
Second Series Jo,neo,ry, I922 Vol. XIX, No. J

THE

P::—::YSICA: R:":VI:":W.

THEORY OF LONGITUDINAL VIBRATIONS OF VISCOUS
RODS.

BY W. G. C~DY.

SYNOPSIS.

Theory of Iongitudinal Vibrations Bf Thin Rods, Taking into Account Damping. —
Starting with the general differential equation of wave-motion in one dimension
including a viscosity term, expressions are derived for the wave-velocity and log-
arithmic decrement in the case of free vibrations of the rod. The velocity is prac-
tically the same as for undamped vibrations, while the decrement is proportional
to the viscosity and to the frequency. The equation is also solved for the case of
forced vibrations due to telo simPle harmonic forces at the ends, equal in amplitude
but opposite in phase. If the damping is small and frequency, ~/am, is near the
resonance frequency, coo/~ir, the expression for the displacement of the end of She rod
is very simple: $ = (4Xol/7rGB) cos 8 sin (cot —8), where tan 9 = —air(co0 —co)/c008,

8 is the logarithmic decrement per period, l the length of the rod, Xo the maximum
value of the periodic stress, and G Young's modulus. It is shown that this expression
may also be ob't'ained by reducing the rod to an equivalent system possessing one
degree of freedom.

$ t. General Egualiovs of Wave 3fotion sn-Rods Our st.a—rting point
is the following equation, which is exactly analogous to that for plane
waves in an extended medium

a'r a'r a'—= I' +Q—
BP Bx~ Bx~8t

g is the displacement, at the time t, of that cross-section of the rod whose
undisturbed coordinate is x. P is de6ned by the equation I' = G/p,
where G is Young's modulus and p the density. I' is therefore the square
of, the wave-velocity in the absence of damping. As long as lateral
effects can be ignored, it does not matter whether the material is isotropic
or not: G is in any case the modulus along the axis of the rod. For
brevity, we call Q the "viscosity, " and treat it as a constant of the
material, implying thereby that it is independent of the frequency. Its

~ See, for example, Lamb's Dynamical Theory of Sound, xgxo, Chap. Vl„or Lamb' s
"Hydrodynamics, " Igr6, Chap. XI.
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possible dependence upon frequency can be tested by experiment. We
shall leave aside all consideration of the mechanism by which the energy
is dissipated in the material, and assume nothing further than that the
frictional force is proportional to the rate of deformation. The dimen-
sions of Q are [L'T—'].

Since in this paragraph we are concerned only with damped sine-

waves of any length, we may write the solution of (t) thus:

g &
—g'I a—bt

where
b=q+j~

and A is a quantity dependent upon boundary conditions. k is the
wave-length constant, it the attenuation-constant (that is, attenuation
with time: attenuation in space need not be considered). &u = 2irf is

% ~

the frequency-constant, or angular velocity.
On substituting (s) and (2a) in (z), and equating real and imaginary

parts, we derive the following relations. For the attenuation-constant,
we find

The wave-velocity is

40
C

k

"=
2

Q2k2

4
(4)

On substituting this value in (2), we find for the displacement at any

point

$ = Ac s"'"' cos (kx
—+ ~t)

From (4) and (5) it follows that

(5)

27r
k

X
(6)

where X = c(f represents the wave-length.
From (g), (6), and (6), the logarithmic decrement per period is found

to be
Qk2 m. (uQ

f 2f C

In order that a system of stationary waves may exist, the length l of
the rod must be equal to an integral number of half wave-lengths. If
this number is even, the center of the rod must also be free. Hence the
wave-length constant for the fundamental or any harmonic is, by eq.
(6), k = vrrrtP, in which tit is any positive integer. The value for tit = r
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gives the fundamental. From (g) and (7) it is evident that the damping

increases, while the wave-velocity decreases, with increasing order of

harmonics. For all practical purposes the change in velocity may be

neglected; hence (always ignoring lateral effects) to a very close degree

of approximation the harmonics have frequencies 2, 3, 4 ~ times the

fundamental frequency.

$ 2. Forced Vibrations. We w—ill first solve the problem for the motion

of a rod whose center is fixed, and at whose opposite ends two longitudinal

simple-harmonic forces of like amplitude but opposing phases are applied;
for the present paper originated in connection with a study of high-

frequency vibrations of piezo-electric crystals and mathematically, the
problem stated is identical with the problem of piezo-electric excitation,
in which an impressed alternating electric 6eld produces an alternating

longitudinal mechanical stress, which at any instant is uniform through-

out the rod, and numerically equal to the 6ctitious stress at either end.
The identity of the two problems follows from the fact that the terminal. .

conditions are the same, being expressed by eq. (t i) below.

Assuming throughout that a steady state of vibration has been reached, ,

so that the decrement q/f is compensated by an equal and opposite in-
cremerit, we write the solution of (t) in the form

in which A is a complex function of x, involving both the amplitude of P

and the phase-difference between P and the impressed forces.
After the usual differentiations and substitutions, we find

822

Bx
= pe

in which

(io)

%e take the origin at the center of the rod, so that the latter extends
from —I/2 to + I/2. Let the impressed periodic stress at the ends of
the rod have the form X = Xo cos cot, or, in exponential form,
X = XpE & ' (dynes per cm. '). Then at the end, where x = I/2,

where G is Young's modulus as before.
Equation (9) is now integrated, the constants being determined from

(t i) and the fact that, when x = o, t = o and A = o. In order to
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save space, we omit the steps of the solution, which is most conveniently
expressed in the form'

Xo sinh yx
Gy ylcosh—

2
(»)

Since, by eq. (xo), y is a function of the fundamental constants, it is

evident that from (xs) the amplitude and phase of the motion at any

point along the rod can be derived.
From here on we shall be concerned only with the motion at the ends

of the rod. The value assumed at the ends by A, which we will call Ap,

is obtained by setting x = I/2 in eq. (r2):

Xo
Ao = —tanh —~

Gy
(~s)

g 3. In order to apply the last equation to actual cases, and in par-

ticular to use it for the determination of Q, it is necessary to reduce it to
a more workable form. Upon reduction of (to), having regard to (g),

(4), and (6), we find that, as long as Q is small,

(t4)

This equation holds to a high degree of precision, even if the logarithmic

decrement is as large as o.z.
On substituting this value of y in (x3), and making obvious reductions

and approximations, we arrive at the following expression for Ao, which

is very accurate as long as Q is small enough to be ignored in (4) and e
is small in comparison with ~:

Xp $ 2~@
Ao = —— —+ jb = k&+ jk2

4~2+2 ~0+ 8'
COp

in which the real coefficients k& and k2 are written for brevity. coo is the

angular velocity at resonance (see footnote under $ 4), and n denotes the

difference uo —co, ca/2s being any frequency not far from resonance;

e may therefore be regarded as a measure of the dissonance corresponding

to any frequency.
From (x5), together with (8), we readily find for the displacement at

the end of the rod at any time t,
~ rn the abstract of this paper which appeared in the PHvsrcAr. REvxEw, Vol. r5, p. x46,

zgao, the factor sinh yx was erroneously printed as sin yx.
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Here

and

k = 5p cos (» vp)

$' = k'+k'
COp8

tan p
= hp/hg ——

27rn

(s6)

(sZ)

The phase-angle y is 9o' at resonance, and passes through most of the
range from o' to r8o' in the region close to resonance.

CI4. Eguioalent System with One Degree of Freedom T.h—e fact that,
with stationary waves, all parts of the rod agree in phase, suggests that
a simple method of analysis may be reached by substituting for the
actual rod an equivalent system possessing only one degree of freedom.
We will therefore consider only the fundamental frequency.

The transition is easily made. In accordance with well-known prin-
ciples' the equivalent mass M is found to be equal to half the actual mass
of the rod, or 3f = ~pSe, these symbols representing density, length,
breadth, and thickness respectively.

In place of Young's modulus we use the coefhcient of stability, or
"equivalent stiffness" g, which, close to the resonant frequency, and
when the damping is small, is expressed as

~'beG
g = 3EGop

21

This equation follows from the resonance relation ppp = 2prfp, and the
fact that c = VG/p = 2fpt Mand. g correspond to L and s/C in an
electric circuit having concentrated, as con trasted with distributed,
constants. '

The equation of motion is

8x lx
M—+N —+gx = Fpcos ~t.dP dt (s8)

The relation between x, the equivalent displacement, and the actual dis-
placement f of the end of the rod, is given below. Fp is the amplitude
of the equivalent impressed force. The resistance factor, N, bears to
the viscosity Q the relation N = prppheQ/2t This is p. roved hy equating
the decrement N/zfp3II with the value given in eq. (p).

~ See, for example, Lamb's Dynamical Theory of Sound, zgzo, p. x3.
2 Strictly, coo is the angular velocity when the amplitude of the velocity Ch/dt of the equivalent

mass M is a maximum under forced vibrations. The maximum amplitude of equivalent
displacement x comes (under forced vibrations) at the angular velocity 4(g/M) —(¹/aM'),
while the angular velocity of free vibrations is l(g/M) —(¹/4M'). The distinction between
these three values may under ordinary circumstances be ignored.
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The steady-state solution of (t8) is

in which the maximum displacement is

(i9)

(2o)

and in which
&oM —( g/co) aim

tan 8~=
cuoB

(z i)

approximately.
Equation (&9) e~presses the motion of the rod on what may be termed

the "concentrated mass" method, in distinction from the "distributed
mass" method 6rst considered. It is easy to show that, near resonance,
x and f agree in phase (cf. eqs. (r7) and (2r)). In order to make the
amplitudes of x and & identical, the force Ii must be suitably expressed
in terms of the impressed stress Xo. To this end, we consider the
expression for $0 in (Ip), and making use of eqs. (y) and (xs) and the
expressions for P, k, and lit', we 6nd that at resonance $0 = &&o&&/i00&.

Upon equating this with the expression for maximum xo at resonance
from eq. (ao), namely x, = Fo/u&0Ã, we see that Fo must have the form

Fo 2X058s

This establishes the validity of the method of concentrated mass,
for all cases in which the damping and the range in frequency are both
small enough for the expression for g to be satis6ed to the desired degree
of precision. Equations (r9) to (2I) are, under the restrictions just
named, as accurate as those under the more general theory, and are much

more convenient. Their application in the solution of problems with
piezo-electric quartz rods, and in particular their use in determining the
value of the coef6cient of viscosity, must be reserved until later.

Finally, the following simple expression for the displacement of the
end of the rod, in terms of' the fundamental constants, may be derived
from equations (t9), (2o) and (z2), together with the expression for Ã
in terms of Q:

Ol
cos 8 sin (i0l —8).

+GAL

It is easily verified that this equation also follows from equations (i6)
and (ip) according to the more rigorous method of "distributed mass. "
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