium to be in the place shown.

If the structure is simple cubic with the spheres in contact, the spaces
between the full circles of Fig. 2 show the location of the channels. It
seems more likely, however, that the atoms of Sb are not spherical, but
are more nearly cubic, filling the space more completely. One reason

why this seems probable is that spheres in simple cubic piling are ex-
ceedingly unstable, whereas cubes in simple cubic piling are as stable as
possible. Fig. 4 therefore probably represents a closer approach to the

5/

Fig. 4.

Gne view of approximately cubic atoms in simple cubic piling. The shaded regions show
open channe18.

case for antimony, the atoms having the shape of rounded cubes, and
the channels being in the grooves between the edges, as shown.

%e have now to consider the effect of temperature agitation on the
size of the channels. The atom is to be thought of as of a fixed size,
but at higher temperatures it occupies an effectively larger space in
virtue of its temperature agitation. Under these conditions the section
of the channel for all three types of crystal structure may be represented
approximately as in Fig. 5. The full circles show the outlines of the
stationary atoms, and the dotted circles the space effectively occupied
by them in virtue of temperature agitatio~. If we call "a" the radius
of the atom, n its amplitude of temperature vibration, c the width of the

~8 Reference x(~, p. 44.
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channel at the place shown, and I. the distance between atomic centers
in the direction indicated, then

Call 8 the closest distance of approach of atomic centers. There is a
relation between I, and 8 which is different for the diferent crystal
systems.

I
I

C

t

I

I
1

I

I
I

I

Fig. 5.

Shows the effective relations between the size of the atom, the space occupied by temperature
agitation, and the open channels.

Simple cubic, I. = Qzh,

Face centered cubic, 1. = 8,

2
Space centered cubic, I =

3

%e now assume the free path of the electron, /, to be proportional to
the section of the channel, which to a suKcient degree of approximation

we may put equal to c'. (The precise factor of proportionality between

the area of the channel and c' does not enter the result so long only as it
stays constant. ) The resistance is inversely as i, and directly as s, the

electronic velocity.
Our program calls in the 6rst place for a computation of c in terms of'

the pressure coefficient of resistance, and then for a computation of the

tension and temperature coef6cients.
Denote the resistance by m. Then at constant temperature,

const.
'N

Q2
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whence

(r/w) (Bzv/BP)~ is known experimentally. To find (Bc/BP)~ we have

= 2 — +

(BL/Bp) z may be found as follows. Obviously

and the cubic compressibility is known. %'e now need the absolute
value of L. The absolute value of 8 may be found in terms of the atomic
volume, V, and the mass of the hydrogen atom by the formula

B = 'r(m"V)'",

where y is a factor depending on the crystal system.

Simple cubic, y = x,

Face centered cubic, r = (2)'i' = I.I23,

Space centered cubic, p = —= I.O9.
22/3

Using the above equations for L in terms of 8, we can now find the abso-
lute value of I., and hence can compute (BL/Bp),

Our next problem is to compute (Bu/BP), In a .previous paper" I
have shown that

Hence we can find (Ba/BP)z if we can find a. To I:et u, we use the equipar-
tition law. In a solid, the atom has six degrees of freedom, and there-
fore its maximum kinetic energy is twice the energy of a gas molecule at
the same temperature. If the atom executes simple harmonic vibrations
of frequency v, at gpp Abs. we have

m—4x'u'0' = 2 )& gpp )& 2 g ip—i6
2

The problem of determining o. is reduced to determining v. The best
way would be from the specific heats at low temperatures, but the data

Reference x, equation (6), p. z7I ~



P. W. BRIDGMA N. t
SECOND
SERIES.

do not seem to have been obtained. In default of a better, we may use
Lindemann's formula in terms of melting temperature, atomic weight,
and atomic volume

p =3o8)( zo
m V'/3

We now have all the material to compute the required quantities,
eventually getting c, and also a, the atomic t. adius.

Our next task is to compute the changes of resistance under tension.
Our general picture is as follows. When the metal is stretched longi-

tudinally it contracts transversely, the channels becoming constricted,
and the resistance increases. Since the tension is applied at constant
temperature, we have as before ts = const. /c', and

vo BT g c BT ft

where T denotes tension. (Bc/BT), can be found from the equation
I. = 2a + 2a + c, provided we can get (Bu/BT)„ for (BL/BT)z may be
obtained in terms of-. the elastic constants. In fact

where 0 is Poisson's ratio, and 8 is Young's modulus. With regard to
the changes of n under tension, we do not know much. In the first

place, the substance becomes anisotropic under tension, so that changes
of n are different in diA'erent directions. It is probable, however, that
the changes of o. are not important, and we shall neglect them. This
may be approximately justified as follows. Neglecting anisotropy, a
thermodynamic discussion of the changes of the average 0, with tension

may be carried through on the same basis as the preceding discussion

for the changes of 0, with pressure. " In that analysis we should have

to replace P by T, and v (volume) by f (length). We would find for the
final result

Now' C&, specific heat at constant tension, is very nearly the same as C„,
and (8f/88) r = —',(Bv/88)„. Therefore the proportional change of n under

x kg. /cm. ' tension is approximately one third of its change under r kg. /-

cm.' pressure. But on the other hand, the changes of dimensions under

z kg. tension are considerably larger than under z kg. pressure, so that

Reference I, p. aux.
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it is probable that under tension changes of u are relatively much less

important than under pressure. But an examination of the figures above

will show that even under pressure the changes of a are not important

compared with the changes of dimensions (L), and we shall therefore

neglect (Bn/8 T),
Hence we have

The tension coefficient is computed in this way and listed in the table.
The computed value is 2/3 the observed value for Li, and 3/2 of it for

Ca and Sb.
Finally we have to compute the temperature coefficient of resistance.

According to our previous theory the changes of resistance with tempera-

ture depend on two factors; one of these is the change of the velocity of
the electrons with temperature. This part of the change is r/28, and

is the same now as previously. The second part of the change of re-

sistance is due to the change of free path. For normal metals I have
shown that this change is also z/28. The free path mechanism of these
three abnormal metals is, however, entirely different from that of the
normal metals, and the previous analysis fails. Our problem is to re-

compute the second part of the variation.
Now for changes of temperature, the conditions are the exact reverse

for changes of tension. Here the changes of dimensions of the metal
are unimportant compared with the changes of amplitude of atomic
vibration. One may easily check this by a simple calculation. (I have
already gone into the matter in connection with the pressure effects.)"
In order to entirely get rid of the effect of changing dimensions, we will

compute the temperature coefficient of resistance at constant volume
instead of at constant pressure. The two coefficients differ by only a
few per cent. ; the exact formulas will be found in the place last cited.

For changes of resistance at constant volume we now have

To find (Bc/Be)„, we differentiate the equation I- = 2a + 2a + c, ob-
taining

2t Reference I, p. 272.
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But we have already found that

Hence finally

+ 2 0

The results of computation by this formula are given in the table.
The result is distinctly low for Li, but is as close to the experimental
value as could be desired for Ca and Sb. The agreement would be ex-
pected to be closer for the temperature than for the tension coefficient,
because there is here no assumption so questionable as our neglect of
(80./BT), in computing the tension coefficient.

Comment seems to be called for in one particular with regard to the
values found for lithium. The calculated atomic radius is so small
that the spheres of infiuence do n'ot overlap, and the effective section
of the channels is not in appearance like that shown in Fig. 5. I have
therefore made a more exact computation for this case, putting as the
fundamental equation

Area of channel = L' —2s(a + a)'.

The analysis may be carried through on the exact lines of the above,
except that instead of linear equations there are quadratics to solve.
The result differs by only a few per cent. from that found by the simpler
method, and it does not seem worth while to reproduce it. The essential
feature in determining the result is the variation of the channel as c'.
It is also to be noticed that the values found for the radius of antimony
justify our assumption of the rounded cube shape.

In connection with the small value of the effective radius of lithium
as compared with the distance between atomic centers in the metal, it
is interesting that Born" has recently arrived at a result of the same order
of magnitude for the diameter of the lithium ion in solution. His value
for the effective radius is o.4~™g Io cm. against 0.62 g ro ' cm. cal-
culated above. Born states that the nature of his approximations is
such that his result is small rather than large.

Our picture of the mechanism has been crude in the following par-
ticulars, among others. In the first place the assumption of the quantum
theory of solids, which is 'at the basis of the formulas for the variations
of n and v, that. the entropy is a function only of v/8, is probably not ex-
act, and at any rate should have more careful verification. In the second
place, Lindemann's formula for the frequency in terms of the melting

M. Born, ZS. Elektrochemie, a6, 3o4, zygo.
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temperature is known to be only an approximation for a number of sub-

stances. Thirdly, our assumption that the atoms act as if possessing a
well-defined bounding surface of surface of definite shape can only be an
approximation. In the case of lithium this approximation would seem

to be particularly rough when one considers the atomic structure of
lithium in terms of a nucleus and only three surrounding electrons. In
fact, it is most difficult to see how the atom of lithium can have such a
symmetry as to compel a crystal edifice of space centered cubic symmetry.

In view of the roughness of many of the assumptions it seems to me

that the agreement of the observed with the computed values is as close
as could be expected, and indicates that our picture of the mechanism
is correct in the essential features. It is to be remembered that, so far
as I know, there has been no previous attempt to account for the tension
coefficient of resistance, and also that there has been no account given
of the departure of the temperature coefficient from exact equality with

r/0.
THE JEFFERSON PHYSICAL LABORATORY,

HARVARD UNIVERSITY, CAMBRIDGE, MASS.


