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We continue our investigation of an Ising model with immobile random impurities by studying the spin-
spin correlation functions. These correlations are not probability-1 objects and have a probability distribu-
tion. When the random bonds have the particular distribution function studied in the first paper of this
series, we demonstrate that the average value and the second moment of the temperature derivatives of
these correlations are inhnitely differentiable but fail to be analytic at T„ the temperature at which the
observable speci6c heat fails to be analytic. When T&T„we consider S„(l)= lim „(oo, oo &, ).This limit is
not independent of l. In the special case that the random bonds are symmetrically distributed about the
1th row, the geometric mean of S„(l)is computed and shown to vanish exponentially rapidly when T —+ T,—.
We contrast this with a lower bound that shows that the spontaneous magnetization can vanish no more
rapidly than T,—T, and present a description of how the local magnetization S„(jt)& behaves as T —+ T,—.

1. INTRODUCTION
' 'N the first paper of this series' we study the effect of
~ - immobile random impurities on a magnetic phase
transition by constructing a modification of the two-
dimensional Ising model in which all vertical bonds

E2(j) connecting the jth row to the (j+1)th row are
the same, but E&(j) is allowed to vary randomly from
row to row with a, probability density E(E~). We
explain in that paper the connection of this modification
of the experimental situation, ' set up a general formalism
for computing the free energy, and, finally, for a par-
ticular narrow P(E~) of width iY ', compute the terms
in the specific heat that do not vanish as A ~~.

In 1944, Onsager' computed the free energy of a
"pure" two-dimensional Ising model. The next proper-
ties of this lattice to be investigated were the spin-spin
correlation functions which were studied by Kaufman
and Onsager4 in 1949. In this paper, we continue to
follow this historical order of development and study
the spin-spin correlation functions for our random
Ising model.

Our model of random impurities is in reality a collec-
tion of model. s, each of which has a certain probability
attached to it. This collection possesses a well-defined
set of thermodynamic properties because, as shown in
I, the free energies and hence the specific heats of each
lattice in the collection possess with probability 1, the
same thermodynamic limit. This basically results from
the fact that the free energy is a property of the lattice
as a whole and does not depend. on the detailed arrange-
ment of bonds Em(j) in any particular lattice. The

'B. M. McCoy and T. T. Wu, Phys. Rev. 176, 631 (1968).
This paper will henceforth be referred to as I.' See also B. M. McCoy and T. T. Wu, Phys. Rev. Letters 21,
549 (1968).

~ L. Onsager, Phys. Rev. 65, 117 (1944).' B.Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949).

dE2
&(E2) =p(X)=%4 ~X~ ', 0&X&AD

8E

where
=0,

X= tanh'(E2/kT),

otherwise (1.1)

k is the Boltzmann's constant, and E is large. In this
case the spin-spin correlation at fixed separation never
deviates to order 1 from the corresponding correlation
function for Onsager's lattice. This is a consequence of
the fact that the result of Kaufman and Onsager' is a
continuous function of T. Therefore we concentrate not
on the spin-spin correlations themselves, but on their
first temperature derivative. For Onsager's lattice these
d.erivatives are known' to diverge when T~ T, as
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spin-spin correlation functions, however, are quite
diferent from the free energy in that they do depend
on the detailed arrangement of bonds E2(j) relative to
the locations of the two spins which are being correlated
and therefore are not probability-1 objects. Thus, in
contrast with Onsager s lattice, it is necessary, if one
wants to characterize these spin-spin correlations
completely, to compute not only their average value
but also their probability distribution. The computation
of these probability distributions is quite involved,
however, and for the purpose of obtaining explicit
results we will restrict our attention to the average
value and the second moment. In other words, we carry
out the program outlined in Sec. 5 D of I.

Since there are many features of the correlation func-
tions of our random Ising model that may be contrasted
with the correlation functions of Onsager's lattice, it
seems appropriate to outline the comparisons to be
made before carrying out the detailed calculations. As
in I, we have obtained explicit results only for the par-
ticular distribution function
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in~ T T,—~. In the random lattice speciied by (1.1),
the average values of these derivatives diRer to order 1

from their Onsager values only if T—T,=O(X '),
where T, is the temperature found in I where the specific
heat fails to be analytic. For nearest neighbors these
average values are given by (3.38), an expression which
is infinitely diRerentiable but not analytic at T= T,. A
similar behavior is shown to obtain for other separations
besides nearest neighbors.

The variance of (d/dT)(op prrrp) is , studied in Sec. 5.
It is seen in (5.4) that this variance is of order 1, whereas
(3.38) shows that the average values contain a term
proportional to in%'. We conclude Sec. 5 by demonstrat-
ing that the variance of (d/dT)(o p, prJr, p) is also in6nitely
differentiable but not analytic at T= T,. We also show
that the singularities of the second moment and of the
square of the average value are diRerent.

Perhaps the most interesting feature of the spin-spin
correlation functions of Onsager's lattice is not the
singularity at T= T of (&rp po'r, ) for' f and m 6xed, but
rather the behavior when T is fixed and. the separation
between the spins tends to infinity. %hen T&T, in
Onsager's lattice,

lirrr ( p rrorp)= M, P,
l~m2~oo

(1.3)

where M is the spontaneous magnetization. Ke investi-
gate such limits in Sec. 6 and show that in sharp con-
trast with Onsager's lattice the correlation functions
for any lattice in our collection will not, in general,
approach a limit when T& T„. and the separation tends
to inf'rnity. For the particular case of (or, prrr, )=S (f),
a limit will exist when m ~~ but for any given lattice
of our collection the value of this limit depends on /; in
other words, 5„is not a probability-1 object. For tech-
nical reasons, this lack of a probability-1 limit prevents
us from determining the spontaneous magnetization. Ke
are, however, able to compute the average of lnS„(l)
in the subset of lattices which obeys the additional sym-
metry restriction

(1.4)

that the spontaneous magnetization is bounded below

by
const E(T,—T) as T ~ T,—. (1.6)

Therefore, although the specific heat computed in I has
an infinitely diRerentiable essential singularity at T„
not all physical quantities behave so smoothly. This
variety of singularities in physical quantities near T, is
further explored in the next paper of this series, where
we use the methods of this paper to study the boundary
magnetization and boundary spin correlation functions
of a half-plane random Ising lattice. We are then able
to obtain several more lower bounds like (1.6) which are
extremely interesting because they imply that much of
the usual "critical exponent" description of critical
phenomena does not apply to our model.

The calculations needed to make precise the results
just outlined are rather lengthy. For ease of reference,
we have developed all the general formalism needed
for the entire paper in Sec. 2, and we suggest the reader
consult this formalism only as it is actually applied in
the later sections. The remainder of the paper is devoted
exclusively to the case (1.1). In Sec. 3 we study the
average value of (rf/dT)(o'p, p rrr ) by combining the
results of Sec. 2 and those of I. Section 4 and Appendix
A are devoted to a rather lengthy and intricate analysis
of a two-dimensional integral equation derived in Sec. 2.
Ke advise the reader to omit this analysis until he sees
how the final results are used in Secs. 5 and 6. We make
this suggestion because approximations (4.70), (4.83),
and (4.87), which we actually use in the sequel, are
much simpler than the more refined analysis that is
needed to justify them. Section 5 is then devoted to the
study of the variance of (d/dT)(o'p, prrr, ). We conclude
in Sec. 6 with the computation leading to (1.5), and
several speculations that lead to a qualitative picture
of the behavior of S„(l)'"as T~ T.

2. FORMULATION OF PROBLEM

The Hamiltonian of our Ising model of 2% columns
and 23K+1 rows is

In such a symmetrical row we show that as T ~ T,—,

(1nS„(l))rr,= —pr lnrV'+1V '-(T—T,) 'Cr ' ln2

+Cp inL(T, —T)1V j+O(1), (1.5)

where Cr isgivenby (3.1) and Cpby (6.32) and ( )r.,
denotes the average over all sets {Ep). This result
imphes that the geometric mean of S„(l) vanishes ex-
ponentially rapidly as T —+ T,—,and we speculate that
if we allow more randomness by totally violating (1.4)
this geometric mean cannot vanish less rapidly. How-
ever, it must not be inferred from (1.5), that the spon-
taneous magnetization vanishes exponentially rapidly as
T~ T,—,for in the following paper' we demonstrate

' B. M. McCoy, following paper, Phys. Rev. 188, 1014 (1969).

where o;,~= &1 and j labels the row and k the column
of a lattice site. We apply cyclic boundary con-
ditions in the horizontal direction by identifying
&=%+1 with k= —%+1, but we do not connect
rom !)t|; with row —9R.' Ke begin our study of spin-
spin correlation functions by remarking that the cal-

' In I we numbered the rows 1 &j&5K. The slight change in the
present presentation is made for convenience in computing the
correlation functions.
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culation of Ising spin-spin correlation functions in

terms of appropriate determinants given by Montroll,
Potts, and %ard~ may be applied to the system de-
scribed by (2.1) for any set of energies (E&). Further-
more, because of the boundary conditions imposed,
we may use the methods of IV ' to calculate the elements
of these determinants. %e will sketch these develop-
ments in Sec. 2 A to establish a notation. For a thorough
explanation of the techniques we refer the reader to
these papers. In Sec. 2 8 we combine these results
with those of I to compute the average over the set of
energies (Ep) of the nearest-neighbor correlations

( opo'pp)) and (ap o pp)). In Sec. 2 C we derive the more
complicated expressions that are needed to study
average spin-spin correlations other than nearest
neighbor. Finally, in Sec. 2 D we study the probabilistic
nature of these correlation functions by computing the
secondmoments of ((rp ptT) p) and (op oo p)), an, dof ((f/dT)'
X(p'p, op'), o) and (d/dT)(noo&o, z). ,

A. General Correlation Functions

The work of Ref. 7 may be directly applied to any of
our lattices to show

A (j, k; j, k+1)= A—r(j, k+1; j, k)

'0 zg 0 0'
0 0 0 0
0 0 0 0
.0 )~0 0 0.

for —5R& j&5K and —X+1&k&X—1

A(j, k; j+1,k)= —Ar(j+1, k; j, k)

(2.4b)

0
0
0
.0

0 0 0
0 0 0
0 o „(.

)
(2.4c)

0 0 0

for —017& j&SR. All other matrix elements of A are
zero [compare (2.6) of IV].

Because our lattice is translationally invariant in the
horizontal direction, we may follow IV to find [analogous
to (7.1) of IV]

A '(j,k; ',k')=(2X) 'Q e"&" P')[B '(f))] ' (25)

for —BR& j&BR—1 and —X+1&k&X, and

A(j, X; j, —%+1)= Ar(j, —K—+1; j, K)
= —A(j,0; j,i) (2.4d)

where

j=o
f(y '+Q) fb') ~ (2 2) where the sum is over

8= pr(2n —1)/2K, n = 1, 2, , 2K
s, = tanhPEp, s,( j) = tanhPEp( j), (2.3)

and B(8) is a 4(25K+1)X4(2M+1) skew-Hermitian
matrix dedned by

U D
—1 —1

1 —1
0

—1 0.

R
R 0
L —1—age "

B ("=U
D. 1

1+sate"
0

—1

1

(2.6a)

for —BR& j&BZ,
0 0 0 0
0 0 0 0B,,;+~(8)= B;+~; (fj)=—
0 0 0 2'2j j~.0 0 0 0.

(2.6b)

for —5R& j&BR—1, and zero for all other values of j
and j'. We are interested in the K ~~ limit where (2.5)
becomes

R
R 0

=L —1
A(j,k; j,k)=

U
D. 1

U D
1 —1 —1

0 1 —1
0 1

1 —1 1.

do eio(k ')[BP—1(g)], (2
—

7)(2 4a) A '(j,k; j',k') = (2pr)
——'

with p= (kT) '. The matrix y is the nonsingular sub-
matrix of the matrix 5=A' —A, where A is the antisym-
metric SK(23%+1)XSK(23K+1)matrix whose Pfaffian
is the generating function for polygon con6gurations
drawn on the lattice of Fig. 1. The Pfafhan of the
matrix A' is the corresponding generating function of
the lattice obtained by drawing a path from the site
(0,0) to the site (l,m) and replacing every bond s, on
that path by s; '. Finally, Q is the submatrix of A ' in
the subspace determined by y.

To compute the matrix Q we recall from IV that A

may be explicitly written as

for —5R& j&BR and —X+1&k&X,

' E. W. Montroll, R. B.Potts, and J. C. AVard, J. Math. Phys.
4, 308 (1963}.

8 B. M. McCoy and T. T. Wu, Phys. Rev. 162, 436 (1967}.
This paper will henceforth be referred to as IV.

Rearrange the rows and columns of 8 so that all the
E,L rows (columns) precede all U, D rows (columns)
and call the resulting 4(2017+1)X4(25K+1) matrix
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Then, following (7.3) of IV, we obtain

~11 b12 ~11 ~11 ~12 b22

It 21 ~22
/ 1

X( ), (28)

FIG. 1.Ising lattice with bond
weights z1 and z2{j).

Z, (l)
ZI Zl

0, -{)

z~(0)

ZI ZI

(0, -I)

Z,(-l)

ZI Zl
(-I, -I)

Z,{l)
Zl

(I, 0)

Z2(0)

Zl

(0, 0)

Z2H)

Zl
(-l, o)

Z,(l)
ZI

(l, I)

where

0
[b»']j j=

L —1 —.-;1e—"

D

1+-1e"

0
(2.9a)

zero and we have used the notation of I:
a = —2si sing

I
1+sic'

I

b= (1-si"-)
I
1+sic*'I '.

The required inverse of b»' is

(2.10a)

(2.10b)

0
(2.9h) [b„~ 1]. ,-

(1+sic") '

—(1+sic-*')—'

6j,,~ . (2.11)
0

U D To compute [b22'] 'we define the 2(2BR+1)X2(29R+1)
matrix C{~,) to be b..' with U and D interchanged.
Then from (2.8)

[8 ']jj,,') = [C ']1) j.), with 1= b', D, /'= O', D. (2.12)

Explicitli-,
E

(1+=ie") '

l21]j,,=
D —(1+:ie")—'

I
(1+2 e

—i8)—)

(2.9d)
(1+2 e j8) 1——

D U
D M, b

for —DR& j&OR (2.13a)
U —b —ia

for —W, & j&AIt, and and
D 0 0

s )j)) c, ,„=—
) c'],„,, =(29e) " ' '

22(j) 0
0

U 0
[b22 ]j,j+1 [b22 ]j+1,j

D 0
for —3R& j&!IR—1, (2.13h)

for —0R& j&AR —1. All the other matrix elements are so that

—OR
D

0 za
U —b

—OK+1 —1
D I)

0
D

0
U

1 OR —1
D U

I&

U
D
U

1 D

OR —1 U
OR D
OR U.

—OR+1 Il

—1—1
C{gj= 0

0

—z.(—OR} za

za tl—b —ia z2( —1}—z, (—1} —b —ia

—z2(0)

z2(0}

ia

—ia z2(OR —1) 0—z2(OR —1) ia b
0 —1a

Ke compute C ' from the formula

[C ']j),'1 =c foa,tcor ,C1 /j1det C'l', j,j.I(2.15)

To evaluate the required cofactors, we define C(j, j')
as the determinant of the 2(j' —j)X2(j'—j) matrix
obtained from C{~,} by deleting all rows and columns
with an index less than j or greater than j', iD(j, j') as

the determinant of the [2(j'—j)—1]X[2(j'—j)—1]
matrix obtained by deleting the last row and column
from the matrix defining C(j,j') and iD(j,j') as the
determinant of the [2(j' —j)—1]X[2(j'—j)—1]
matrix obtained by deleting the 6rst rom and column
from the matrix defining C(j,j'). Because CI jr2I has only
three nonvanishing diagonals, we readily may use these
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definitions to obtain for —%&j'& j&:&](.

LB '»n, ~'o= LB—'] n, ~*

with [B ')&D,pv given b& (2.16). Similarly,

(o p, pap, g) = (1—zg')(2or)-'

=ib& &' g— zo(n)C( —OR, j' —1) X de e' B '(8)or. on+z. i, (2.20)

XD(jOR)/C( —OR, OR), (2.16a)

[B '] v, 'v= —[B ']'v, ,v*

= ib ~" g z&(n) D( 1R—, j')

XC(j+1, ;lR), 'C( —OR, OR), (2.16b)

LB 'Even= —
, LB '3&'D.,v*

=b' "+' g zp(n)C( —OR, j' —1)
n=j'+1

XC(j+1,OR)/C( —OR, Oll) (2.16c)

and for —'.%&j'&j&~R

LB ']~n~ v= LB—')rv. ~D'

=-b-'-' ll "( )D(-OR, j')
n

XD(j,OR)/C( —OR, Oli) . (2.16d)

All other inverse matrix elements are now readily ob-
tained by combining (2.16) with (2.8). In particular, for
the later study of spin correlations in the horizontal
direction we need

[B '),e, ,a= [B '), I,, L=il 1+ zge*'I

X fC( —OR, j—1)D(j,OR)+D( —OR, j)C(j+1,OR))/

C(—OR, OR) (2.17a)

and
Cb j ')/D(j, j')=*V,J' ~l)

C(q, &')/D(q, q') = &(q, 7'; S), —
(2.21a)

(2.21b)

where the dependence on 8 will be suppressed unless
needed. We may then use the identities

with [B ')pr„pn given by (2.17). These correlation func-
tions clearly are functions of all the Ez(j) but the de-
Pendence on Ez(j) is not the same for all j, so, in con-
trast to the specific heat, they are not probability-1
objects, even as Ot ~oo. For example, (ao, oo'i, o) is zero
if Eo(0) =0 and is 1 if Ez(0) = oo, regardless of what the
rest of the energies Ep(j) are. Thus, (op, oo'i, o) and
(op, pep, q) themselves are random objects and to charac-
terize them, we need to know their probability distribu-
tion functions. Even these single-probability distribu-
tions will not completely characterize these nearest-
neighbor correlations because, for example, (v, ov, +io,),
and (a'& po'&+y, p) are not independent random functions
for jW j .To characterize the spin-spin correlations corn-
pletely, we need a joint probability distribution function
involving all possible spin correlations in the system.
In this paper, however, we are not interested in all the
information contained in these probability functions
and confine ourselves in this section to the average
value and the average of the square of the spin-spin
correlation functions.

To study these averages, it is convenient to define
the ratios

and

[B '],I,n= —[B '],n, ,c*=(1+z,e")-'
X(1+(1+z,e+) '[iD(—OR, j)C(j+1,OR)
—iC( —OR, j—1)D(j,OR) —2bC( —OR, j—1)

XC(j+1,OR))/C( —OR, OR) }. (2.17b)

C(—OR, OR) = C(—OR, j)C(j+1, OR)
—zz'(j)D( —OR, j)D(j+1,OR)

= —D( —OR, j)D(j,OR)

+boC( —OR, j—1)C(j+1,0R) (2.22)

y=
10 D —[zo '(0) —zz(0)]

and (2.2) gives for any set of interactions (E&}

(ao, oai, o) = ['1—zo'(0)) (2or) '

, (2.18)

B. Average Nearest-Neighbor Spin-Spin Correlations

To compute (&ro, oo&o) from this, formalism, we join
the site (0,0) to the site (1,0) by a straight line. Then

00 10
V D

00 U 0 :.o '(0) —zo(0)

and the recursion relations

(
C(—OR, j+1) a'+b' a)

D( OR, j+1) a —il

and

C j—1, 5R a'+b' a

/1 0 /C( —OR, j)
(2.»a)

(0 z '(j) kD( —OR, j)

X de B '(&)in, ov+zp(0), (2.19)
0 s22 j—1 —D j,Biz
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to write

B-'(8)in, p(g= z, (0)«s,'(0)
+x(—OR, 0; 8)x(1,0R; 8)} ' (2.24a)

and

B '(8)pL, ps ——(1+sic") '(1+(1+sic") '

X «'[x(O, OR; e)+*(-OR, O; e) -2.)
—2b "[x(0,0R; 8) —u][x(—OR, 0; 8) —u) }
X«b'+[x(O, OR; e) u—)[x( OR—, O; e) —u)}-i). (2.24b)

argument to obtain the desired results

X de dx v(x) dx v(x) [soo+xx)—'

where zo (0)= zo = tanhPE, , and

((uo, pul, o))ioo dE2 F(E2) z2 1+(1—zo')(2pr)

(2.31a)

The existence of the thermodynamic limit is equiva-
lent to the existence of limoit „x(j,OR) and limps „
Xx(—OR, j). These limits will in general be different for
the different lattices of our collection. Ke also see from
the recursion relation (2.23) that lim, „x(j,OR) and
lim, „x(—OR, j) will not exist. However, we saw in I
that the work of Furstenberg' may be applied to the
recursion relation (2.23a) to show that for OR fixed and
',)g+ j ~co

x( OR,—j;8)~x, (2.25)

where x is a random variable whose distribution function
v(x) is independent of the boundary conditions imposed
on the recursion relation and satisies

((uo.pup, i))s,=(2x) ' d8 e"(1+zie ")

X(1+sic P)
—' dx v(x) dx v(x)

ib(x+x 2u) —2(x —u) (x—u)—
(X 1+ . (2.31b)

b'+ (x—u,)(x—u)

Finally, it should be remarked that these two average
neighbor spin-spin correlation functions are closely
related to the free energy studied in I.In particular, from

b2

v(x) =-
(x—u)'

a2+b' —ax
dx'

~

x'1p x' v(x'). (2.26)
x—8 where

F = —P '1 i m (2OR+1) ' lnZ,
c}t|'-voO

(2.32)

(2.33)
Here, as in I, we have de6ned

and BPF„
Ei((uo—pool)) so, (,E2(uoouio)) s,, , (2.34)

BP

(2.28)g= tanh2PQ

Similarly, we see from (2.23b) that for OR fixed and

x(jOR; 8) ~ x, (2.29) The derivative of (2.34) with respect to T is the specific
heat and because both spin correlations in (2.34) are
monotonic nonincreasing, we conclude that the leading
singularity of the temperature derivative of the nearest-
neighbor correlation functions at T, must be the same
as that of C.„".This will be seen in more detail in Sec. 3,
where we study the derivatives of these functions for
the special case (1.1).

where x is a random variable whose distribution func-
tion v(x) satisfies

r(x) = v(x). (2.30)

Therefore, if a function depends on the collection of
energies E,(j) for OR&j &j, —and ji& j&OR with
jo& ji only through the ratios x(—OR, jo) and x(ji,OR),
we may average this function over these energies in the
OR~op limit by replacing x(—OR, jp,' 8) by x and
x(ji,OR; 8) by x and averaging the resulting expression
over x and x using v(x) and v(x). Since zo(0), x(—OR, 0),
and x(1,0R) [and similarly x(—OR, 0) and x(0,0R))
depend on independent subsets of «Eo}, we use this

C. Other Average Syin-Spin Correlations

To study spin correlations other than nearest
neighbor, we need more information than that provided
by v(x). To see this, consider (ap, po'p, o). Using the form-
alism of A, we find for any collection «Eo}

1i(li)dX= P(F.,)dE,, (2 27) and h is given by (2.1), we have

where

(op, pop, p) (1—si')' Pf
~

A '(0)0; 0,1)iiio A '(0,01 0,1)ioL (zi zi) ' A '(0,0; 0,2)RL
A '(0, 1; 0,1)iiL A '(0, 1; 0,2)aL —(si ' —zi) ' (235)

A '(0, 1; 0,2)LL

'(o,k; o,k')uL —(zl i)
—'bi. o i p

———(1—":i') '(2pr) ' de ei&" "&P(1+=ie'~e)(1y e~e) —i

a

X &+—
ib[x(0;OR)+x( OR, 0) —2u)——2[x(0,017)—a][x(—011., 0) —u)

(2.36a)
b'+ [x(0,0R) —u][x(—OR, 0) —u]

' H. Furstenberg, Trans. Am. Math. Soc. 108, 377 (1963}.
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.'1 (O,k; O,k')11R= 1 (O,k; O,k )rr =(1—.1") (22r) dH e'&" "')ppb[x(0&oil) —x( —o1l, 0)]

X{b2+[x(O,OR) —a][x(—OR, 0) —a]) '. (2.36b)

This expression is markedly different from the expres-
sions for (ap, po'p 1) and (0'p, po'1, p) because it involves not
just a single integral over a function of x( —:1R,0; 8), but
a, product of such integrals which may be rewritten as a
double integral over a function of x(—M, 0; 81) and

x( —OR, 0; 8,).The ratios x(—OR, 0; 81) and x(—Oll, 0; 82)

involve exactly the same subset of {E2), so they are
not statistically independent, and, in fact, are identical
if 81——82. Therefore, we cannot average (2.35) over {E2)
by replacing these ratios by x and averaging over
v(x).

To study averages of functions of x(—OR, 0; 81) and

x(—M, 0; 82) over {E2) as ',1R ~pp, consider the direct
sum of two two-dimensional vector spaces, one vector
space containing the vectors

which are described by a joint probability density func-
tion v(x1,x. ; 81,82). The recursion relation (2.37) implies

(a +b,')x;(—OR, j)+a;z2'(j)
x;(—OR, j+1)= . (2.40)

a;x;(—OR, j)+z22(j)

v(x1,x2) = dx p(X) Zxy dx2

The distribution v(x1,x2) is characterized by the property
that if we transform x1 and x2 according to (2.40) and
average over E, with the probability density P(E2),
then v(xr, x2) will transform into itself. Therefore, as

in I,

(
C(—OR, j; 81)

D(—OR, j; 81)

and the other containing the vectors

& P+bP)x'+

(X6 xg ——
ayxg'+X

(a22+ b2') X2'+ a27
X6 x2 —— v xg', xg' . 2.41

a2x2'+X

Because v(xr, x2) is a probability distribution,

In this four-dimensional space, we have the matrix
recursion relation analogous to (2.23a)

dXI dx2 P(X1,X2) = 1 . (2.42)

C(—OR, j+1;81)
D(—OR, j+1;81)
C(—OR, j+1;82)

D( —M, j+1;82).

a 2+$2
aj
0
0

ag 0 0
1 0 0

a22+ b22 a2

0 a2 1.
More specifically, if we integrate (2.41) over x1 (x2), we
recover the equation for v(x2, 82) [1(x1, 81)], and thus
conclude that

0 0 0 'C( OR&8)
0 z22(j) 0 0 D(—OR, j; 8,)
0 0 1 0 C(—OR —1, j;82)
.0 0 0 z '(j), .D( —OR —1, j; 8),

(2.37)

aIl d

dx1 v(x11X2j 81)82) =v(x2, 82) (2.43a)

and a similar set of equa, tions analogous to (2.23b)
involving —D instead of D. Here we have defined

dX2 V(xltxpq 81)82) =P(xi) 81) . (2.43b)

a(8;)=a;, b(8,)=b, , 2=1, 2. (2.3g) W'e also notice that if 81= 82= 8, then (2.41) is solved by

Ke may generalize our previous treatment by defining v(x1,x. ; 8,8) = b(x1 xp)v(x1) . — (2.44)

aIld
C(j,j'; 8;)/D(jj '; 8.;)=x;(j,j') (2.39a)

C(j,j', 8;)/D(j, j'; 8;) = —x;(j,j '), i = 1, 2. (2.39t))

The work of Furstenberg' guarantees that as j+OR~ ~,
the ratios x;(—OR, j) approach the random variables x;

Such a relation is expected since from (2.37) we see
that when 81——82 the ratios x1(j,j') and x2(j,j') are
identical for all sets {E2).

We may now average a function of x1(—')R, 0) and
X2( —OR, O) over {E2)by replacing x1(—OR, 0) by x1 and
x2( —M, 0) by x. and averaging the resulting expression
over x1 and x, , using v(xr, x,). In particular, we may
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to find00,04 0 ~ 2app y ithis procedure

QG

dx v(») ') dx2 v(x')X2)00,0«, 2 =,22r) '

e&()1P1(X1)X1)XPII &2(xl)*" ' —*.()2p, (x2,X2) 82) (2.45)

where

'() z e ')(1+ ' 'I;,(x,x; 8) ——e (1+
,b x+* 2,) 2(*—)(*—'

)1+
b2 g —g

dE2 ~(E2)v(x„x~ =
(2.46b)

aIid

)Lb2+ (x g) (x a)]
s may alsoconsider«ions .'

. In general,
These ab

and ((ao,o(11»era es ((ao, oa2 o»
correlation

the aver g
average spin

'
function

ompute an
d disti ibutionneeds(((ro,o(ro m))eo

t' 6eS the eqnatIO") whicli sa isp g] 7 m

,+I ),'O.ox

)g1X1 +~1

(- ~i. )x,'+o~'),
) (2.42)P XI)

g1X2'+»

(2.50a)

&2.50b)

z &)e"'I '2, &) sin8;
I 1+'I81

(...,2;
I
—,(1 z (J)-)

I
1+zl2

wheredk((I(")P Xl)
0

(2.50c)

,+& )o,'O.o,x), ) (2.4)) oV Xl )

~ (a')2
J

We also have th e relations

giXl

of itsles over one o i sf e integrate a vwhere i we
we obtain a correvanables,

earest-Neighborone Moment of Neares - r
C 1

e COm ute (&tro polo e, 'le matter to compIt ls a silllP e coI11

ppto average a rop
r as mentione in . 3 wevaria

'
bles. However, a

t mperature eriv
'

n functions, anest-neighbor correlation
&L(d/dT)(a(). ()a.i,())]2)x, an e
th h t l direction. Fromous quantity or

we may see tha

2.51a)8 82) =V(X2, 8„,T2)dxl P(XI,X2,' 1 2 =,' „T2

aIld

(2.51b)81 82) P(xl)81) Tl)dx2 V(xl)X2)

re lacen allows us to pthe last section ag o e na
an average over {E2) by an ap

&I:(d ldT)& o,o, )j')

T1 and (2) mean TII erscripts ( )
this pro«

where the sup
. We may average

t ection,

= T resPectively
e did in the lastintegra» over

obability functiond fm, ng a joint Pro '
241). FxPlicit y)(2.46a es

2

00,001,0,
dT

=(22r)-2 dE2 P(E2)Q |II1 d82 dx1

=l(2) '

0)(2)2]z.(0) &"Lzz(0) &'"d82 {I'1—z2 (

, (2.48)

dT~

R '+"'(0)&"}+x,&'—, ')(—Dlr. o)o, ")(r,oo) 7 .". "'
)

o)""3 (o)"'L 2(o)""d8, {I 'I —z2 0 z2
de

+xi")(—5R, 0 xl r )() Do)7 +„(o)r )))—

82
dx, {v(xl,x.)v(xl, x2X2X d&2 d&1

—r)D —)0

(1)&"' z ") z ""+xlxl) '+z2

(2)2 z (2)(z (2)2+x x ) 1+z2 2XL(1—"&')' .2

ilarl be compute yb use fents may sim y
'lit ~ functions of

'
ble functione to the two-vana efi e ourselves to

49) and use theseIn Sec. 4, we wiV (Xi )X2 ~ Il
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results in Sec. 5 to extract explicit information about and defining

(2.52).
l f''(&) = X(g) (($(//(f &) = ,'/'(( —'@X—(2/), (3.10)

3. AVERAGE TEMPERATURE DERIVATIVE OF
SPIN-SPIN CORRELATIONS

we have
(3.11)

Throughout the rest of this paper we confine our at-
tention to the power-law distribution (1.1) where V is
considered to be large. Furthermore, though all of our
results may be taken over to the more general case, for
the sake of concreteness we confine ourselves to the
ferromagnetic case z~)0. In I we showed that, for all

T with 8 much greater than A ' and for all t7} with

~

T T,
~

—much greater than X ', v(x) is well approxi-
mated by 8(x—x ), where x is found from (4.10) of I.
It is thus seen for

~

T—T, ~))X—' that (((rp papi))g',
differs from the value it has for a comparable Onsager
lattice with the same T„. and Ej only by a, term of order
S '. In this paper, we are not interested in such small
effects and concentrate on the region near T, where i}}

as defined by (4.18) of I is of order 1. Explicitly, we
recall [(4.19) of I] that to leading order in X '

8= Ci(T T„)v'= (T—T. )/v'4kp '(—1+spy')z ~'
X [Ei(1 zi, )+Epp(1 ——zp, p)+0(X ')], (3.1)

alld
(3.12)

z„'(1—z2,)/(1+z2, ) = 1. (3.13)

We may find (ap p(rp 1) either by using the fact that
when /2(P, )= b(X —li), v(x) =h[x —x(8; li)] or by using
the work of previous authors4' to write

To study ((d/dT)((ro, pa. p, i))z, when 8= 0(1), we note
that following the same order-of-magnitude arguments
of Sec.4 of I, we may show that if the 8 integra, tion in the
T derivative of (2.31b) is restricted to the region
(f(= 0(1), we retain all the dependence on B. This angular
restriction destroys the 5-independent constant but
this term can be regained by noting that when 8 —+& ~
we must regain the known behavior near T, of ((rp, p(rp, i)„
the nearest-neighbor spin-spin correlation function in

the Onsager lattice with the same E~ and 1,. In this
lattice E2= E~, where E2 satisfies

which defines the constant C&. Here the subscript c
means T= T, and we recall from (4.1) of I that T, is ((ro, o(ro, i).=(22r) '

determined from

d8 [(1 nie"—)(1 npe —")

so that
@=—

globo '"s,(1+z,) 2(728,

a= ,'. (/ 2hg'/2(t(+O(-E '),
and of the auxiliary variable [(3.12) of I]

2/= (x—xp)/(lipxp '+x),

where [(3.3) of I]

ln[s2, ' '(1—zi,)/(1+zi, )]=2$ '.
Recall also the definitions of (t( [(4.16) of I]

where
)&(I n, e "—) '(1—npe'2) ']"'-, (3.14)

ni ——si(1 —z2)/(1+z2), n2= si '(1 —z2)/(1+z2) 1 (3.15)

and the square root is defined positive at 8=2r. In
particular, it is easily shown that near T,

(3.3b)

—(a p, p(rp, i). kP, 22r '((1+zi. ')
dT

(3.4)
X[E,(1—s„)+E2'(1—z2, ')](ln(i T T.//T,)—
jlnjfp [El(zl +zi )+E2 (z2 +z2 )]}

x(8; 4)—=xo(8) = (2a) '(a'+ b' —Xp+ [(a'+ b' —li )-"

+4/1 a2]1 /2 }~ 1 jgT Ili 1 /2(t
—

(3 5)

The last relation is valid only when i}} and p are of order
1. Then, with the definition

(3 6)X((/) = v(X) (dX/di/),

we find from (4.6) and (4.23) of I that when (t(& 0,

where
X(~)~C ~2—le—2/Pp-$2/BNp

C/p ' ——2((t(/4lV)'Kp(y)

(3.7)

and Kp((t() is the modified Bessel function of the third
kind of order b. Finally, using the variable

(3.9)

+Eizi, '(1—zip)2 gd2p, E1+4E2'), (3.16)

v(x; —8) =v( —x; 8), (3.17)

we may combine the preceding results of I with the
temperature derivative of (2.31b) and recall that when
8= 0(1),

alld
b 2X +pPO)( (3.18)

(1+z„o)(1—z„)z .o—'= I+O(y —') (3.19)

where gd stands for the Gudermanian (gd2x= 2 tan '
&&tanhx) and to O($ ') we have been able to replace
E2 by L2 . We obtain the similar expression for ((ro oa 1 p),
by the replacement E&~ E2'. This is also correct to
leading order in S '.

If we now recall that
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((d/d T) (crp, pop, r)) 222

=2C01

II-))oq) I pytRIT&E-.I~& ~TG. ~IO~pF I.

the symm

82

(3.27), K(4) (4'+1)-)l.n

p 0etry under «
Onsager's lattice do ~

o e which is not ex-(3 26) o Iy I & . &, at all ternPe'»Id to all orders i

(2 34),t is possibledp IV(k)& (~)
to exp«ss R(b)
(433) of I:[I+]]j—'yKo+0( ) ' (3.2O)

where

~~ 1 —s2.)P) 2(1+s2 ~) sly 2r

X[@2(1—Etc

)j (3 21))+g,'(I—

(3.22)

Therefore, » @

dye '(P) 8'(5)L1+~

, ( +b, 4)
—~+0(b2 4')

~

and we obtain

2 &(]+S2c )L=kgb ~

ade exphc&t(32O) ~„- be
3 11) tbat ~

y2 dependence o
h @~~ and»sb& noting fro~. ( '

f Sec 4 of Ij,tbe beginning o

Ifr(() b($ —1 —b/4') '

0

erif directly
'

hout interest to vIndee, id 'tlsnot wit ou
our s ec; 1 case that

(3.29)
demonstrate

) 1 g(b)
that

a(b =—
This relationship may

(1 pp) (1+H)

(f—i C)(t "+k)

d. "-V[- (& '+"' '"

p

= —8 ((d/ )( '

ly fT)( „o))z2

verifv this we(439) of I. Toere v
r js given by

=2C01 d@—
0 — 0

dgff. (t) dB&'(()(1+8) ' to write

J(b) = d~ ')3P 'dE 5' ' em[ —-''4(5+k

(1+H)-'= l [(I—M) (1+H—

may eb reexpressed as

((did T) (op, p«. 2))222

d4 — d&N'(&)C01 Pd'(i)( -I~l)

1 ' —inX2 +~pz+o(1)X(1+6) '+(4+1) ' —n-

3.24)—-' 1nX2 +Kp2+o(1),+-'(4+1) ' ——. 0

k+k ')j(i —H)(1+8) 'X .'p[ ——,'4& $+

dx

Xe.~p[—(-24+x) &
—

2
—-'4'$ ']

X '-"-1[-l4l-(!4+*)~-'j
x -'~2K [4'~2(4+2x)'~2$dx 44'"(4 +2x

[4'"(4+2x)'"jX
—K, ,[4 '"(4+2x)'"1) (3.3 )

=Cpr[B(b) —ln '72]+Kpr+o(1),

8.defines the functionhere the last line definesw ere
unction of 5.B(b) is an even fun

In an i en
'

d tical manner we mac. s

use the recurrence relrelation(3 2{ja) and use e

—[4'"(4+2x) ' j
'"(4+2 ) K L4

to obtain

2p "g+K2p+ o(1), (3.26b)= C,p[8(b) —lncY21

b the replacement
ldb t 0

'
ed from C01 y

1 dldf 11o froat icet because it wou o
alid at any tempera ture. However, ourthus would be va i a

J(b) = —8 dx b(@+2x 2[4&l2(4+2x)1/2j

dy y 'K22(y). (3.33)
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This last int, egral is readily evaluated" to give

J(h) =4 Kpo(4)

8Ko(4) 8Ki+i(4)
+@ %+1 @ (3.34)

I96

Therefore

8'p(P) 8Kp+i(y)
X &~+~ 4 ———% 4 + 4+j.

B6 86

Ke now may use
(3.35)

to find
(3.36)

O'Kp(P) 8Kpg) 8Kp(y)
x &hp —— — +4+&

868@ BP

(3.37)

((d/d T) (o p, po i,p)) E, —Cip(R(h)+ ——InE']
+Kio+ o(1) . (3.38b)

We know from (4.36) of I that as h -+~,

R(h)+1nX'= inly'~ h
~

'+ln2 —sih '+O(~ h~ '), (3.39)

so by comparison with (3.16) we obtain

Koi= kP,x '((I+zi, ') LEi(1 —si,)+Epo(1+so,o)]
Xln —,', (si,—'+ si,)

+E,s,co(1 z,co)P gd2PcE, +4E o) (3 40a

Kip kPc'pr '((1+zpc~')PEi(1 —si,) 'F'(1 —zpc')]
Xln —,', (si. '+s„)

+Fp'zc "(1—zp "l"-gd2P, Fp'+4Ei) . (3.40b)

Then if we recall that

si 'zp ' '(1—zp ")(1—si ') =4+0(X ') (3.41a)

"Higher TrIJnscendenta/ Flnctions, edited by A. Erdelyi
(McGraw-Hill Book Co., New York, 1953},Vol. 2, p. 90, Eq. (11}.

from which (3.29) is obtained by integrating the first
term by parts.

Having verified (3.29), we may now rewrite (3.26) as

((d/dT)(o o,ooo, i))z, = Coi[R(h)+ln—iV']

+Koi+o(1), (3.38a)

k

V 1&) ' ')XIc ~ V Xj ) (3.42)

an approximation which may be verified by substitution
in (2.47). To apply this observation first consider
splitting up the integrals in (2.36) which define the
inverse matrix elements A '(O, k; O, k') iir. and
A '(O, k; O,k') iiii into two parts, one coming from inte-
gration over 8»E ' and one from 8~AY '. At least as
long as

(3.43)

the first region will give an order-1 contribution that
depends on k —tt" and is independent of 8, but the second
region's contribution is of order cV ', independent of

~

k —k'
~, and does depend on h. These order-of-magni-

tude estimates hold for any collection of bonds consis-
tent with (1.1). We therefore may calculate ((d/dT)
X(o'poop))sp wh, en , 8=0(1) and

(3.44)

from expressions analogous to (2.45) by using the ap-
proximation (3.42), since the region in 8, space where
(3.42) fails does not contribute to leading order in .'V '.
However, it is easily seen that this procedure amounts to
replacing inverse matrix elements .4 ' by (A ')s, in
the formulas fol' ((o'p po'p, ))zc. It is clear from (2.36) and
the preceding analysis of this section that

(.1—'(O, k; O, k') iil. )E, ——A, (k —k')

+Are 'R(h)+O(lV '-') (3.45a)
and

(A '(O, k; O,k')gii)s, ——0, (3.45b)

and

El(zic +sic)++2 (zpc +zpc ) (sic +sic)(l zlc)

XLEi(1—si,)+Ep'(1 —sp,o)]+O(E '), (3.41b)

we see that (3.28) is verified.
The analyticity properties of R(h) have been studied

in I and from that discussion and from (3.38) we con-
clude that the average nearest-neighbor spin correlation
functions are infinitely differentiable functions of T
even at T„where they possess an essential singularity.

A discussion of any of the other correlation functions
requires use of an appropriate many variable distri-
bution function satisf&ing (2.47). However, as long as
the separation between the spins is small compared to
lt, it is possible to study'. ((d/dT)(op, pop, ))@, in terms
of v(x) alone. Indeed, from the facts that v(xi, ,x&) is
non-negative and that if we integrate over one variable
we get the corresponding v function of one less variable
we conclude that if v(x, ; 8,) is sharply peaked at some
value of x, , (vx,i', xz, ' ' ', xi& 8i, ' '.

,8j, ' ' ', 8o) as a
function of xj is also sharply peaked. We also 1 now from
I that v(x, ; 8,) is sharply peaked about x,. =x,(8,) if

~

T—T, ~))X '-' or ~8, ~))X '-'. We therefore conclude
tha. t if all 8j except one are much larger than X '-', then
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where zf ~ and A~ may be computed. A similar analysis
can be carried out for the more general case of two

spins in different rows and we conclude that the ana-

lyticity properties of ((d/dT)(o'p, po'~ ))Eo at T, are the
same (at least to leading order in X ' when P+oio'&(.3 ')
as those of the previously considered case t=-o, m=1.
More precisely, we may obtain the behavoir of

((d/dT)(p'o pp'~ ))g2 when b= O(1) from its Onsager
(iV ~op) limit by replacing in~ 1 —T/T,

~
by R(8) and

adding a suitable constant to make the b —+ ~ behavior
in the random lattice match the T T, behavior of the
correlation functions of Onsager's lattice.

4. TWO-VARIABLE INTEGRAL EQUATION

To extract further explicit information from the
general formalism of Sec. 2 for the power-law distri-
bution (1.1), we need to study the integral equation
(2.47) in the case where a.t least two of the variables 8~

are of the order E -'. In I we have found that when

8 X ' and b 1, the integral equation (2.26) for v(x)
could be approxiniated by a linear first-order differential
equation which could be exactly solved. For the multi-
variable case (2.47) or (2.49), however, the corres-
ponding approximations lead to a second-order partial
differential equation which we are unable to solve
exactly. In this section, we therefore concentrate on the
two-variable function i(xi, xo) and study the integral
equation (2.49) in detail. Many of our considerations
may be taken over to (2.47), but, since they are not
needed for the following developments, these more
complicated equations will not be further considered.

As remarked in I, the ii(X) of (1.1), while it does not
correspond to a temperature-independent P(Eo), differs
when 8=0(1) from a temperature-independent P(Eo)
bv negligible terms of order A='. Similarly, because
because Ti To is i-nfinitesimal, (2.49) for (1.1) is equiva-
lent to

1

i (x&,xo) = dy .i y~'-'

» 'x'( '+ho+ay)
(X~ &i——

~0~ '&i&i'+y

~02 x2 (82 +b2 )+82y
X& xo— o(xi', xo'), (4.1)

~02 'a2X2'+y

where for notational convenience all tildes have been
omitted and X0;= tanh'p;E2 . In a manner identical to
I, we conclude that v(xi, xo) vanishes unless

G&xp&
~ go;=i(a,x;(a,'+ b,', (4.2)

where xp, is given by (3.5) evaluated at 8, and T,. It
is also clear that

&( xi x2 el 82) &(xi x2 el e ) (4.3)

and similarly for x2. It is therefore sufhcient to consider
a,)0. Then when (4.2) holds, we integrate over y and
obtain

u(xi, xo) =
min [)toI(xI—aI) /(aI2+gI2 —aIz] ) (aI2+bI2) /a min [)F02(x2—a2) /(a22+ b22—a2a2), (a22+ b22) /a2)

dX2

XXP oi 'xi'(&i'+b& &»i)/(xi——&z)j 'Xoi 'xz'bi (xs —ai) Boo 'xo'bo (xo —ao)

~1 +bl ~1+1 ~2 +b2 ~2~2
X~ ~01 &1 ~02 &2 & &1 ~X2 . 4.4

Xy —Gy X2 —C2

%e transform variables as we did in the one-variable equation of I by de6ning

~1,
= (x, xo,)/(Ap, x—g, '+x, ) (4 3)

so that

Also define X(i1&,iso) by

8,'-=14.p, (xo, —a;)xp, '(7 p,+a,xo,)—'

0&g,.&8,'& 1.

(4.6)

(4.7)

so that
F12 g22

.Y(ii), rip) drip di1 )
——1.

i(x&,xo)=X(rii, rip)(dpi/dxz)(dgo/dx )=X(rii, go)(1~ozxoi '+xoi)(1%ooxoo '+xo )(1—i1i) '(1 —iso) ', (4 g)

(4.9)
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Then (4.4) may be written as

8 .V-—1- ——1

X(212,2n)—
-~$1 ~01 xolB1 +$1x01 — -~$2 ~02 x02B2 +$2x02

min fB1&,qIB1—
&) m in [B2&,q~g-&)

t Xol+'gl ~olX01 X02+Q2 ~02X02
din' X(212'x212')lupi X02 '~

1 —ln' 1 —ln'

XOI+Ql ~01X01 Bl 211 ) t x02+'g2 1l02x02 B2' —212

1 2n
— Apl 'xplBl'+ltlxpl '3 4 1—ln X02 'x02B2'+212x02 '3

I «I

I
I

~I

Q

~l
~1

2

I

~
2

0
~I

~I

I

2
I

~I

0
~l

~2

2

2

~
2

~ 0
~I

~

~
~ ~

In writing (4.10) we have explicitly used the fact that (1.1) is of power-law form by moving all factors involving
gl or T12 to the left-hand side of the equation. Because of this factorization, we may convert (4.10) into a partial-
differential difference equation by differentiating along the curves:

B2'—n2Bl' —glc=
I 2 ~) ~I 2 ~I

I

X„'x,p '+X x„') kX„'x„o,'+X,x„') (4.11)

Speci6cally, we apply the operator

(1 Bl 'gl)(l—lol xpl Bl +'gl) ll (1 B2 'g2)(ll02 x02 B2 +'g2)—+
~01 'xol'+1 8'gl ~02 2x022+ 1 Bg

(4.12)

to (4.10) and if 212(Bl ' and 212&B2 ', we obtain

Bl B2 X(711B1 xl72B2 )
((1—Bl 2)(lupi 'xpl2B22+21, ) 8

=(&oi 'Bl xol+21lxol ) (~02 B2 xo2+T12x02 )
BtjXol 'xol +1

(1—B2 'e)(&02 'x02'B2'+n2) &

+ +-1 1 ~01 Bl xol1glxol ~02 B2 x02+$2x02 I $1)$2
X02 'x02'+1 8/2

(1 Bl 'gl)(llpl xpl Bl +'gl)

Xol 'xol'+1 ling

(1—B2 '212)(ll02 'x022B2'+212) rl

P 02 'x02'+1 an2

2(1 —Bl 22n) 2(1—B,—2g, )+ + +X—2 X gl, g2 . 4.13
~ol 'xol'+1 ~02 'xo2'+1

lf we also make the exponential change of variables We know from (2.51) tha, t
made in I:

and
g, =e T&, j=1, 2 (4.14)

drp U(rl, r2) = U(r, ). (4.17)

U(Tl T2) X('01 '92) (d 91/drl) (cf712(dr2) (4 15)
If we integrate (4.16) over r2, we find that if we require

we obtain

iY )U(rl, T2) U(rl+InBl', rp+lnB2'))—

lim e"U(rl, rl) =0,
T1 ~00

and Similarly for v.2

(4.18a)

8 t'(1 Bl 'e ")(Bl'xone—Aol 'e"+1)
U(rl, r2)

ar, & (1+~01 xpl ) then

lim e"U(rl, r2) =0,
TQ ~00

(4.18b)

8 (1—B2 'e ")(B2'x02902 'e"+1)
+ U(r, , r2)

BT2 (I+F02 'xo22)

(4.16)

X[U(rl) —U(rl+1nB22) g

(Bl e ")(Bl'xolXol 'e"+1)
U(rl, r2) . (4.19)

Bl'(I+3,pi 'x„')
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8;= —8XO "zzi,(1+zi,) 'S'8.

Ke further know from I that T= T, if

(4.20)

This is just the ri derivative of (3.28) of I. Therefore,
we conclude that the boundary condition (4.18) holds.

So far our analysis has been exact. To make further
progress, we must make explicit use of the fact that we
are interested in 8 X ' and

~

T T,—
~

Ã 'by defining,
in analogy with I,

we find the approximate partial-differential equation

a2

V(pi pz)+ [z (bi+82) —4e»(/le»+iti2ei i)
~ps ~ps

+4e»(@,e~'gaze "'—))V(p, ) p, )
8

+ [z (bl 82) ge»(Ale» 42ei'2)

Bp2

+4e»(g, e™g,e —-))V-(p„p, ) =0. (4.28)

lnB,'(0) = iY ',— (4.21)
To complete the determination of our approximation

to V(pi i p&), we need a set of "boundary conditions" for
(4.28). One condition is obviously

(4.22)

and so we define 8; by

Xo '(1—zi")'(1+zi"') ' —e '=-'iV 'b
(4.29)V(pi, pi) &0

where, as E —+~, 8 is to be of order 1. Exphcitly 8 is

given by (3.1) with T= T;. We note that

1nBii= —S '[1 (2Ã) —'8,]+O(E ')
and

The others can be obtained by noting that the exact
equations (2.51) should also hold in the approximation

(4 23a) we are considering. Therefore, we have

and further define

with

&O, g-~' '~0'"~,

q, =7;—ln4Ey; ',

U(TI 72) U(ql q2)

(4.23b)

(4.24a) and

(4.24b)

dqi U(qi, q ) = ~'(qi) =z[%,(@i))-'

Xexp[ —biqi —z@i(e"+e &')] (4.30a)

dqi U(qi, qz) = U(qi) =-,'[E»(yi)]-'
to find that when @,=O(1) and b, =O(1), (4.16) is
approximated by

—U(qi —.3' '[1—(2X) 'bi), qi —3' '[1—(2 3') 'bg])

[(1 —', i'g—ie -". )(1+4 3 'ibie«.) 'U(qi)i qi))

Xexp[ biqi —zt4i(e«+e «)]. (4.30b)

If we integrate (4.28) with respect to qi, we find

8
U(q2)+ [b2+z@2(e«e «)]bi(qi)

Bgq

= —zgi[lim e"U(qi, qi)+ lim e «U(qi, qi)]. (4.31)
ql ~on ql ~

8
+—L(1—V '4i ")(1+4-~' 'Pie")

Bgp
X U(qi, qi)) . (4.25)

It is now convenient to define

Clearly (4.30) will hold only if

lim (e«+e ")U(qi, qg) =0,
ql

and similarly, by integrating with respect to q&,

(4.32a)

pi 2 (qi+ qi) & p2 2 (qi q2)

V (pl pi)dpi dpi= U(qi, qi)dqi dq2 ~

Then if we expand

2U(qi —.'l '[1——,'5 'bi), qi —A '[1—-', 3 'bz])

(4.26a)

(4.26b)

=V(Pi —-'~ 'Ll —-~ '4(bi+bi)] Pz+-l '4(bi —bi))

8V(pi pi)
V(pirpi) —-&' '[1—-& '4(bi+bi)]

8V(pi, pi) 8'
+.i-&-,'(8, —8,) +-,'.&-'

BP2 BPl

X V(p„p,)+O(X-'), (4.»)

lim (e«+e «)U(qi, q.) =0.
qg ~Joe

(4.32b)

The function V(pi, p&, bi, b&) has a useful symmetry
property. If P, —+—P; and b, +—b, , Eq. (4.28) is left
invariant. Furthermore, this transformation leaves
the subsidiary conditions (4.30) invariant. Therefore,
we conclude that

V( —Pi, —Pi; —bi, —b )= V(Pi, Pg,
' hi, bg), (4.33)

and similarly for U.
Thus far, we have paralleled the analysis given in I

for the approximate function U(r) and (4.28) is analo-
gous to (4.3) of I, the principal difference being that
(4.3) of I is a first order ordinary differential equation
we may solve exactly, whereas (4.28) is a second-order
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partial diiferential equation which we are unable to
solve. However, in I we did not need the complete
solution of (4.3) in order to study the .V ~~, b —+~, or
8 —+ 0 behavior of C,". The complete solution was only
needed if in addition to these qualitative results we
desired to be able to plot C," numerically. Therefore,
even though we cannot analytically solve (4.28), we
can study the limiting cases:

(i) pl —+oo, &2 ~oo with gl/p2 and bl and b, fixed;
(ii) bi~oo and b2~~ SuCh that bl//bl, b2/&2, and

pl/lt 2 are fixed;
(iii) 4,-0 and &2 0,

~
b,

~

-'- —»@„ i
b2

~

-' —in@,.

These cases will allow us to extract important qualitative
features of

and

We then find

p. p
0

@
—1/op.

V(p„p2)=y 'V(P„P,).

(4.3V)

(4.40)

1
V( l,p2)+- {(I+(bl/0)')'"(Pi+ p )

Bpy 2 8p]

+K(1+(b2,'«4)')'"(Pl P"-)) V(pl, p-')

1 8+- {(I+(b,''4)')'"(p +p )
2 Bp2

—( +( !'0)')'"(p —p )) V(pl, p2) =0 (4 41)

We may now scale p out of this equation by defining

([(d///T)(lro, oo'o, l)) )E. and (lnS )E, It is easily verified that a solution of (4.41) which is
non-negative isWe may study cases (i) and (ii) together by means of

a scale transformation. For convenience, first set
V(pi, p2) = exp(nilpl +nioplp2+n22p2'-), (4.42)

(4 34) where
and write (4.28) as

nil 2{[1+(bl//p) ] +K[1+(bo/Klp)']'/2) (4 43a)
ol2 I9

V(pl, p2)+ {2 (b1+b2) —4$[e»(e—»+Ke"')
~ps ~P&

e(e —+Ke »)])V-(p„p, )
l9

+ {-,'(bl b2) oib[e—»(e o2 e"K)—2
BP2 —e&'(e&2 —Ke»)]) V(pl, p2) =0.

{[1+(b/y) ]'/2/K[1/(b2/Klp)2]1/2)2
Ayg =— (4.43b)

[1+(b,!y)2]'/2 —«[1+(b„'Ky)"-]'/2

non = {[1+(b/ltl)2]//2+«[1+(b2/K@)2]1/2}

(4.35) L1+(b i~)']'"+ [I+(bv' ~)']'" ' 1
X

[1+(bl,.'@)2)1/2 «[1+( b/ $«)2]l /2When @—2oo, we expect V(P1,P,) to be a sharply peaked
function of each of its variables. To be more precise,
we define pro and poo to be the solutions of

(4.43c)

(4.44a.)

It is also clear that

nay ((&, 0.22 (0,
n„+n„—[n12] (0, (4.44b)and

1(b + b ) 1y[e oi"(e o2'+«—eo2')—

»'e( »'e+ «&"e')]= 0 (4.36a) and

p, +p, '= —arcsinh(bl/lf/)

pl' —p;"= —arcsinh(b2/Klfl) .

We then expand (4.35) about Pl" and Poo as

82 1 8
V(pl, p.)+-—{~(1+(bl'4)2)'/2

Bpy 2 Bpy

X[p,-p, +p, -p, )+ ~(1+(b, ~)')'"

X[pi—pl" —po+ p2']) V(pl) P2)
1+- «('+(bl/&)')'"[P' P"+P' P'']
2 l9P2

KQ(1+(b2/KQ) ) [pl pl p2+p2 ])

(4.37a)

(4.37b)

X V(pi p2) 0 (4.38)

2(bl —b,) olb[e o—"(e /" «e»")—
e&"(e»'—Ke "'))—= 0. (4.36b)

Adding and subtracting these equations, we find

so that the subsidiary condition (4.32) will hold. Thus,
we conclude that as 8 —+~,
V(p, p ) C exP{4 'L (P —p ')'

+n12(Pl Pl )(P2 P2 )+n22(P2 P2 ) )}y (4 45a)

where C is an appropriate normalization constant. This
approximation is valid as it stands for case (ii) and is
appropriate for case (i) if we approximate arcsinhx x
in (4.37). A cruder approximation to (4.45a) is

V(P P )-b(P P')b(P P') —(4 45b)—

This approximation is precisely what is expected on the
basis of (3.42).

The last case we consider is (iii), which is necessary
for the study of analyticity properties near T,. Because
this case is more complicated than the previous cases,
we will first present a heuristic analysis which yields a
result accurate enough for the applications of this paper.
Then we will give justification for this analysis by a more
careful calculation that yields a more precise approxi-



mation much in the same sense that (4.45a) is a precise
justification of (4.45b).

When p 0, it is convenient to recognize that we are
not interested in V(pi, p2) for arbitrary lii —62, but only
for bl —b2 0. To be precise, define

a~V BV
-+8 =0)

Bpl Bpl
(4.50)

We begin our considerations of (4.47) for j=O by
noting that if we set p= 0, the equation reduces to

and
~= 2(61+&2) 4.46a

which has the trivial solutions

o= —,'(bi —b2) . (4.46b) V(P1,P2)= Lconste '»+const']f(P2), (4.51)

The only reason we need consider o/0 is that in (2.52)
there occurs 8'/8211882. Therefore, since

B2 B2 B2

)
B6lB62 P, $g 4 B6' BE

we really need only consider

BV
Vl,-o,

e-0

B2V

BE g~o

Ke may derive differential equations for these deriva-
tives by differentiating (4.35) with respect to o. There-
fore, instead of (4.35), we consider the three simpler
equations

where f(p2) is some arbitrary function of po. This func-
tion cannot be determined merely by considering the
region where Pi=0(1) as 2t ~0. To study it, we need
to define

with
pi&= pi+in-,'@, pi&= pi 1'nQ, — (4.52)

+ $e"&(e» «»—)] V&( pi) P2) =0. (4.54)
Bp2

V)(pl& p2) V(pl p2) V&(pi& p2) V(pl p2) ~ (4 53)

If we now consider the limit pl& fixed and p ~ 0, we find

2)' V&(pi» po) r7

+ L6+e~ &(e"'+~e-»)]V&(p», p2)
BPl& BPl&

o12V,(pi,p2) rl

+ (f2 2oy[e—»-(e»+~e»)
cjpi okapi —e"'(e'*+« "')])V (Pi,P2)

B
»(e» —ge») —e»(e» —«»)]V (Pi P,)

Bp2

Using the fact that

—xS(x) =0,
Bx

we see that a solution to (4.54) is

(4.55)

21VJ—1(pl P2)= —j for j=0, 1, 2, , (4.47)

where we define

Bj
v (P1P2)= v(P1 P2)l ~-o i+I (448a)

Vo(pi, po) = V(P1,P2) I.=o, (4.48b)

and where there is no confusion, we wiH often omit the
subscript 0. The subsidiary conditions for Vo are (4.29)
and (4.30) with o= 0. There is no positivity requirement
for j&1, but subsidiary conditions similar to (4.30)
are obtained by differentiation. Therefore,

V)(P1),P,) = const'�(P2 —-', 1nK)

XexpL —6P,)—2~"2e»-]. (4.56a)

Similarly, we find a solution

V&(pi&, p2) = const'(P2+2 lnx)

XexpL —bpi& —22''ioe»&]. (4.56b)

Furthermore, it is easily verified that because in our
approximation xo 1, the constants in (4.56) may be
chosen so that the subsidiary condition (4.30) is satisfied.

Loosely speaking, we now use (4.56) as a sort of
boundary condition to determine the function f(p2).
More precisely, we note that as 2p

—+ 0, we obtain (4.50)
as an approximation to (4.47) with j=0 if

lPil+a ln2P=O(1) for 0&a&1. (4.57)

BJ
de U2(V2 &2) =2(—1)' —,(LE2(42)] '

BP

I B
d&2 U(V1, V2) =-

.(Ã2(»)] '
2 BSj

For this range of Pl we expect solutions of the form
(4.51), except f(P2) may depend on a. We may obtain
an equation from (4.47) that will determine this slow

x expl pqo
1

2po (e22+ e '22)]) (4 49a) variation of f(p2) with p 1 by remarking that if we let
P2=&x and then let g —20 with x fixed, we obtain an
equation with a 8/8x term in addition of the other terms
of (4.50). Such an equation describes a function that
as a function of p2 is in some sense localized with a width
p. In view of (4.56), it is natural to make such a scale

Xexp[ —bqi —2@1(e"+e ")]). (4.49b) transformation about P2 ——&2 Inn. Therefore, we define
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where A is some arbitrary number of order 1 and then
write an approximation

the scaled variables p~:

(4.58)p2%-2' In«= a p~-,'1'« '~ '(1 -—«'),
V(p, p )~411«1'2~1—«2~ 1[C p

'+' exp( —p 'e "')
+C p -'exp( p —"')] (464)where the big upper (or lower) signs go together and

P~ &0 if —P ln«
~
(P2 (-,'

~

ln«
~

. Correspondingly, we

define We then compute

V+(pl p+) = 1@«-'"
~

1—"
~ V(p1t,.p2) ~ (4.59)

Then from (4.47) we obtain
dql U(ql, q2)

go+ In a Ing/2

O'Vg 8
+5 V+— e+» V+ =0.

~Pl ~Pl ~P+
(4.60)

g—In2r

dq2 U(q1, q2)
Ina /2

dp2V(p1 p2)

We may solve (4.60) by Laplace transforming on p+
and reducing the resulting equation to Bessel's equation.
This yields

=e-»[C+I'( —6, 1pe-2"A-')+C I'(&,1f1e»A-')], (4.65)

where I'(a,z) is the incomplete I' function. "Since b and

p are small, we may expand this as

V~ ——const+(2222) ' ds e'&2Ay(s)[2(se+»)'1 ]+2
e »g—1(C—+[ 1+(41e »A —1) 2—]-

+C-Ll —(4e»A ')']) (4 66)

)(K2[2(se+"&)"-'], (4.61)

where we must reject the corresponding solutions involv-

ing I~ to get a bounded function as %pi —++ ~. In
order to determine the function A(s) as we must study
how the two functions V+, which are valid approxi-
mations to V when @—1 0 only when P~=0(1), are to
be connected together through the region where p+ is

large, and (4.61) is not a valid approximation. This will

be done in Appendix A, and we will demonstrate that if

.4~(s) = s+', (4.62)

V+(p1,p)=C+p+ '" exp( —p+ 'e'"') (463)

To verify that C+ may be chosen so that (4.30) holds,
we note that when p1 satisfies (4.57), the exponential
factor in (4.63), which causes V to vanish when

p2= &2 ln~, approaches j. and may be omitted when p2
differs from &-,' ln~ by order j. as @~ 0. Therefore, when

0(in@)

the precise value of Pl is irrelevant to order 1, in evalu-

ating (4.30). We further remark that the form (4.63)
is guaranteed to break down when p+ 0(@ '). In
particular, we cannot replace p~ integration from zero
to 0(41 ') by zero to ~ because the integral of V+ or
V will diverge. One way to piece V+ and V together
is to restrict

0&p+&A-',
"Tables of Iritegral Transforms, edited by A. Erdelyi (McGrzv;-

Hill Book Co. , Neer York, 1953), Vol. 1, p. 283.

we may choose the constants so that not only may V+
and V be connected together, but also (4.30) may be
satisfied. Indeed, if (4.62) holds, we may evaluate"
(4.61) as

Because 8 0[(in/) '], A2 1, so that the precise
value of our order-1 cutoff A is immaterial, but we must
keep the first two terms in the expansion of the incom-
plete F function. Then if we choose

with
C+ ——Cy', C = C@-~,

C= h'(~-' —@')-', (4.67)

(4.30) is satisfied.
Approximation (4.64) is sharply peaked about P2

=&-2' ln« When P1. satisfies (4.57), the width of the
peak at —

2 lna is roughly @
'+ and thus spreads out

as Pl increases. Similarly, the peak at ~ inc has a width
and thus spreads out as Pl decreases. When

P1 &ln2t1, the narrowing peak joins on to the 8 function
previously found. We can study this joining process in
more detail by retaining a term in (4.47) that we dropped
in obtaimng (4.54) and consider

~'V +(p,p+) + (~+-' '" "")V +(p
~ Pl) ~pl)

+ (e1"2«'"p2+—e ~') V&+(p1&,p2+) =0, (4.68)
~P2+

~here p~+ is defined by

(-,'1p)'« '"(1—«')p, »= p2 ——,
' ln«. (4.69)

However, the details given by this equation are irrele-
vant for our purposes. It is also necessary to study how
the spreading 6 function disappears when p1& in'= 0(l).
This will be done in Appendix A. We may summarize
these considerations by the cruder approximation

V.( 1,p.) =l~L~ ' ~']--
X[&(p2—

2 ln«)+h(p2+2 ln«)] (4.70)

"Reference 10, Vol. 2, p. 133.
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when (4.5/) holds and zero otherwise. This is the
approximation that is used in the sequel.

To obtain an approximation for V~ which is valid at
the same level of accuracy as (4.70), we first remark that
when ~= 1, V& may be exactly computed. %e know that
if ~=1,

The constants C~ and C2 are determined by subsidiary
conditions (4.49), and we find

1
Vl(pl, pl) l.=l = —b'(pl) —-[&4(&)) '

88 2

Vo= ~[E4(@)) 'b(pl) exp[ bp—l 2@—(e&'+e»)] (4.71)

so that when J=1, Eq. (4.47) becomes

l9

+ [b+-',y(e» e —») (-e»+e 4*))-V, 4'-
pl apl BPp

X[(e»+4; »)(e» —e
—»)]V, = —-'f&4(lP)]—'

Xb'(pl) exp[ —bpl ——,'d(e&'&+e —»)]. (4.72)

Xexp[ —bPl ——,'4 (e&l+e-&4)) . (4.78)

In the general case when (4.57) holds (4.47) may be
approximated as

O'Vg 8 VI
+b b(@

—4 y4) —
le

—44»

Py BPy

X2[b'(pl —-', inll)+b'(pl+-', lull)]. (4.79)

Using
8—xb'(x) =b'(x),

ag

we find a particular solution to (4.72):

This equation has the particular solution

(4.73)
Vi(pbp&) = b[4 ' —lt"] 'fl(pl)

X ~ [b'(pl —
~ 1nll)+ b'(pl+ ~ lnll)], (4.80)

where f,(p,) satisfies
Vl(pl)pl)g=l= 2[El($)] b (pl)fl(pl) yt (4 74)

where

d'fl dfl"']
dPI' dPx

d fl dfl
+8 = —8

dpi dpi
(4.81)

As above, we reject any solutions of the homogeneous

+, (,+ „,)] (4 7 )
equation corresponding to (4.79). The general solution
of (4.81) is

To this particular solution may be added a solution of
the homogeneous equation corresponding to (4.72).
However, we note that in (4.35) the term proportional
to e may be neglected when

~
4~((p~. Therefore, for

all ~ as P —& 0, V, will be concentrated along the lines
P2

——W-,' ln. just as Vo is. In the case a=1 this means
that the only solution of the homogeneous equation
that is allowed which is less singular at Pl=0 than
(4.47) is proportional to Vo(Pl, Pl), l. It is also clear that

f,(Pl) = b 'P, e '"'+Cae -'»+-C, . -(4.82)

Vl(pl, pl) -——{[4' ' ——,(d '+d-')](y-' —y')-'}
85

The constants Cl and C4 may be determined by (a)
use of the subsidiary conditions (4.49) and (b) the re-
quirement that fl(Pl) be finite when b-+ 0. We then
obtain

dPl dPl V, (Pl,P2) =0, j& 1. (4.76) X~[b'(pl —
2 1nll)+b'(pl+2 lnll)). (4.83)

("learly, (4.74) satisfies this condition but Vo(Pl, P&)
does not, and hence (4.74) is correct as it stands.

The general solution of (4.75) is

This form makes manifest the symmetry property
(4.33).

When P,+IMP=O(1), approximation (4.83) breaks
down. In this case (4.47) may be approximated as

dPl Pl exp[ —bP, ——,'$(esl+e sl))

+Cl exp[ —bPl ——,'lf (e"'+e &'))+Cl

O'Vg 8 8
+ (b+ 4'4'»(e»+lie -&4)}Vi+44'

~pa ~pa Bp2

Xe»(e» lie ») V, = —b[@ ' —lp4] 'b—'(pl——-', Inll)

X exp[ bp, ,'y(e~ y—e )—]—(4.77)-. Xexp[ —bpl —2igll'I e»]. (4.84)



gl U&I c COY Ai~D I 188&OOO

t the solutions o
~

f theproceeding as b
that are proportio

before, we re~ect
ional top y e uation t a
of 4.84)~(P2--2 n~—-' 1 /() and find that t e uni

which satisfies (4.49) is

l9

V (p,p )-—~L4-'-4—

4.85)—-' /(')2e'"]6'(P2 ,—ln—/( .xe.'pL —~P ——,4. ~

'(~'+~--')-j(~ ' &')-')--+& =—(Le '"'—
2

Bpi2 Bpy 86

X ~L()"tp —-' Inr)+()" (p.+-, nx—' 1nx)1. (4.86)

tions of the correspondinge re'ect the solutio s o
e h t as a function o P.homogeneous eq

'
h t as ae uation that as a

9
((J dT) ((rpp(/i, p),

nishes when p)+1n@))O(1). AnThis solution vanishes whe

f we t when 4.a
go

e conclude tha
if-

iore, we
v zero. Fina v,ppo'

f pproxim ation
5) d o( 7)
is more corn li t dtha V.

'=2(44) h

t}1 lmt dpu po
n, t ex licitly so ve

oses
ma o (4.83

p" '"8 'pp
when (4.57) holds. n is . ' ' n

b//(p ) and write

V2(pi P2) '
g//(p, +-2, inx))f2(pi) i

i [g/(P2 —
2 ln/()

4.87)
where

-'" —'(~'+~-')3(~- -4 )-—6 2 —) 488)+~ =—(Le '"'——.

dpi a6

t 4
'

d that 2 be f(niteat 4.49) be satisfied and thatRequiring that 4. '

when 5 —+0, we find

f92

V2(Pi P2)-—

'"'--'( '+4 ')(I-~p )](4
—2 2)

—i jX (~- Le-'" -2 ~

X2 2 2—,
' ()" —-' ln/()+()" (p, +-,' in/( . 4.89)

in . ' ' ' . that leading to (4.85)Finally, an anay
' ' '' ' t a e1 .sis similar to t a e

a owsH a
4 7) (1o o llold.b .zero when .5b approximatedMay e

roximations . /u i pp0
s of this ana ysis o(489) are the results o

ill be used in Secs. s an

5. VARIA~ IANCE OF (d/d T) ((ro, o(ri.o

inaries of the previous section we may

T T,=O(X '). F—rom 2.& an

= (22r)-2 dE' P(E2)(N2 dX2 dX2
BTyBT2

)22 (

s (2) (5 1)
(2)" (2)(, (2)2+x2x2) +s2XL'(I —22(2 - 22

If we define

(Ng

—1 ~ (1)

0

() () ()2+xix) +2 ix' —v, T2)v(x( T))v(s2, T2)jL - (' s2 . —
2x., —v(xi, Ti)v xoi 2 v xi,X([v(xi,x2)v(x(/x2 —v i, 2 vxi,

3.11 andwhere 1Ã(&) is given by (3.1
&~'(k T )dk = ('(a)da, (5 2)

(=e ~,

when ()=0(1), ast 5.1 may be written, wand if we use, 4 4.23, and (4.24), we find that ( . mand if we use (4.5), (4.14), (4.23, an

(5.3)

~~02
Q2

2@2
86j 862

i 2) —U((72) U(qo) U(gi) U(g,d ( [(L/2( t , 7(2U(2((i,g2

X«n 2 i ' —' 2+ 2) +o(1). (5.4)X tanho' (9(+gi) tanh22 (((2+go

f 3.42 . Furthermore«»ce lV' by p() because of
this variance mus

s we ave
h di i il; (

if we replace Cyp by

. )b
riance of (d/dT)((rp p(rp,

1 $2. %e

n
e constant in

holds for the varianc
hich ~re of order n

d 1

h the average values w ic
ed the case. n i en

contrasted wit e
es are even functions o

d moments of

1k the average va u
of (5.4) near 6= 0 it is use uTo stu

f th(djd T)((ro.o(ri, o) separate y.
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DAVIT

4 of I. Ke thenn see th

(2g} 2(n I)—
0 4

a 2n —1)
a2

=4C(o Q((d/d T) (~o,~i,

at8=0 studied in Sec

(5.5)—»» —O(l»l )]o))E2 ~ +lo

h same s = r'(s)/I'(s), andt si h same as 8~0, $(s =terms of bot si h sameth sides are the same

in that th

the most singular e

o-») by remarking

is dined to mean that
ll' bare the Bernou i n

h co po di
5.4) occur only

e obtain t e c
singularities in
1 ioneg

tant er studvtant. Therefore we stu ysmall ositive constant. erwhere e is some sma pos
'

0&gj & e, 0&F2«, (5.6)

ebl y, @ t
K

i lia = a be obtaineb
' db ctrlat b= 0 and may b

df2
88l882

q,
' „, —', ) tanh22((72+q2)t„=22=,dq2 U((72, (7 I72,q2
'

i, Li( q2) tanh'2(I72+q,

2 Vo(Pi, P )]—2V((pi, p22) l'2(P(, P )dpol ——[l'o(pi P2
Eat,

dpi P2
00 Qo

an —,
' — —p.) . (5.7)tanh2 (p( —p2+ptanh2 (pi+p2+pl+p2) an 2 '2—2&o(P(,P2)l'(P,P )

~

ations (4.70), (4.83), and 4.8 . o
'

et o ion we use approximationsart of this expression wemost singular part oTo obtain the mos
first term in (5.7) separa e y

C

dItt'l. dPl.d(t 2

o i, 2
-' 2+P2+Pi+P2) tanh2(p(— 2+Pl P2)Vo(pi, po)) tanh-', (pi+p2

dP2
86

p

2[8(p —-', ln(()+t((p +-,'-' in(()]—&(»+ri)g2(d, —2dp2e

—ln(t2I92

dpi dPl F2

—
p2+ pi-P2) —1],—p2, — — (5.8)

in'

2) tanh-', (pi —p2

d$2
16 86 p l y

—' in~)][tanh2(P, + 2+P1+P

as ~ l but makes no con-

2 ——,
' ln(()+b(P2 —, nax[ (p

er — '
the last bracket ha sbeen a edd d to make the rac

enient to reexpress @ ands in
here the —1 in t e as

t

(5 9)2=r sine,= t' cosQ
q1

—in'.1

8 882 p

dr rP(r-' —r'}-' dQ dpi dp(i

—2]. (5.10)

inr

+tanh'-, '(p, +p, )—l t n —
l —ln tano.X — » —' i+in tan(2) tanh-', (Pi+Pi-)&eX -'(»+s»[tanh-, '(P,+P,gin tan&

the final answeribution to t e

sin u
' 5.8) are given bysin ular terms inthe 2 an 2

'
find that the most singuthe 2 and p2 integrals to nK 1.Ke may also do the P2 anand we recall II.

" . e

—lnr

and
t+ ,'(p,+p,)———

t =2 (Pi Pi)— — (5.11)

as t —++~, sowev h xponentially as +vanishes expo
'

in $ integra e
'

in
'

1 the integrand v h xporation. In the remaining +
'

e
d th li it —l b. to oe "'+ by one an t e

g2

may replace e

drb2 r(r ' r') ' Inr+Q(——(tr62 r(r r-b —2 (5.12)
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where
x/2

~lc co&

h /, 1.t--)+t'"h f2 2, 1„tano) tanh(& —
2 "d/ /1[tanh / (5.»)

(5 12) mav be wThe first r integral in 5.

(5.14)brb—)
—2 —~ l2 &~/2 —~dr(r 1/2+rb—/2) (r 1/2—dr r lnr(r

s al ai

a . u 1 .sis to find

0

S o a. use that analysis to finin Sec. 4 of I and we may uthe one studied in Sec. o~ is the same as t e oThis integra is

I-'D.
l

~l-'-+(I ~l-'))
48[ a[

m in (5.12) by parts,Furthermore, i w, i wei

(/ ( (
00

lar term m (5..12 is(5.15), so the mosttsin uarless singular thanThis is clearly less sing

ntegrate the second tei

—4( &I ')]r -' —b = —-' lnl 8[-'——,
' 8—drr r— r( '+r')(» ' —r)=: —2[ ' —
2 ~—err r —r

(5.15)

(5.16)

~l-'[lnl ~i-'-~(l ~I-'))0
——P [(1 n
4 8(/2 BI Bi

(5.17)

which isthe relation w
'.esti ated together usingf (5.7) mav be investigate~ two terms o .7'I» an . ' ' . f the remainingT(( anal) tlcltl 0

d bv integratingE,*sl $'l . demonstrate

d 2[(1'(p2 ——,
' ln/()+ '(p,(/' 2+-,' 1n/())

n/()+(1 (p

2+-', 1n/())d@2[(1(P2——,
' ln/()+ (/(P2 +-'ln ))[~ (P2 2——,ln/()+ (p

+P2+p2) tanh-2'(P, yp, —p, —p, .X tanh-,'(pl+pl
Therefore we ddefine I as

1+P2+p2) tanh2 (pl+ pl —p2 —p221 ln/()] tanh21(pl+pl+p,X[(/'(Pb--,' 1

1
(/@i

2 p

(1py dp2 2)+ Vo(P1 P2) V2(P1,P2))dP2[V1(P1,P2) Vl(P1,P2 0

+P +P ) t h-. (P +P—1 P2 P2)X tanh-,' (pl+ pl
—1rl(P

—b b —1)dpi —([e '*"——.

l96

1
dqhy

2 p

dP&

-'-4')-'}

0 lnb n

—b 1 —1 $e
—bn1(@—b (pb)

—1 (fi
—1[e—bn( 1'+4-')) (4-' —4')-')+ &e-'" @-—X——([ -'" -l(4

X dp2 (P2 21n~)+ ~ (P—2+.2+. ))

+p2+p2) tanh-, (p,+p, —1 P2 P2) ~Xtanh-', (p,+p,

—' ln~dp2 -'[6'(P2 ——,
' ln(()+1/ (p, +-,+-', lnK)]2[1/'dP~ 2

m in (5.19) bv writingthe second term inKe now rewrite
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ion to Pl, an

(5.21)
with

d integrating by parts
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in the resulting expressthe derivative ln etransferringb arts onintegrating y p

I=: Ig+ I2+I3,
again. This yields

1 a2
Iz= ——

4 ~~2 o

X dP2

I2 ——— dr r
«/2

«/2 —lnr —ln«

r b —rb —2r '))Le "'—2(»'+» '))(» ' —rdpi[e ' ' ', (r'—+-r —
e
— ——,

' ' ' r r

,—,ln ta ))]l[& (p —,

+pb+pb) tanh-,'(pi+pi —pb —p2,X tanh2 (pl+pi+pb
—lnr

'(r'+—r -')(1 &Pi)](—»r brb) ——i }dPl—
882

lnrp lnr

+- ln —' nn +li'(p, +-,' ln tann)]+-' ln—' 6' p —-' ln tann)+li'(p, +2 lndP22 ~ P2 —
2

dPb —, b —,' a)+b'(P, +2i ln tann)]dPb -'[8'(Pb ——,
' ln tana

b) tan, (

i+pi) tanh-,'(lnr —pi+ p, —p,+tanh-,' (lnr+ pi+pi, ,' —,—p,

X dP2

t nh h-' —lnr —p, +p, —p,

00

tanh-'—-' n tann)+6'(pb+-', ln tana)][tanh-,X-'[S'(pb —-', ln tann

1
I3= —— dr r

4

X dP2

«/2 —lnr

r—b rb —i' 1 5 r '+r r —' ' r e b» ——',(r'+r —b)](r—' —»' 1 5 r '+r')(r ' r') ' lnr]}[e———~ ——,
—' ' —' r b —»-dpi ("e '[1+6(r—'+r r —' —' r e

——~ —,
862lnr

i ln tana)]—'8'pb ——, n—-' ln tan&)+g'(p, +-,dPb —, b
—', n)+5'(P, +-', ln tann)]-, [ ' —— ndPb -'[b'(P, —-', ln tann

X tan —, i —
b tanh-'(P +P2 —lnr —Pb)X tanh-', (P,+P,—1nr+Pb) tan —,

nh-' i —pb+1nr —pb)]. (5.22ctanh-', pi +p +lnr+ pb) ta -', (p, —b
— . 5. 2c

making

(5.23a)-'(p —lnr) =x

. Il is studied whereforward to analyze (5.22). Ii is s u
'

dI t d'dbexactly as (5.8) was. I2 an
the substitutions

«/2

dQ dpb dpi

int eir rn
' 6 st terms and

-'(p, +lnr) = —x (5.23b)

-'i I+»I~l ' —4(l~l ')},=. go— h '—( ——', 6+nIg=.'p — — —' + n

[lnl~l ' —4(l&l ')], (5.24b)

combining these terms to-
b —Qge ther and expan

'
gdin 8 a

—' ln tano)+S'(p, +-,' ln ta«))X[6'(Pb ——,
' ln tann

— n ' —' ln tann))X[5' b
—

2 n—-' ln tan+)+6 (Pb+-,

b)) tanh[x —-', (p, —p,)).

(5. )

([(did T)( .,~,o)]') .=:

8
1X[lnfc f-' —p( gf-)]+,g,

Xtanh[x+, (Pb+P

I therefore we combineular than I2 orIl is more sing
24 with(5. 17) to6nd

(5.24c)
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Asymptotically" as 1II
—+ 0

ln~/&'-' —t/(! /&~-') =-', o'+ P 8, o'-" '(2n. ).
n=0

(5.27)
5 (/)=(ai. p«, ) (6.5)

1': ' and then repeats periodically. In Appendix 8 we

generalize the formalism of Sec. 2 to compute for this
lattice

6. BEHAVIOR OF SPONTANEOUS
MAGNETIZATION

The magnetization of an Ising Iiiodel with 20M+I
rows and 2% columns in the presence of a magnetic
field H is defined in the thermodynamic limit as

M(H) = lim ([2K(2811+I)] ' P o, ,i). (6.1)
Q]g -voO

The spontaneous magnetization is then defined as

(6.2)1im M (lj) =M .
lI ~o+

However, since it has proven impossiblt. * to compute
the partition function of a two-dimensional Ising model
in the presence of a finite magnetic field, it has not been
possible to evaluate iM by direct application of (6.2).
Instead, one way of evaluating Af for Onsager's lattice
is to use the relation

We therefore see that the second moment (5.26) is
infinitely differentiable but not analytic at b = 0.
Furthermore, by comparing (5.5) and (5.26) we see
that the singularities of ((d/d T) (o p, po i,p))s, ' and

([(&//dT)(op, po&, p)j')s, are different. Therefore we con-
clude that the variance (5.1) possesses an infinitely
differentiable essential singularity at 8=0.

Finally, we remark that just as in Sec. 3 we were able
to study ((d/&/T) (hippo'&, )')@, near /&

= 0 when /"+ m"((i&i4-

using v(x) alone, we are able to study the corresponding
variance in terms of v(x&,xp). An analogous argument
allows us to conclude that the variance of (d/dT)
X(op, po&, ~) at least when /P+»&'(X' is infinitely
differentiable but not analytic at 6=0.

and we may think of S„(/)'" as a measure of the local
magnetization of the Lth row.

This dependence of S„(/) on / implies that (o.p,&op, „)
is not a probability-1 object even as m —+ ~ . The
spontaneous magnetization defined by (6.2) must be a
probability-1 object because it is a property of the
entire lattice and not just of a particular row, and we
mai. compute M in terms of spin-spin correlations as

kI= (5„&")E, (6.7)

A direct application of the formalism of Sec. 2 to
evaluate (6.7) is extremely difficult because of the
necessity of considering v functions with an arbitrarily
large number of variables. Ke will therefore confine
ourselves to the simpler problem of studying the
geometric rather than the arithmetic mean of 5„"'(/)
and consider (1nS„(/))E,. We have been able to study
this average only by restricting ourselves to sets (Ep)
which are symmetric about the /th rom. Ke will combine
the formalism of Sec. 2 with Szego's theorem" to ex-
press (InS„(/))@, in terms of v(x&,xp) and use the results
of Sec. 4 to establish (1.5).

The formalism of Sec. 2 is easily applied to an
arbitrary set {Ep) to show that

and to show that 5 (/) is not independent of / In.
particular, for any given m, S (/) may take on one of
three values depending on whether l is between F2o and
I'2', I:2' and I''2', or E~' and I';2'. This dependence on /

does not vanish as»& —&~ and S„(/) can take on three
distinct values. In fact, because 5„(/)"-' depends on /,

a limit will not exist if in (6.5) / and m go to infinity to-
gether. In this case, we expect the analog of (6.3) to be

.1 f = -'[5-(I)"'+5-(-')"'+5-(3)"+5-(4)"J (6 6)

M'= lim (o p po'i ).
l2+~& ~co

(6.3)
a(n) a(m —I)

From this formula the spontaneous magnetization Mo
for the Onsager lattice of Sec. 3 with interaction energies
AI and E2 may be shown to be"

fr o, o&o, m

a (—rr&+ I ) . . . a (0}
(6.8)

where u( ' is the 2X2 matrix whose elements are given
by

ilf o [1—(sinh2E&// sinh2E——Q) '1»P if T& T,— '
(6.4)=0 if T& T, .

a»&'"&=a,.&"'&= (1—s&')A '(0,0; O,m)&i@, (6.9a)

It is important to realize that for most lattices other
than Onsager's, (6.3) cannot be taken as a definition
of the spontaneous magnetization because in general
the limit will not exist. For example, consider one
particular member of the class of lattices we have been
considering where the variation of E2 is E2', E2', E2',

» Reference 10, Vol. I, p. 47.
"This famous result was first obtained by C. N. Yang (Phys.

Rev. SS, 808 (1952)1 from a somev hat diferent point of view.
The point of view adopted here is that of Ref. 7.

a,.& &= —ap&& '=(1—z&')A '(0, 0;O, m+1)»z
—«8, p, (6.9b)

and the matrix elements of A ' are given by (2.36).
This determinant is a block Toeplitz determinant of

"G. Szego, in Communications du seminaire mathematique de
1'universite de Lund; tome suppldmentaire dedie a Macel Reisz,
1952, p. 228 (unpublished). Szego only proves the theorem for
ai2(8) real. For the case that ale(8) is complex see I. I. Hirschmann,
J. D'Analyse Math. 14, 225 (1965); A. Devinatz, Illinois J.
Math. 11, 160 (1967).
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we hth« than matricesaces. S&nc

(6.14)

rat er

-(0gn 8)
de~er-

x(0 "11'

(6.»)
1ctlon

( g) = [aio( )]

„,d2, w, a
in the «im

~( ) g(—1 —j)

(0~) x(—m, 0),
then

(6.12a)

(2 ) i dgo (2ir)

Gll ( ) (m) —0,
l,im lnSm=

nt ~00

-inaio(gi) —1"'"( ')
X

and

(6.16)

.( ) = —(2or) 'a&2( '=

sin-'(gi —8&)

ave
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o the authors know gleg e there2y2 nat"ce '

the limi«f suchplicit formula known for t e im.
f e make the restr

exp
minant as

—i8 ] ~ eie)—1dg e""+'"(1+sic ")(1+sic')

X[b+ i(x(o,ari) a)]—[b i(x-i x O,ori) ——a)]-' t ubstj. tution t adirec s
' '

at 6.16) is
ofS o-' 11 oequiva enl t to the more familiar orm o -' rem

= (2ir)-' dg e*' ea„(g) (6.12b) lim n1 S = P ek„k „,
nm ~oo

(6.17)

Thus, 6.8) may he reexpressed aswhich defines a»(g). Thus
where

k„=(2') ' dg e*"'1nai (8).) (6.18)
(0) (m —1)Qli

S =(ao,oao, )=~
, 1,01(—m+1) . . ' gl

(6.13)

) ositive), whichen to make (a o oao „pg
litz determinant w ose eis now a Toeplitz e

ientl low tem-lds at least for suKcien y
o s t t with the symmetry

1 S„o h6.10, we may
asf the two-vana e u

equirement
sets by use o t e

1
(1nS„)s, =— dgi (2w) ' (No (2s.) ' (fxo p(x&, xi ) gi, gi)

sino (gi —go)

1+z,e-*o2 b;+i(x; a,)—1~" e "'bi+i(xi —ai)
ln

1+&1ei" b2 —) x2 —
21~- e"i bi —i(xi —a,)1 2 le

1+z e
—"ibi+i(xi-
e'" bi —i(xi —ai)ale

sin-', (gi+go)
1+,e-'" b,+ '(,—a.

))e'" bo i(xo a—,)—zle
(6.19)

ate 6.19) as4 24, and (4.26) to approxima4.14, (4.15), (4.20), (4.23), (4.24), anWhen 8==O(1) we use (4.5), (4.14, 4.

X2

(1nS„)s,= —or
' dpi V(pi, po)

QO

—(P1—P2) 2-

0 0 —oo

e (»+"2)+arctan e
+C,ir+o(1) . (6.20)

e—(P1—Pa) 2'+ "—arctan erctan e

to sho

—(u1—u2)e ("'+""—arctan earctan e
«Po V(pi, po)

$1+$2
X

fa —f2

e ma
' it if we use approxima 'onation 4.45)on. '-' . be made more explicit i we ue of the rsg — a

'
ht-hand side of (6. on. '-' . e ma20 on X'-' may e map

for V(p„p,)
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so that t e. eh V' dependence of (6.20) is given as

lr /4

2= —-' ln '7'+COnSt.da(sina+cosa) 2= —
4 1nX +

1
nS g (6.22)(1 -)

b h ior (6.21) from the ijI)i, it)qe asvm totic be avioron X2 ex icity yon ''' l' '
l b subtracting out the p b iorWe exhibit this dependence on .'' p

integrand of (6.20) and obtain

—(P1—P2)arctan et ("'+""—arctan e

~'(~,~.) ((1nS„)g,, = —ir ' (/@i d$2 (/pi
0 ceC

C 0(1) . (6.23)
arctan e "'+""+' ctan e

+()
'

ement that the )I)
—+—«): (6.23) and thee corn uted from the requirement the constant C~ may be compu e

orrect to leading order in. ', al

(6.24)

T
(1).From (6.4) we see, cnMo' agree to order Oi, .

o
' — T +1n2P, (gi, '+xi, )(1—gi, ) '[Ei —si,

41b F rthermore, we ui entity 3. . u=0 X ') and have use i eb. ~2' since E2—E2 ——Here we have replaced E2 y
approximation (4.45) to s o

(1nS„)g,
'+(6'~i ' —1)'"]—arctan[f)@l '+(f)"-Q2arctan[f)$i '+ )1

($/2

where

—i )2@ —2+ 1)1)2]'+ '6'@ '+1) ' "]+arctan[t)@i +
+

arctan[Qi '+ 6 @i

41+42

+@+ —— ' = ' —' 1n( —f) 'X')+C,)) e (6.2&)+4. 1)-'—-', 1n.i'+Cir =Cd.)i +-, n-—4&'(Pl+4. —
4 . ' . = . — n

—i —2+1))/2] 2[ '-& i '+1)"']-arctan[y2 ——y,arctan y&
—

y&

yi —y2

(lyly

0

1 '2
+

~

~

arctan[y, —' —(y,
—--'+ 1 ) ' "]+d i Ctd Il[yg

6.2
yl+y2

(6 24) and (6.25) and using (3.1), we findComparing

))'C)r= —' 1nP(gi +gi, ')]—C~ . (6.27)

ximation 4.70) for V(pi, p,).to studv the 8 ~—0 behavior of (6.23) by using approximation ( .It is now a simple matter to stu y e
We find

—inr » cota '"arctan e ~ ann"(c )"'l — «
~Pldp» e

sino. —cosn
ir—5 rb —i(1nS„)g,——5ii ' dr r '(r ' r——

» coto. '"- t-[-"(t- )'"]+- t-L-"(-t
sino. +cosa.

the r depen

(tana) ')' —(cota) '"
=arctanarctan e» tana'c )'"l— c Pe "(c e. ) 'l= cc ( ) (6.29a)

and

(
nou h to compute the terms in 6.28 thatdence of the p1 integral accurately enoug o cornWe may determine

diverge as b ~ 0 if

arctan e» tano.t n g ' tana)'"]+arctan[e»(cota)"'] =~O( —pi +arctan
(tana) "'+(cota) ')'

eP1 e Pl
(6.29b)
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where

and the branch of the arctangent is dered by

Using (6.29), we find

0(x)=1, x&O
=0, x&0

arctan0= 0.

(6.30)

(6.31)

x/2 arctan[e»(tann)'~'1 —arctan[e»(cotn)'i21) ~

dPg e '»
)sinn —cosn

parctan[e ~'(tann)" ]+arctan[e "'(cotn)" ) ——S-'(I —r-~)+2x-i
l sinn+ cosa

1r /2

dpi (sinn+cosn) '

(tann) ' "+(cotn) '"
Xarctan(+Ã 2

gPl g pl

(tann) 'I' —(cotn) '~')
dpi (sinn —cosn) ' arctan

gpl+ g
—pl

((tann) '"+(cosn) '")
+(sinn+cosn) 2 arctan!

l !
= —6 '(1—r ')+2C, , (6.32)

where the last equation defines C2. Putting this ap- 8 ~0, behaves as
proximation in (6.28), we obtain

(6.37)constlV I (—8

(1nS„)s, — dr r '(r'+1)

Now

—2C2b dr r '(r i r') '
~ ln.1—' (6.3—3)

dr r '(r'+1) '=5—'ln(1+e —')

=5 ' ln2 —i~ lne+O(b) (6.34a)

Clearly, as 8 ~0, the ratio of (6.36) to (6.37) may be
made arbitrarily small. Ke speculate that the further
increase in randomness that comes from totally destroy-
ing the symmetry requirements (6.10) can only serve
to further decrease this ratio so that the geometric
mean of S„in an arbitrary lattice is bounded above by
(6.36) as t1 —+0 .

In the following paper, ' by considering boundary
eRects in our random Ising lattice, we demonstrate that

(S„'")~,=3k&const(T, —T) . (6.38)

dr r '(r ~ —r~) '= —
2 ln(ei+1)/(ei —1)

= —~~ ln( —6)+~ ln( —
2 1ne)+O(6). (6.34b)

constA '"2'"(—8)c2. (6.36)

In Onsager's lattice S„is not a probabilistic quantity
and the analog of (6.36) is the square of (6.4), which,

The coe%cients of the terms in (6.34) that diverge as
8 ~ 0 do not depend on e and thus are correctly given
by our approximations of i (xi,x2). On the other hand,
the constant terms do depend on ~ and consequently are
not computable from approximation (4.70) for r(xi, x2).
We thus may combine (6.33) and (6.34) to find, as
B~O,
(inS„)e,= —-' 1rLV'+b ' ln2

+C2 ln( —8)+O(1) . (6.35)

If we recall the definition of b(3.1), we obtain (1.5).
Furthermore, since S„lies between zero and 1, we infer
that as 8 ~ 0 the geometric mean of S„is

The only way that as 6 ~ 0 the geometric mean of
S„'"[(6.36)j can be so much smaller than the arith-
metic mean is for P(S„' '), the probability distribution
function for S„'",to be very concentrated near S„'"= 0
while still having a long tail that is appreciable in the
region where S„'"1V'"=O(1) as S—+~. One such
probability function is discussed in Sec. 4 of the follow-
ing paper. Ke will only remark here that such a spread-
out probability distribution is not surprising. The fact
that there is or is not a spontaneous magnetization is a
property of the lattice as a whole. However, since the
distribution of bonds E2(j) is by no means uniform, we
do not expect the local magnetization S„(l)'~' to be
uniform. When T& T„each S„(l)"' is expected to be
zero. However, when T&T„even though the arith-
metic mean of S„will be diBerent from zero, there will
exist large strips in our lattice where the bonds E2(j)
are so much weaker than the average that if all bonds
had the strength of these bonds, the critical temperature
would be less than T. In these strips the value of
S„'~'(1) is expected to be much smaller than the arith-
metric mean. As the strips get larger, the value of
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S„'"(l) should get smaller. Therefore, as 8~0 the
local magnetization should break up into strips such
that the strips in which S„'&'(1) is comparable to the
arithmetic mean become more and more separated by
strips where S„'"(l)is extremel& small.

The foregoing description can be, of course, no more

precise than the foregoing calculations. In particular,
it is not clear how dependent this description is on the
narrowness of 1'(1.".) Neve. rtheless, it does show that on

a microscopic scale even our lattice with a narrow dis-

tribution function can be dramatically different from
Onsager's lattice. It also suggests that there is a great
deal of structure in the asymptotic behavior of the cor-
relation functions and their joint probability functions
when the separations and the correlation lengths are
larger than or comparable to X'-'. It is the intent of the
next paper of this series to make more precise what some
of this structure max be.
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this approximation is not accurate enough for the
present purpose. It merely says that to leading order
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p.&(&)——p, W-,' ln~,

P 1)(() PI) (()W ing sinhP~) «) ~

& -' h&&',
(A2)

APPENDIX A

In this appendix, we justify the analysis of case (iii)
of Sec. 4 by demonstrating that in this approximation

V(p&, p~) is nonvanishing only when

—P In&(~ (p, &-,' I lnK
~

(A1)

and by studying V(p), p, ) when (A1) holds but p+
defined by (4.58) are not of order 1. The analysis is
complicated and roughly proceeds as follows: (i) When

~
p&~+In4&=0(1), we find an approximation for V& and

V& that is more precise than (4.56). These two solutions
are expressed as an integral of some appropriate
Green s function times the function f(p2) of (4.51). (ii)
We then obtain a one-dimensional homogeneous
integral equation for f(p, ) by requiring that when p&

is of order 1, V& and V& and their p1 derivatives are
equal. Such a condition may be imposed and, indeed,
must be imposed because V& and V& must join together
as smoothly as possible since the exact V(p),p2) is

analytic in p& for p& of order 1. Only if (A1) holds will
this equation have a nontrivial solution. (iii) We then
approximately solve this integral equation for p2 away
from &2 ~ln&(~. (iv) This approximation to V(p&, p&) is
then used to restrict the possible solutions for V+ found
in Sec. 4 by demanding that the p2 ~ &-,' ~ln((~ asym-
ptotic behavior of V(p&,p~) agree with the p~ —+~
asymptotic behavior of V+.

When p~& is of order 1, we found in Sec. 4 that
V(p&,p2) is sharply peaked about ——,

'
In&( with a width

proportional to qP. In this region V was approximated
by V&+ satisfying (4.68). When p» is still of order 1 but
p& is away from —

~ In&(, V is approximated by V&,

U&«&(p&)(&),P2&(&))= V)(()(p»(&)&p2) &
(A3)

where the lower signs and subscripts in parentheses go
together. Then (4.54) becomes

V& (()(P(& (&)'&l& (())
= sinh'p~&«) U&«)(p»«&', p~&«&) (A6)

and obtain

~'V&(&) ~V&(&) ~V&(&)
+8 —e+»&«&'— =0. (A7)

~p»(&) ~p»(&) 81&(&)

From (4.32) we see that V&«& satisfies the boundary
condition

V) (&)(P» (&) &0) = 0. (AS)

This boundary condition is not by itself sufhcient to
specify a unique solution to (A7). To obtain further
boundary conditions we recall from (4.51) that if
p»«&' &In~(&&, V(p&, p&) is given by

[conste '&"+const'] f(p2) . (A9)

This approximation may also be obtained from (A7)
by omitting the last term. Therefore, we should be

8'V&(&) 8V) (&)
+~ +sgnp»(&)

~p» (&) ~p» (&) p»(&)

Xe~"')((' sinh'p. &(&& V&(&& =0. (A4)

Furthermore, set

l& (&) = coth
i Pg&(&& i

—1

and
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able torecover the form(A9) fromeither V& or V&, and
we will impose the restriction expressing the continuity
of V(pi, p2) in piat pi ——0of

V&(ln-,'y, p,&+-,'in~)
= V&( —ln4@, p2& ——,'in~)= f(p,), (A10)

wherein the last equation we have redefined f(p~) by a
constant factor. Indeed, V(p„p,) is not onh continuous
but even diA'erentiable in p1 at P1=0 and so we would
like to also impose

t9

1''&(p» pi&+'in~)
l

BPg&
l9

=—V&(pi&, pi& —-,'in~)
~ „,(=&„&~. (A11)

BP](

It is slightly unfortunate that the partial differential
equation(A7) is for Vinstead of Vbecause the bound-
ary condition (A11) for V at the fixed point pi&(&)
=~ln~qb implies a boundar~ condition for V along a
curve in the pi&(&)', t plane (Fig. 2). 1f V&«)(pi&«)', t)
were to be matched along a line p,&«)'=const, then
(A7) could be interpreted as a heat equation for a.

semi-infinite rod with a conductivity that depends ex-
ponentially on position. The boundary condition (A8)
specifies that at time t&(~) = 0 this semi-infinite rod has
zero temperature with the exception of the end where
the temperature is prescribed [by a single function like

f(p2)j. The lines p»«)'= const correspond to the

Curves of constant p I&

of constant p,

FIG. 3. Curves in the p1, p2 plane along which

p» and p1& are constant.

curves in the p1,P2 plane:

const= p, ~[ln-,'@+-', in~
—ln-.', ~sinh(P~W-', lni() ~), (A12)

which are shown in Fig. 3. These two sets of curves
clearly do not coincide. However, from (A9) we see
that when ~ ' —in@, (8"/Bp, )V(p, ,p, ) O[(in/) "j
when Piisof order 1.Therefore, V(P&,P2) and BV(P&,Pi)/
Dp1, while not exactly independent of p1 along the
curves pi&«&'=~(in-,'p —-', inc), will be independent of

pi to leading order in @ as long as p2 is away from
&2ln~. On this basis we replace the requirements
(A10) and(A11) by

V&[ln4@—-', ln~+1ni2tsinh(p»+i2 in~) ~, p»+-', lngj

=: V&[—In4$+~ in' —in~ ~sinh(p, &
—

~ in') ~, p2& —21n~j= f(p,), (A10')

l9 ~1
"&(p&y pi&+2 in&) Ip{&=lntg —:&na+&npsinh(yi&+-,'&ns)

V&(p&&y P2& 2 in~),~pi&=—&n-', g—&~&na —&n.;)sinh(y2( —i &ng)$ (A11)

where =. means equality of the leading term as p —+ 0. and
I.et G„„(win-,'@, t„„t')=b(t„„—t')—(A16)

Ops
g&(&)(t&(&))=f(p&)

Ck&(()
(A13) Then when t+)0,

V&(&)(Pi&(&) t&(&&)
Then (A10') gives the additional boundary condition

'&(&&(~ln44it&(&)) =g&(&)(t&(&)). (A14) 't'G ()(Pi ()', t () t')go()(t')—

We may now follow the procedure indicated above and
express V&(&&(p»', t&«)) in terms of f(pi). Define the
Green's functions G&«&(p»«&', y&(&& t') to satisfy-
(A7) with the boundary conditions

Even without the explicit form for |&(~) we may now
see why U(pi, p..) vanishes outside the strip (A1). From
(A2) and (AS) we see that

G&(&)(pi&(&)', t&(&) t'=0 for t&(&)&t'—,
(A15)

I p»(&&'I& —»k4'

if p2=-', lna, then t&= ~

if P, = --,' lac, then t&= ~.
(A18)
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fp= CO

II 2 = [ink

where the numerical coeScient of ct) is arbitrary,
reflecting the arbitrariness of the path along which V&

and V& are joined. We now use (A22) and (A17) in

(A11') to obtain the approxiinate one-diinensional
integral equation for»)1 and P2 away from &2 ln»

f( - Co I (

2 = —]ink
I [sinh(P2 ——,

' ln»)] —2@I/-' &tp f(P2)

Fro. 4. Plot in P1, p2 space showing the directions in which the
timelike variables t) and 3& increase. Arrows point in the direction
of increasing "time. "

to find

G&(&)(p)&(&) &s) = Ck G(pi&(&)', t)e " (A19)

From our interpretation of (A7) as a hea«q«-
tion [or, equivalently, from (A14) and (A17)],
V&«&(p»«&', t&«&) and BV&«)/&)p»(&& depend on the
values of V&«&(jinni&, t&(&)) only for times t&(&)' that
are smaller than t&«& Out.side the strip (A1) the time-
like variables t& and t& are increasing in the same direc-
tion (Fig. 4). Therefore, the values of (&)V&/&)P))(P&,P2)
and ( )V&/&)Pi)(P&, P )w2hich we are trying to equate by
(A11') are both computed from (A17) in terms of an
integral over f(P2') where P.' is greater (or lesser) than

P2 if P2 is greater (or lesser) than P ln»
~

(or —P ln»
~
).

However, the Green's functions for V& and V& will be
different. Therefore, we conclude that if BV&/Bp) and
&) V&/Bp, agree to leading order in (ln(t)) ' for some value
of p2 they cannot, in general, agree for some other value
of P2 unless they both vanish identically. However,
when (A1) holds, the timelike variables are increasing
in opposite directions, so that if BV&/Bp) is determined
by values of f(P2') for P2')Pi, then &)V&/BP) is deter-
mined by values of f(P2') for P2'&P2. Therefore, we
conclude that V(P), P2) can only be different from zero
(to our approximation) when (A1) holds.

To obtain further information on f(P2) in the strip
(A1) we need the explicit form for G&(&&. To obtain this,
Laplace-transform (A7). We define

—&1n/C

XG&[coth(2 ln» —P.) —coth(2 lnK —P„)]

=: —[sinh(p2+-'2 ln»)] —2@I/2 «P2 f(P2)

where

XG&[coth(P2+2 ln») —coth(P2+-', ln»)], (A23)

G&«)(h) = ~44 I/2-, G&(&)(pi&(&),h)
l »&(&)=+I-.o

~pl& (&)

=y(2') I- Kyi+)[(sg )'"]
(Ige8 t

()
1/2 (A24)

A2[(S4)'"]

To analyze (A23) further it is useful to define the
variable $ by

et = (»e'n2 —1)/(K —e'-n') (A25)

sinh'(P2+-, ' In») = n(K —» ')'
X (e I+» ') )(e I+») —'. (A—27—)--

Define also g($) by

d(
f(p.) =g(~)—=g(~)2("-1)

dP2
X(»e'» 1) '(»e—'» —1) ' (A2S)

Then (A23) becomes

so that as P2 goes from —
2 lnt( to +~ lnK, ( goes from

—~ to+~,
coth[P2+2 ln»] —1=2(»' —1) I(»e I+1) (A26)

aIld

e&
+(1 —e+"'&«&'sG&(&) ——0 (A20)

~p j.)(&) ~~» (&)

d$ g($)G&[2(K K ') '(e2 —e2)]

with the boundary condition

G
& &(& ln-,'(p, s) =e ". (A21)

=: —e & d$ g($)G&[2(K K ') I(e I—e I)]. (A29)

G&«&(pi&«&', h&(&&
—h') = (2)rt') g8( t) (&,)—t )

[2(2e+n& (&) ') I /2y 21(2 [2 (se+ n& (&) ') I / 2]X— , (A22)
($C pb/2A [(sy) I /2]

(.'learly, we obtain G& from G& if we replace Pl&' by—p~&' and 8 by —b. This equation may be solved and
we find

hm G&(&)(pi&(&),t) =0. (A30)

Then if we recall (AS), we may integrate the partial

This integral equation is somewhat complicated by
the fact that when t=O, Cx&«&(t) as given by (A24)
does not exist. This must be interpreted as meaning that
G&«&(t) is a distribution at t=O instead of a function.
This may be made more precise if we note from (A22)
that
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diBerential equation for G&(&),(A7) and find If p&&t, we may approximaxilila'te G&(&&(t) by

C (t) ——4 I/2(2~1')-I

Therefore

' t, =0. A31)X dt G&(&&(p»«&, t =
at 1/21 4) I/2(1+2&[p(~g)5 1 SgI1dSe S 2S

X f (s4) '"[I'(I—t')] —(s4)
—1 s il/2 Ia(1+))]—1}—1

and

t~~——conste '»&(~) +constdt G&«&(p»«&, t/=cons e (A32) 35 is analytic in s excep
~ ~ t for a cutThe integrand of (A35) is

ken on the negative rea s axis.
d h' d bdeform the contour to go aroun t is cu

rt/ C&(&,(t) = Fi c—onst. (A33}
&'&(&&(/) -2t" rise" @s" (4s) '"—(4s)'"} ' (A36)

nstant can be no larger than 0(rttt/-')

Th fbecause V(p„p,) is normalized to
conclude that

If, in addition,
ti'i-1 (K&4-1), (A37)

(A38)
d«(.&(/) =0[4"'~]=0[~'"(I 4)-'5 (A34& (&)

If instead of (A37), we have)

t('()) I (t))@—'), (A39)

G&(&&(t)-t&'(t i"t I "i. (A40)
then

t~ is muc ral ast is much larger than its integra asa roximations (A36) and (A40) show that G&«&(t Is muc
(A34) to t (A29)given by (A34). Therefore we may use

tk G [2(e ~ ') '(e' e')][—e'g($) e'g(k —]+ d& G L2(~ ~') '(—e ' e')]L—e 'g(&) e'g(t-d$6& 2 K —K

=: —g(() «G [2( —-')-'("—t)]+ dt G [2(/( —t(
—')—'(e——t)]

=g(E) dt G&[2(/( —tt ') '(et —t)]+ dt G&[2(»—.-1)(e-2—t)5 . (A41)

b a roximation (A38) because
at = does not contribute to lead'
p ce6&(&) y pp o

1 nd (b) the distribution at t=( oes no
te 6 in the integra s o e rih W mf the integrand vanis es t ere.

f t J'~ in approximation ac
—1

jl &@—' the extra factor o
'

ac
f bti th l di t o t

=o(), o ITherefore (A41) is, when )=0 1, correc y

dj (et et) '[erg(—j) -egg((}5+— d& (e-' e ')-'[e 'g-(~)-e 'g(-k)]--
0

dt[(et —t) '+(e—
2 —t) '] . (A42)

YVe therefore obtain

«k g(k)+ ]+ «(e "' 1) '[g(k)—g(()]-«&(' ' —) '[g(k) —g($ +
=:g(k)[in(et+(t —')+in e 2+y =: —g--
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This expression is valid for ( of order 1 as @~ 0. It is
clear that the only possible solution is

g($) = const for in@+!j!«1
(A44)

g(g) =«oi in'+
I
~l»1.

When In@+!$!=O(l), g($) approaches zero in some
manner which is not explicitly needed for our purposes.
We finallv make use of (A28) to obtain the desired
result

f(pi) = const(&&' —1)(«e'"' —1) '(«e '~' —1)
for !p, W-,' in&&!))y

—'. (A45)

It now remains to use (A45) to demonstrate that the
choice of the functions V~ of Sec. 4 is correct. To do
this we first notice that f(p, ) possesses simple poles at
P~=&-, ln~ with equal residues. This implies that the
b functions at pi= &~ ln« that we obtained in approxi-
mation (4.70) must have equal coeKcients. It is this
equality of coefficients that is produced by the choice
A~(s)=s+'. If A~(s)=s + with n~&WB, then, if we
satisfy the boundary condition (4.30), the correspond-
ing b functions of (4.70) will not have equal coefI&cients.

To see in slightly more detail how V+ of (4.63) joins
to (A45) we note that as pp —+O(y ')

Vg(piip~)= '4&& '"!1—&&—'!V(pi, p2) ~
@[&(p2%-,' 1n&&)4i&'"(I —«') j '+'. (A46)

All quantities in the square brackets are of order 1, so 8

may be set equal to zero. However, (A46) with b ~ 0
is exactly the form (A45) takes when pi~ &2 in&&,

so we conclude that V~(p&, p) given by (4.63) is

asympt-

oticallyy equal to V(pi, p2) obtained from (A45).
Finally, it may be argued that we have only Axed the

form of A~(s) when s —+0. This is indeed correct; how-
ever, a more detailed specification of A~(s) merely
alters the detailed nature of the sharp peaks at
p2=- &-,' lnf~ and can alter neither the qualitative picture
of V(pi, p~) given in Sec. 4 for @ 0, !h! ' —In@ nor
the final approximation (4.70). Indeed, we may use our
function f(p2) in conjunction with V+ and the Green s-
function representation (A17) to study in detail how the
one peak of V(pi&pcs) spreads out and vanishes when
!Pi!+in'=O(1). However, since these refined details
do not aRect the results of Secs. 5 and 6, we will pursue
them no further.

APPENDIX 3
We may study the m —+~ limits of the correlation

functions 5 &"(l) for the example of Sec. 6 where the
variation of E2 is E2', E2', E2', E2' repeated periodically
by a straightforward application of Szego's theorem.
LThe superscript (4) indicates the number of bonds in
the fundamental cell which is periodically repeated. $
For concreteness consider a lattice with the rows
labeled as in Fig. 5. Then in any rom we can always
apply (6.8) and write LS &4&(l))' as a 2mX2m block
Toeplitz determinant. It is clear from Fig. 5 that in the
thermodynamic limit if

then
ED~El

5 &4&(0) ~S„&4&(2).

(81)

(82)

exists, we may let BR tend the ~ through multiples of 4
without altering the limit. For this particular lattice
we have

D &'& (0,4On, ') = —D &'&(0,4On'), (83)
so we have

a&4&(0,4on') = x&4&(0,4or&.'), (84)

where we may evaluate the right-hand side in the
oR~~ limit by use of the recursion relation (2.23),
which in this case becomes

C&"(0, 4o1z'+1) a'+b' a

&4'(0, 4On'+1) a 1

0 C&4&(0,4on')i
X !. (85)

0 z2'(4on') D&4&(0,4''))
To compute (84) we need a recursion relation connect-
ing 4OR' and 4(on'+ 1).Therefore we iterate (85) to find

Furthermore, the lattice is symmetric about row zero
(in fact, about any even row) in the sense of (6.10).
Therefore S &4&(0) is given by the mXm Toeplitz
determinant (6.13). We will demonstrate that this ex-
pression is not invariant under the substitution (81)
so that 5 &4&(0)&5 &4'(2).

To evaluate (6.13) we need an expression for
a&4&(0,9R; e) that appears in (6.12b) when OR —&~.
Since

lim x&4&(0,On:; 0)
BK~oo

C&4&(0, 4(On'+1)) a'+b' az22(4OR'+3) a'+b' as2'(4OK'+2) a'+b' a~~'(4:&1&.'+1)i22

D '&(0, 4(On'+-1)) a -"'(4:m.'+3) a z,'(4On'+2) a;&'(4On'+I) &

a'+b' az22(4On') C&'&(0,4OII') yii yi~ C&4&(0,4On')
X (86)

a z&'(4OR') D&"(0,4OK') y9i y2s D&'&(0,4OK')

where, if we use

z, '-'(4On') = z2'-'(4O1&'+ 3)= & 0 (87a) zs'(4o1&, '+ 1)= zs'(4on'+-2) = Xi, (87b)
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we have

y
—[(a2+ b2)2+ a2h ][(a2+b2)2+ a2h ]

+aphf[a2+ b2+ hp][a'+ b'-+ h,], (88a)

y12
——ahp{ [(a'+b')'+ a'hp][a'+ b'+ h,]

+hi[a'+ b'+hp](a'+hi) }, (88b)

EO
2

IE,
'

I I
I I

EO
2

El

I I

I I I
1 I I

I I I

y
—a{[(a2+b2)2+ a2h ][a2+b2+ h

+hi[a'+ b'+ hi](a'+ hp) }, (88c)

y = hp[a'(a'+b'+ hp)(a'+b'+ h )
+hi(a'+hp)(a'+h, )]. (88d)

The matrix in (86) is independent of 31K' because of the
underlying periodicity of the lattice, so the determina-
tion of x&1&(0,4'.&ll') as 911' —+~ is reduced to determining
the eigenvector of (86) with the largest eigenvalue.
From (86)

EO
2

IE, I I I I

I I I I I
I I I I 1

IE I I I I

EO
2

FiG. 5. I.attice used to demonstrate that S (l) may depend upon t.

that this implies that S &4&(0)WS &'&(2) we note that
(814) has the required property (6.15) that

x&1&[0,4(!&tt'+ 1)]= [yllx"'(0,4 &R')+ y12]

+[ypfx& &(OI43It )+y22] I (89)
so, letting

x &4& = x &4& [0,4(&R'+ 1)]= x &4&(043II'), (810)

we find

a»"'(-8) = [a» "&(~)3 '

and, furthermore, that it may be put in the form

X[y21(b+la)'+y12+(b+pa)(y22 —yll)] '

(815)

(0)

S„&4&(0)= a det:
C)g (—m+1)

with

(m—I)

g Co)

(812)

alp& '=(21r) ' Jtf e&mpa &4& (g) (813)

a12 (& ) {b la+2(2y21) '(yll y22+[(y22 yil)
+4y»y21] )}{b+Za—1(2y21) '(yii —y22

+[y22 yll) +4y12y21] )} ~ (814)

From inspection of (814) we see that a,.&'&(tl) is not
invariant under the interchange Ap~h&. To verify

(2y21) '{yl 1 y22+ [(y22 yl 1)'

+4yfpy»]'"}, (811)

where the plus sign is chosen for the square root in
order that x&"=xp [defined by (3.5)] when hi=-h, .

If we now use (811) in (6.12b), we find

(1—A e*P)(1—Ape 'P)(1 —Ape")(1 —AIe ")
(1—Ale ")(1—Ale")(1 —Ale ")(1—AIe")

(816)
The A's are the roots of a polynomial of eighth degree
and will not be explicitly written out. However, if the
A 's are suitably chosen, we can easily see that if A, p ~ A, I,

and A I ~ A I . (817)

Furthermore, since (y» —y»)'-'+4y»yf, is invariant:
under Xp+-+ PI, this substitution merely permutes the
A s and, in particular, A ~ and A2 are left invariant while
AI~ AI. We may now apply Szego's theorem" [in
the form (6.17)] to (812) and find

S "'(0)= L(1 —A ')(1—A2')(1 —AI')(1 —AP)]'"
X[(1—A,A,)(1 AIA4)]f& [(1—AIA2)(1 —AIA4)

X(l —AI.42)(1—AIAI)] '". (818)

This is clearly not invariant if A3 ~ A4, so we conclude
that S„&'&(0)W S„"&(2)if hpW hi.


