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We continue our investigation of an Ising model with immobile random impurities by studying the spin-
spin correlation functions. These correlations are not probability-1 objects and have a probability distribu-
tion. When the random bonds have the particular distribution function studied in the first paper of this
series, we demonstrate that the average value and the second moment of the temperature derivatives of
these correlations are infinitely differentiable but fail to be analytic at T, the temperature at which the
observable specific heat fails to be analytic. When T'<T, we consider S, (!) = limm-y«({c0,001,m). This limit is
not independent of /. In the special case that the random bonds are symmetrically distributed about the
Ith row, the geometric mean of S, (/) is computed and shown to vanish exponentially rapidly when 7" — T'.—.
We contrast this with a lower bound that shows that the spontaneous magnetization can vanish no more
rapidly than T.— 7', and present a description of how the local magnetization S, (/)? behaves as T — T.—.

1. INTRODUCTION

IN the first paper of this series' we study the effect of
immobile random impurities on a magnetic phase
transition by constructing a modification of the two-
dimensional Ising model in which all vertical bonds
E,(7) connecting the jth row to the (j+1)th row are
the same, but E,(7) is allowed to vary randomly from
row to row with a probability density P(E.). We
explain in that paper the connection of this modification
of the experimental situation,? set up a general formalism
for computing the free energy, and, finally, for a par-
ticular narrow P(E,) of width N~!, compute the terms
in the specific heat that do not vanish as N —=.

In 1944, Onsager® computed the free energy of a
“pure” two-dimensional Ising model. The next proper-
ties of this lattice to be investigated were the spin-spin
correlation functions which were studied by Kaufman
and Onsager* in 1949. In this paper, we continue to
follow this historical order of development and study
the spin-spin correlation functions for our random
Ising model.

Our model of random impurities is in reality a collec-
tion of models, each of which has a certain probability
attached to it. This collection possesses a well-defined
set of thermodynamic properties because, as shown in
I, the free energies and hence the specific heats of each
lattice in the collection possess with probability 1, the
same thermodynamic limit. This basically results from
the fact that the free energy is a property of the lattice
as a whole and does not depend on the detailed arrange-
ment of bonds E,(j) in any particular lattice. The

1B. M. McCoy and T. T. Wu, Phys. Rev. 176, 631 (1968).
This paper will henceforth be referred to as I.

2 See also B. M. McCoy and T. T. Wu, Phys. Rev. Letters 21,
549 (1968).

3 L. Onsager, Phys. Rev. 65, 117 (1944).

4 B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949).
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spin-spin correlation functions, however, are quite
different from the free energy in that they do depend
on the detailed arrangement of bonds E,(7) relative to
the locations of the two spins which are being correlated
and therefore are not probability-1 objects. Thus, in
contrast with Onsager’s lattice, it is necessary, if one
wants to characterize these spin-spin correlations
completely, to compute not only their average value
but also their probability distribution. The computation
of these probability distributions is quite involved,
however, and for the purpose of obtaining explicit
results we will restrict our attention to the average
value and the second moment. In other words, we carry
out the program outlined in Sec. 5 D of 1.

Since there are many features of the correlation func-
tions of our random Ising model that may be contrasted
with the correlation functions of Onsager’s lattice, it
seems appropriate to outline the comparisons to be
made before carrying out the detailed calculations. As
in I, we have obtained explicit results only for the par-
ticular distribution function

dE,
P(E2)X=“O\) = N)\Q_N)\N'l ’ OS A< X

=0, otherwise (1.1)

(1.2)

k is the Boltzmann’s constant, and N is large. In this
case the spin-spin correlation at fixed separation never
deviates to order 1 from the corresponding correlation
function for Onsager’s lattice. This is a consequence of
the fact that the result of Kaufman and Onsager! is a
continuous function of 7. Therefore we concentrate not
on the spin-spin correlations themselves, but on their
first temperature derivative. For Onsager’s lattice these
derivatives are known* to diverge when T — T, as

982

where
A= tanh*(E,/kT),
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In|7—T,|. In the random lattice specified by (1.1),
the average values of these derivatives differ to order 1
from their Onsager values only if T—7.=0(N7?),
where T, is the temperature found in I where the specific
heat fails to be analytic. For nearest neighbors these
average values are given by (3.38), an expression which
is infinitely differentiable but not analytic at T=T,. A
similar behavior is shown to obtain for other separations
besides nearest neighbors.

The variance of (d/dT){so,001,0y is studied in Sec. 5.
Itis seen in (5.4) that this variance is of order 1, whereas
(3.38) shows that the average values contain a term
proportional to InNV2. We conclude Sec. 5 by demonstrat-
ing that the variance of (d/dT)(s,001,0) is also infinitely
differentiable but not analytic at 7= T,. We also show
that the singularities of the second moment and of the
square of the average value are different.

Perhaps the most interesting feature of the spin-spin
correlation functions of Onsager’s lattice is not the
singularity at 7= T, of {o¢,061,m) for / and m fixed, but
rather the behavior when T is fixed and the separation
between the spins tends to infinity. When 77<7 in
Onsager’s lattice,

lim
124 m2 >0

(co,000,m)=M?, (1.3)

where M is the spontaneous magnetization. We investi-
gate such limits in Sec. 6 and show that in sharp con-
trast with Onsager’s lattice the correlation functions
for any lattice in our collection will not, in general,
approach a limit when 7’< 7', and the separation tends
to infinity. For the particular case of {(o;,001,m)=Sn(l),
a limit will exist when m —= but for any given lattice
of our collection the value of this limit depends on /; in
other words, S,, is not a probability-1 object. For tech-
nical reasons, this lack of a probability-1 limit prevents
us from determining the spontaneous magnetization. We
are, however, able to compute the average of InS,(/)
in the subset of lattices which obeys the additional sym-
metry restriction

Eal+ )= Eall—j—1).
In such a symmetrical row we show that as T — 7', —,

(InS.()) = —% IMN*+N=*(T—T)7'Cy™" In2
+C m[(T.—T)N*]4-0(1), (1.5)

where C, is given by (3.1) and C; by (6.32) and (- - )&,
denotes the average over all sets {E,}. This result
implies that the geometric mean of S, (/) vanishes ex-
ponentially rapidly as T'— T,—, and we speculate that
if we allow more randomness by totally violating (1.4)
this geometric mean cannot vanish less rapidly. How-
ever, it must not be inferred from (1.5), that the spon-
taneous magnetization vanishes exponentially rapidly as
T — T.—, for in the following paper® we demonstrate

(1.4)

5 B. M. McCoy, following paper, Phys. Rev. 188, 1014 (1969).
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that the spontaneous magnetization is bounded below
by

(1.6)

Therefore, although the specific heat computed in I has
an infinitely differentiable essential singularity at T,
not all physical quantities behave so smoothly. This
variety of singularities in physical quantities near T is
further explored in the next paper of this series, where
we use the methods of this paper to study the boundary
magnetization and boundary spin correlation functions
of a half-plane random Ising lattice. We are then able
to obtain several more lower bounds like (1.6) which are
extremely interesting because they imply that much of
the usual “critical exponent” description of critical
phenomena does not apply to our model.

The calculations needed to make precise the results
just outlined are rather lengthy. For ease of reference,
we have developed all the general formalism needed
for the entire paper in Sec. 2, and we suggest the reader
consult this formalism only as it is actually applied in
the later sections. The remainder of the paper is devoted
exclusively to the case (1.1). In Sec. 3 we study the
average value of (d/dT){co,001,m) by combining the
results of Sec. 2 and those of I. Section 4 and Appendix
A are devoted to a rather lengthy and intricate analysis
of a two-dimensional integral equation derived in Sec. 2.
We advise the reader to omit this analysis until he sees
how the final results are used in Secs. 5 and 6. We make
this suggestion because approximations (4.70), (4.83),
and (4.87), which we actually use in the sequel, are
much simpler than the more refined analysis that is
needed to justify them. Section 5 is then devoted to the
study of the variance of (d/dT){s0,001,m). We conclude
in Sec. 6 with the computation leading to (1.5), and
several speculations that lead to a qualitative picture
of the behavior of S,())!'? as T — T, —.

const N(T.—T) as T—T.—.

2. FORMULATION OF PROBLEM

The Hamiltonian of our Ising model of 29t columns
and 291+1 rows is

m  ow
=—E1 Y Y 0jifikn
v e 0

M1 o=
-2 E() X oiioqk, (2.1)
F=—M k=3+1

where o;,,==1 and j labels the row and & the column
of a lattice site. We apply cyclic boundary con-
ditions in the horizontal direction by identifying
k=91+1 with k= —%+1, but we do not connect
row O with row —9.® We begin our study of spin-
spin correlation functions by remarking that the cal-

¢ In I we numbered the rows 1 < j <M. The slight change in the
present presentation is made for convenience in computing the
correlation functions.



984 B. M.

culation of Ising spin-spin correlation functions in
terms of appropriate determinants given by Montroll,
Potts, and Ward” may be applied to the system de-
scribed by (2.1) for any set of energies { E;}. Further-
more, because of the boundary conditions imposed,
we may use the methods of IV 8 to calculate the elements
of these determinants. We will sketch these develop-
ments in Sec. 2 A to establish a notation. For a thorough
explanation of the techniques we refer the reader to
these papers. In Sec. 2 B we combine these results
with those of I to compute the average over the set of
energies {E.} of the nearest-neighbor correlations
(70,001,0) and {ag,000,1). In Sec. 2 C we derive the more
complicated expressions that are needed to study
average spin-spin correlations other than nearest
neighbor. Finally, in Sec. 2 D we study the probabilistic
nature of these correlation functions by computing the
second moments of {a¢,001,0) and {o0,000,1), and of (¢/dT)
X<00,061,0> and (d/dT)(a’o,()UoJ).

A. General Correlation Functions

The work of Ref. 7 may be directly applied to any of
our lattices to show

-1
(@o.001,m) =xa™ [ 2(HPf'+QPf(y), (2.2)

7=0
where
z1=tanhBEy, 2:(j)=tanhBE,(j), (2.3)
with 8= (k£7)~". The matrix y is the nonsingular sub-
matrix of the matrix =A4’'—A, where 4 is the antisym-
metric 891 (294 1) X 891 (20+ 1) matrix whose Pfaffian
is the generating function for polygon configurations
drawn on the lattice of Fig. 1. The Pfaffian of the
matrix 4’ is the corresponding generating function of
the lattice obtained by drawing a path from the site
(0,0) to the site (},m) and replacing every bond z; on
that path by z;=\. Finally, Q is the submatrix of 4! in
the subspace determined by 7.
To compute the matrix Q we recall from IV that 4
may be explicitly written as

R L U D

R( 0 1 —1-1

. Ll—1 0 1 -1
AGk; 3= 1 1 o 1 (2.4a)

Dl 1 1 -1 1

for —m< <M and — N+ 1<k ;N

7E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys.
4, 308 (1963).

8 B. M. McCoy and T. T. Wu, Phys. Rev. 162, 436 (1967).
This paper will henceforth be referred to as IV.
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A4, k; §, k+1)=—AT(5, k+1; 7, k)
0 Z1 00
1o o oo
=lo 0 o o @4
0f0 00
for —m< <M and — N+ 1<k<N—1,
A(G, kb j+1, k)= —AT(j+1,k; 4, k)
0 00 0
looo o
=10 0 0 =0 (2.4c)
0 0 O 0

for — ML <M —1 and —NH1<k<N, and

for —a< <. All other matrix elements of 4 are
zero [compare (2.6) of IV].
Because our lattice is translationally invariant in the

horizontal direction, we may follow IV to find [analogous
to (7.1) of IV]

A7k LK) =@ E e[ BA0) ]y, (25)
[

where the sum is over
0=7(2n—1)/20, n=1,2,.-,29

and B(f) is a 4(29+1) X4(201+1) skew-Hermitian
matrix defined by

R L U D
R 0 14z —1 —1)
L —1—ze* 0 1 —1
Bj.]'(a) U 1 -1 0 1 (2.63.)
D 1 1 -1  0J
for —m< <91,
00 0 0)
000 O
Bis1(0)=—Birs"O)= |y o o 20j) (2.6b)
000 0]

for —m< <O —1, and zero for all other values of j
and j'. We are interested in the 9T — limit where (2.5)
becomes

A7 (Gok; J R ) =Q2m) [ df e EFO[B1(6) 50

-

(2.7

Rearrange the rows and columns of B so that all the
R,L rows (columns) precede all U,D rows (columns)
and call the resulting 4(291+1) X4(297+1) matrix

<b11 b12>
bo1  boy .
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Then, following (7.3) of IV, we obtain

<bu b12>*' (bu"'
bo b/ N\ 0O

"bu"“‘blz'bn"')

oo’ !
1 0
() e
[91 1
where
R L
R 0 1+21€% 20
[bll ]].vsz(—l—Z]e_w )7 ( . ‘l)
U D
. R(—l —1> Oob)
b’ ;= , .
Low'dis=
U D
] l'/’v(—ia _b> (2.9¢)
be' )= , .9¢
Lo i D\ b ia

R L
(142101 (14-z,e8)!

I
I lj5=
Llea] (—(l—i—zlei")“ (14-z1e7%)!

>, (2.9d)
D

for —Mm< 7<M and
U D
) U0 z(y)
[bas"]j.41=—[b22 T]j+l,j=D<O 0 (2.9¢)

for =ML j<NM—1. All the other matrix elements are

—m -9 -M+1, -1 -1
D U D D U
—M D (ia b
—Im Ul—b —1a 2o(—IM)
—‘JT‘H—I D —25(—=9M) ia
-1 D ' ia b
—1 U —b —1a
C(Eg)— 0 D —Zz(—l)
U
! D
M—1 U
m D
m Ul
We compute C~! from the formula
[C_ljjl,j/ v= cofactoer'p;ﬂ/detCi Byl - (2 15)

To evaluate the required cofactors, we define C(j,7’)
as the determinant of the 2(j'—j)X2(;'—/) matrix
obtained from Cig,} by deleting all rows and columns
with an index less than j or greater than j’, iD(j,;’) as

WITH RAN
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2,00 (20 [z,
Z Z Z, Z
(.- [0,0 ()]
0 |0 |20
Fi16. 1. Ising lattice with bond z| z Z Z)
weights 2, and z2(5). 0.-) __|0,00 0,0
40 [z |z
Z Z) Z Z)
ST I (ST R (ST
zero and we have used the notation of I:
a= —2z; sinf | 142.6%| 2, (2.10a)
b=(1—3.2)| 142€"| 2. (2.10b)
The required inverse of b1y is
0 —(14-21e7%) !
[bu' ;.5 =< ) ;5 (2.11)
(1421691 0

To compute [ s’ ]~ we define the 2(2911+ 1) X 2(2911+-1)
matrix Cig,} to be bs2’ with U and D interchanged.
Then from (2.8)

[B~'10=[C" 1.y, withI=U,D,I'=0,D. (2.12)
Explicitly,

D U

D/ia b
Cj'j= ( ) for —Q]IS]SM (2138,)

U\—=b —ia

and

o " 0)
C"j = — 1,7 =
7+l J+1,5 (22(]) 0

for —m<j<am—1, (2.13b)
so that
0 0 1 M—1 M M
D U D U D U
22(—1)
ia b .(2.19)
—-b —ia 22(0)
—22(0) ia
—ia z(MM—1) 0
—2z(IM—1) ia b
0 —b —ie

the determinant of the [2(j'—j)—1]X[2(j'—j)—1]
matrix obtained by deleting the last row and column
from the matrix defining C(j,;') and iD(4,;") as the
determinant of the [2(;'—j)—1]X[2(;’—5)—1]
matrix obtained by deleting the first row and column
from the matrix defining C(7,;’). Because C{g,) has only
three nonvanishing diagonals, we readily may use these
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definitions to obtain for —M< j/< j<n
[B~'lip.sp=—=[B"']yp ;p*

j—1
=677 ] 2(n)C(—M, 7'—1)

n=j’

XD(G,m)/C(—=m, m),
(B Jvyuv=—=[BJpv.;v*

(2.16a)

j—1
=ib7" [ z(0)D(—9, §')

n=j’

XC(+1, M),/ C(—n, m), (2.16b)
(B Jvip=—[B"]ipv*
J
=+ T z(n)C(—M, 7' —1)
n=j’+1
XC(j+1,9m)/C( —N, M) (2.16¢)
and for —M< 7/ <7<
[(B~'1ip.jv=—[B"]yv.n*
-1
=—b7""V ] zo(n)D(—9M, §')
n=j’
XD(j;9m)/ (=1, 310 (2.16d)

All other inverse matrix elements are now readily ob-
tained by combining (2.16) with (2.8). In particular, for
the later study of spin correlations in the horizontal
direction we need

(B~ )irsr=[B L jo=1|1+2€%| 2
X{C(=, j—1)D(j,9)+ D(—=9m, /)C(j+1,9m)}/
C(—m, M) (2.17a)
and
(B ir.ir=—[BJjr.jr*= (14 2:€) "
X{14(1+2:e*)[iD(—M, j)C(j+1, o)
—iC(—=M, j—1)D(5,91) —2bC(—dM, j—1)

XC(j+1,m)]/C(—om, M)}. (2.17b)

B. Average Nearest-Neighbor Spin-Spin Correlations

To compute (09,001,0) from this formalism, we join
the site (0,0) to the site (1,0) by a straight line. Then

00 10
U D
00 U 0 52*1(0) —22(0)
y= l: :| (2.18)
10 DL —[21(0)—2(0)] 0

and (2.2) gives for any set of interactions { E,}

(00,001,0) =[1—222(0)] (2w)~!

>< / d8 B-8)1p,0042:(0), (2.19)
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with [B~1];p,ov given by (2.16). Similarly,

(0’0,00'0.1>=(1—Zl2)(21r)_1
X/ do e®B=(0)or.0r+21, (2.20)

with [B™]oz,0z given by (2.17). These correlation func-
tions clearly are functions of all the E.(j) but the de-
pendence on E,(j) is not the same for all j, so, in con-
trast to the specific heat, they are not probability-1
objects, even as 9 — . For example, {g0,001,0) is zero
if E5(0)=0 and is 1 if E;(0) = «, regardless of what the
rest of the energies E,(j) are. Thus, (so,01,0) and
(00,000,1) themselves are random objects and to charac-
terize them, we need to know their probability distribu-
tion functions. Even these single-probability distribu-
tions will not completely characterize these nearest-
neighbor correlations because, for example, {¢;,00;11.0)
and (o7,00j-+1,0) are not independent random functions
for j# j'. To characterize the spin-spin correlations com-
pletely, we need a joint probability distribution function
involving all possible spin correlations in the system.
In this paper, however, we are not interested in all the
information contained in these probability functions
and confine ourselves in this section to the average
value and the average of the square of the spin-spin
correlation functions.

To study these averages, it is convenient to define
the ratios

C(5,7)/D(4,7")=%(4,7"; 6)
C(],]’)/D(],]’)= _j(jajl; 0) )

where the dependence on 6 will be suppressed unless
needed. We may then use the identities

(2.21a)
and

(2.21b)

C(—9M, M) =C (=M, j)C(j+1, M)
—22(7) (=9, 7)D(j+1, 9m)

= _D(—ﬂn, ])D-(],E)Tl)
+02C(=, j—1)CGi+1,9m) (2.22)

and the recursion relations
C(—om, j4+1)\ /a*+b a
<D(—3n,j+1)>=( a 1)
><<1 ° )(C(—m’ j)) (2.23a)
and 0 22(7)/\D(-9, j)
C(j—1,9M) a*+b? a
(—D(j—l,sm)>=< a 1>
C(5,9m)

1 0
(Y™
0 =2(j—1)/\=D(jm)
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to write

B71(8)1p,00=22(0){2.2(0)

+x(—9, 0; OF1; )} (2.24a)

and
B7Y(0)or.0r= (142:6°) " (14 (1+2,67) !

X {i[Z(0,91; 8)+2(—90, 0; 6) —2a]

—26"1[£(0,9; ) —a J[x(—9M, 0; 6) —a}

X8>+ [£(0,97; 8) —a[x(—9IN, 0; 8) —a]}™). (2.24b)

The existence of the thermodynamic limit is equiva-
lent to the existence of limgy-. Z(7,91) and limgyo.e
Xx(—=N, 7). These limits will in general be different for
the different lattices of our collection. We also see from
the recursion relation (2.23) that lim;._., Z(7,91) and
lim; e 2(—N, 7) will not exist. However, we saw in I
that the work of Furstenberg® may be applied to the
recursion relation (2.23a) to show that for 9 fixed and
Mt j = (2.25)

where x is a random variable whose distribution function
v(x) is independent of the boundary conditions imposed
on the recursion relation and satisfies

a?+b?—ax
dx’ Ix'[u<x’—~ )u(x’) . (2.26)

xX—a

x(—9M, j; 0) > x,

2 00

V(x) =(:—a)2 —o

Here, as in I, we have defined
u(\)dA= P(E,)dE, (2.27)
A= tanh’BE,. (2.28)
Similarly, we see from (2.23b) that for 9 fixed and
Mt j = (2.29)

where & is a random variable whose distribution func-
tion #(Z) satisfies

and

z(j,0M; 6) = T,

5(Z)=»(3). (2.30)

Therefore, if a function depends on the collection of
energies FE,(j) for —mM<j< 4 and ;<7< with
Jo< j1 only through the ratios x(—91, jo) and &(;1,9M),
we may average this function over these energies in the
I —eo limit by replacing x(—91, jo; 6) by x and
Z(71,9; 6) by & and averaging the resulting expression
over x and & using v(x) and »(Z). Since 2,(0), (=9, 0),
and #(1,5%) [and similarly x(—97, 0) and Z(0,9%)]
depend on independent subsets of {E,}, we use this

<0’0,00'0'2>= (1'—212)2 Pf| A—_I(O,O, O,I)RR A—X(O,O; O,I)RL—‘(Zl_l—Zl)_l

where

A0k 0,8 ) . — (217 —21) Yok —pe10= — (1 —5:2) "1 (27) ! /

ISING MODEL WITH RANDOM

IMPURITIES. 11 987

argument to obtain the desired results

)

<<"°.°”1.0>)x,=f

0

dEs P(Es)z2, { 1+(1—2%)(2m)!

XJ[_ @ /_ vt /_ K u(:Z)[zf-l-x:i]—‘} ,

(2.31a)
where 2,(0) = z;= tanh8E,, and
({00,000,1)) Ea= (2m)~" '/“ d6 e®(14z.67%)
X (1421€%) ! /‘” dx v(x) dz v(Z)
ib(x+T—2a)—2(x—a)(T—a)
<1+ ) (2.31b)
b*+(x—a)(@—a)

Finally, it should be remarked that these two average
neighbor spin-spin correlation functions are closely
related to the free energy studied in I. In particular, from

Fo=—g~Lim 2M+1)" InZ, (2.32)
where
2= & (2.33)
all ¢
and & is given by (2.1), we have
IBF,
—-66—=—E1(<00.000.1))Er—<E2<00.001.o))m- (2.34)

The derivative of (2.34) with respect to 7 is the specific
heat and because both spin correlations in (2.34) are
monotonic nonincreasing, we conclude that the leading
singularity of the temperature derivative of the nearest-
neighbor correlation functions at 7', must be the same
as that of C,”. This will be seen in more detail in Sec. 3,
where we study the derivatives of these functions for
the special case (1.1).

C. Other Average Spin-Spin Correlations

To study spin correlations other than nearest
neighbor, we need more information than that provided
by »(x). To see this, consider (¢¢,000,2). Using the form-
alism of A4, we find for any collection {E,}

A1 (0,0; O,Z)RL

A_I(O,l; O,I)RL A“‘(O,l; 0,2)}314—(21__l —Zl)_l , (235)
A-I(O;I; O’Z)LL |
dl et F—R0(1+5167%) (143,€%) !
16[Z(0,90) (=N, 0) —2a]—2[ZF(0,9%) —a[2( =N, 0) —a]
X(1+ > (2.36a)
b +[&(0,,M) —a][x(—M, 0)—a]

® H. Furstenberg, Trans. Am. Math. Soc. 108, 377 (1963).
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A0,k 0,k ) pp=A=1(0,k; 0,k") 1= (1—2.2)~' (2m)""! / d8 ek %B[F(0,01) — x( =1, 0) ]

This expression is markedly different from the expres-
sions for (gg,000,1) and {oo,001,0) because it involves not
just a single integral over a function of x(—1, 0; 6), but
a product of such integrals which may be rewritten as a
double integral over a function of x(—94,0;6;) and
x(—9M, 0; ;). The ratios x(—9M, 0; 61) and x(—N,0; 62)
involve exactly the same subset of {E.}, so they are
not statistically independent, and, in fact, are identical
if ;= 6,. Therefore, we cannot average (2.35) over { E»}
by replacing these ratios by a and averaging over
v(x).

To study averages of functions of x(—91, 0; 61) and
(=M, 0; 6;) over {E,} as I — =, consider the direct
sum of two two-dimensional vector spaces, one vector
space containing the vectors

C(—Im, 7; 61)

(D(—SI‘L, 7 01)>

and the other containing the vectors
C(—m, j; 02)

(D(—m, s 92)>'

In this four-dimensional space, we have the matrix
recursion relation analogous to (2.23a)

C(—':)TZ, j+1, 01) a12+b12 ay 0 0

D(—9, j+1;61) | _ @ 1 0 0
C(—9M, j+1; 6,) 0 0 atb? a
D(—-E}TZ, j+1, 02) 0 0 Q2 1

1 0 0 0 C(—M, j; 64)

0 z%(j7) 0 0 | |D(—M, ;61 -
Xlo "0 1 0 ||c(—m=1, ;6| 33D

0 0 0 z2)) D(=m—1, ;)

and a similar set of equations analogous to (2.23b)
involving —D instead of D. Here we have defined
0(0,-): a;, b(ai): b, ’ i=

1, 2. (2.38)

We may generalize our previous treatment by defining

C(j)jl; 01’)/D(j»jl; 0'1') = xi(jyj/) (2393)
and

C(7,5'3 8/D(j,j's 6= =&, "), i=1,2. (2.39b)
The work of Furstenberg® guarantees that as j+N—x,
the ratios x;(—9M, j) approach the random variables x;

X Ab2+[£(0,9m) —a[x(—9M, 0)—a]}~*. (2.36b)

which are described by a joint probability density func-
tion »(x1,x2; 61,8:). The recursion relation (2.37) implies

(a24b:2)x: (=M, 7)+aiz?())
aixi(—9N, 7)~+22%(7)

x(—0, jH1)= . (2.40)

The distribution »(x1,%.) is characterized by the property
that if we transform x, and wx, according to (2.40) and
average over E, with the probability density P(E»),
then p(x1,%2) will transform into itself. Therefore, as
in I,

1 oc ]
v(x;,x2)=/ dx [J.()\) dxl’/ dxg,
0 —o0 —o0
(012+b12)x1l+01)\
X6<x1—————_>
a1x1’+}\

((122+bz2)x2l+dz)\
X5<x2————-———>v(x1',x2'). (2.41)
asx2’+\

Because v(x1,%2) is a probability distribution,

/ dxl / dx2 V(xl,xz) =1.

More specifically, if we integrate (2.41) over x; (x2), we
recover the equation for »(xs; 62) [»(x1; 61)], and thus
conclude that

(2.42)

/ dxy v(x1,%2; 01,00) =v(x2; 62) (2.43a)
and R

/ dxs v(21,%2; 61,02) =v(x1; 61). (2.43b)

We also notice that if 6;= 6= 6, then (2.41) is solved by

v(21,%2; 6,0) = 8(x1—x2)v(x1) . (2.44)
Such a relation is expected since from (2.37) we see
that when 6,=6, the ratios x1(7,;') and x.(j,5") are
identical for all sets { E.}.

We may now average a function of x;(—M7, 0) and
x2(—91,0) over { E;} by replacing x,(—N, 0) by x; and
x2(—9N, 0) by x» and averaging the resulting expression
over x; and 3, using »(x1,42). In particular, we may
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apply this procedure to (o¢,000,2) to find
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(50,0002 2= (2)2 / iy / i, / dxs / drs (o) | dd / ds v(F0,0)

XPfl Fz(xl,jl; 01) Fl(xl,:i:l; 01)

where
Fi(x,%; 0) = —e®(1+2167) (1+216) "
( B ib(x+E—2a)—2(x—a)(T—a)

b+ (x—a)(E—a)

and
Fo(x,; 0)=1e b (x—3)[0*+ (x—a) (T —a) ]™". (2.46b)

These above considerations may also be applied to
the averages ({(00,002,0))E, and ({(¢0,001,1))E,- In general,
to compute an average spin correlation such as
{{d0,000,m))E, one needs a distribution function
v(%x1,- - -,%m) Which satisfies the equation

V(- - im) = / () f 1 [dxl’
o e =1

(a24+b2)x/+an
X 5<x1— —_—
(11le+)\

)](x ), (247)

where if we integrate a » in m variables over one of its
variables, we obtain a corresponding » in m — 1 variables.

D. Second Moment of Nearest-Neighbor
Spin-Spin Correlation

It is a simple matter to compute ({(¢¢,001,0)*)r, and
((¢0.000,1)*) B, by squaring (2.19) and (2.20) and using
v(x1,xs) to average over the appropriate random
variables. However, as mentioned in Sec. 2 B, we are in
this paper concentrating on the temperature derivatives
of the nearest-neighbor correlation functions, and there-
fore need to study ([ (d/dT){v0.001,0) I*) £, and the analo-
gous quantity for the horizontal direction. From (2.31)
we may see that

d 2
<——(¢ro.om,o>)
dT

=<(21r)_1 [" a i{[1—22(0)“)2]52(0)“’[22(0)“’2
- AT

1

(=9, 0)x1(1>(1,3n)]—1+22(0)m;)

X<(21r)'1 / ’ d6s d; {[1—22(0) 2 ]25(0) @ [ 22(0) @2

- 2

, (2.48)

T1=T2

+2,® (-9, o>x2<2>(1,9n>]~‘+ze(0>m})

€ F (1,315 01)
e—iGzFl(xz’jQ; 02) Fl(xﬂ,ih; 62)
Fo(%2,T2; 02)

, (2.45)

where the superscripts (1) and (2) mean 7’=7); and
T=T,, respectively. We may average this product of
integrals over {E,} much as we did in the last section,
by defining a joint probability function #(x1,x,) which
satisfies an equation similar to (2.41). Explicitly,

1 0
i(x;,xg)=/ (lEz P(Eg) / dxl’
0 —©

* (@24+0:2)x) +a@n
X/ dX2, 6(.%‘1—'
— d1x1,+)\1

(@224-b22) s +aahs
X6<x2— ﬁ(xl',x2') y (249)
A2 Y
where
a;= —22, sinb; | 1+21(7)ei0i|_2, (2.50a)
5,: (1—2,92) | 145, Deibi| 2 (2.50b)
and
)\j= Zg(j)‘l . (ZSOC)
We also have the relations
/ dxl i(xl,xz; 0162) =V(x2; 02,T2) (251&)
and -
/ dxy i(xl,x-_); 01,02)=v(x1,01,T1) . (2511))

The argument of the last section allows us to replace
an average over {£,} by an appropriate average over
#(x1,2%2) and we obtain

([(d/dT){o0.,001,0) 1" &,

=(27I')‘2 (101/ (l@g/ dE, P(Eg)/ (11'1
- -7 0 —0

0 o 3 62
X/ dxz / (]i‘l / d.’t_z {i;(xl,xg);(f],.’ig)
—o0 —o0 —0 aI‘IaI‘IZ

X[(l —22(1)2)22“)(22“)2+x1§?1)_1+22(1)]
X[ (1=25®2)25®) (332 4-g9%)~ 42,2} .

Higher moments may similarly be computed by use of
joint probability functions of more than two variables.
We confine ourselves to the two-variable function
7(21,%2). In Sec. 4, we will study (2.49) and use these

(2.52)
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results in Sec. 5 to extract explicit information about
(2.52).

3. AVERAGE TEMPERATURE DERIVATIVE OF
SPIN-SPIN CORRELATIONS

Throughout the rest of this paper we confine our at-
tention to the power-law distribution (1.1) where IV is
considered to be large. Furthermore, though all of our
results may be taken over to the more general case, for
the sake of concreteness we confine ourselves to the
ferromagnetic case z1>0. In I we showed that, for all
T with 6 much greater than N~? and for all § with
| T—T,| much greater than N=2, »(x) is well approxi-
mated by 8(x—x,), where x,, is found from (4.10) of I.
It is thus seen for |T—T.|>>N"2 that ((v¢.000.1)) 5,
differs from the value it has for a comparable Onsager
lattice with the same 7', and E, only by a term of order
N-L In this paper, we are not interested in such small
effects and concentrate on the region near 7' where &
as defined by (4.18) of I is of order 1. Explicitly, we
recall [(4.19) of 1] that to leading order in V1

8=C(T—=T)N?= (T —To)N4kB2(14 20,°)20,0"
X[El(l —zlc)+E20(1_Z2CO)+O(~\v_1)]) (31)

which defines the constant C;. Here the subscript ¢
means 7'=T, and we recall from (4.1) of I that 7 is
determined from

In[ 2221 (1 —21.) /(14 21.) J=1N 1.
Recall also the definitions of ¢ [(4.16) of 1]

(3.2)

o= —8)\0‘—1/2215(1‘4‘,‘3“)_’21\;20, (333.)
so that
a=1N"20\ 2+ O(N ), (3.3b)
and of the auxiliary variable [(3.12) of 1]
n=(x—2x0)/(Nox¢™'+2), (3.4)

where [(3.3) of 1]

x(6; No)=x0(0) = (2a) " {a2+ b —No+[(a®+ 5> —\)?

+ a0 ]2}~ ENIN G, (3.5)

The last relation is valid only when 6 and ¢ are of order
1. Then, with the definition

X (n)=v(x)(dx/dn),
we find from (4.6) and (4.23) of I that when ¢>0,

(3.6)

X (n)~ Cogntetvrstion, (3.)
where

Cn™'=2(0/4N)°K»(9) (3.8)

and K;(¢) is the modified Bessel function of the third
kind of order 4. Finally, using the variable

E=4N¢™'y 3.9)
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and defining

W (& =X(n)(dn/dt)=iN""¢X(n), (3.10)
we have
W (8)=34[Ks(p) gt le o EHE™D (3.11)
and
x= N 264+0(NTY). (3.12)

To study {(d/dT){c0,00,1))E, When §=0(1), we note
that following the same order-of-magnitude arguments
of Sec. 4 of I, we may show that if the 6 integration in the
T derivative of (2.31b) is restricted to the region
¢=0(1), we retain all the dependence on §. This angular
restriction destroys the §-independent constant but
this term can be regained by noting that when § —= =
we must regain the known behavior near T'. of (5¢,000,1)0,
the nearest-neighbor spin-spin correlation function in
the Onsager lattice with the same E; and 7. In this
lattice Ey=E,, where E, satisfies

zlc.—l(l —226)//(1+§2C) = 1 .

We may find <¢70‘90'0'1>,, either by usix_lg the fact that
when p(\)=8(\—\), v(x)=8[x—x(8; )] or by using
the work of previous authors*? to write

(3.13)

27
((J’(],()¢7'(]'1>0=(27!')_l / dé [(1 —ale"”)(l—aze”“’)
0

X (1 —a1e7®) (1 —ae®)~1 ]2, (3.14)

where
ar=251(1=2y)/(1422) , ax=2""(1—2)/(142),

and the square root is defined positive at #=m. In
particular, it is easily shown that near 7'

(3.15)

d
—(00,000,1) o~ kB2 ((14-21.71)
dT

X[E1(1=321)+E"(1—2:,%) {In(| T—T.|/T.)
+ln%5c[E1(Zlc+21f1)+E2°(22¢0+Z200_1)]}
+ Eiz1.2(1 —21,2)? gd26.E1+4E,"), (3.16)

where gd stands for the Gudermanian (gd2x=2 tan™!
Xtanhx) and to O(NV~!) we have been able to replace
E, by E,°. We obtain the similar expression for {ao,001,0)0
by the replacement E; <> E,°. This is also correct to
leading order in N—1.

If we now recall that

v(x; —0)=v(—x;0), (3.17)

we may combine the preceding results of I with the
temperature derivative of (2.31b) and recall that when
6=0(1),

»?=N+0(NTY) (3.18)
and

(1420 (1 =21)2. 7 = 14+0(N71),  (3.19)
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to find
((d/dT){v0,000,1)) E

N2 a ) 00
—2Co, / dg— / at / dEW(RW(E)
0 36 /o 0

X[+ +Ka+0(1), (3.20)

where
Cl)l = %k802T~1(1+Z2¢0)2(1+Z] 5)2Z1¢—1ZQ¢0—'1(1 _zlc)

X[Ei(1—21)+ E(1 —Z2c0)]
=k (1421 V[ Ei(1 —210)+ E2(1—25.°) ]. (3.21)
The N? dependence of (3.20) may be made explicit

by noting from (3.11) that when ¢ —>= and § is fixed
[see the beginning of Sec. 4 of 1],

W(E)~s(k—1—68/9). (3.22)
Therefore, as ¢ — =,
/ at / JEW (W (D[1+£E]
P — 3(145/'8)"+0(2 ¢?), (3.23)

and we obtain

((d/dT){v0,000,1)) B2

o0 a oC oC
=zcm( / d¢[£ / dEI (8) / JEW (B)(1+-£D)"
0 0 0

+%(¢+1)—1}—§ lnA\'2>+K01+0(1) , (3.24)
which, using
A+ =3[ -5 (1+ D) +1],

may be reexpressed as

<(d/dT)<Uo.000,l>)Ez

00 a 00 0
=cm< [ d¢[a—5 / dE (8) / JEW (B (1— )

><(1+zé)—l+<¢+1>-1]—lnA\‘2)+Km+0<l>

(3.25)

=Cu[R(8)—InN2]+Ku+o(1),

where the last line defines the function R(3). Clearly
R() is an even function of 4.
In an identical manner we may show that

<(‘1/(1T) (00.001.0»1;2
=Cu[R(8) —InN*]+K10+0(1), (3.26b)

where Cyo is obtained from Cy; by the replacement
E, < E,°. This relationship would be exact in Onsager’s
lattice because it would follow from symmetry alone and
thus would be valid at any temperature. However, our

(3.26a)
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lattice does not have the symmetry under E;«> E,°,
which Onsager’s lattice does. Therefore the symmetry
of (3.26) is only an approximate one which is not ex-
pected to hold to all orders in N~! at all temperatures.

Because of the general identity (2.34), it is possible
to express R(8) in terms of the function introduced in
(4.33) of 1:

R(5)=/ d¢ (6—62 1nKa(¢)—(¢+1)—1>. 3.27)

Indeed, it is not without interest to verify directly for
our special case that

o= —Ei{((d/dT){o0.000,1)) E,
—(Es(d/dT){v0,001,0))E,, (3.28)

where C,” is given by (4.39) of I. To verify this we
demonstrate that
R(3)=1—R(5).

This relationship may be seen if we first use
(1=g)H(1+£d)™
=(E'=HE+H

(3.29)

—(E1-p / dx expl —2(E1+5] (3.30)

to write

()= / dt / dE 51 exp[ — 3o (¢-+£) 18
0 0

Xexp[—3¢(E+E)](1— ) (148

- / da / dt / dE (E1— !
0 0 JO

Xexp[ —(3¢+x)E—3pi ]
. XEep[—iei—Ge+aE]
=/ dx 4¢'1*(¢p+2x) 72K [ ¢'/*(¢+2x) /2]
X{K_s1[¢'*(¢+2x)"/7]
—K_sa[¢'(¢+2x)'2]}  (3.31)
and use the recurrence relation

K s1[9'*(@+22)'?]—K_s1[¢'*(¢+22)1/%]
= —20¢71%(¢p+22)7 P K[ 912 (¢4 22) 2] (3.32)

to obtain

J(é)=—8/ dx 8(p+2x) 71K o' 2(p+2x)1/2]
0

=—85/ dy y1K%(y). (3.33)
P
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This last integral is readily evaluated! to give

J(8) =4|:K52(¢)

OKi@) _ K@) ___GK:;(@):I . (3.39)

+¢<K s+1(0)—
06

Therefore

_ = 9
R(5)= / d¢{—[¢[l<a(¢)]"2
0 30

IK5(o) 0K 511(
X(K.;+1(¢} —Ks(e) s ))]+(¢+1)“‘} .
a6 a6
(3.35)
We now may use
0K () —dKy(¢)/dp= Ks1(¢) (3.36)
to find
_ o a
R(5)= / d</>l—[<f>[1\'.s(<i))]*2
0 00
L @K@) 9Ki(6) K@)
x<A5(¢) - >}+<¢+1>~1] :
3609 dop ad
(3.37)

from which (3.29) is obtained by integrating the first
term by parts.

Having verified (3.29), we may now rewrite (3.26) as

((d/dT){(o0,000,1))B,= —Cor[R(8)+1nN?%]

+Kuto(1), (3.38)
((d/dT){o0,001.,0))B,= —C1o R(8)+1nN?%]
+Kiyoto(1). (3.38b)

We know from (4.36) of I that as § —=,

R(®)+InN2=1nN?|6]|~'+In2—352+0(| 6], (3.39)

so by comparison with (3.16) we obtain

Ko=kBa{(142.)[E:(1 —210)+ E(14-25.%) ]
XlIngy (21,74 210)
+ Ez12(1—212)° gd28.E\+4E,"}  (3.40a)
and
Kio=kBAr (1422 ) [ E1(1 —21) T E2(1—25.0) ]
XIng'z (2157 + 210)

+ E%25,2(1—2,,%)? gd28,E0+4E;} . (3.40b)

Then if we recall that
21 22" M1 —22.) (1 —212) =44+ O(N7Y)  (3.41a)

10 Higher Transcendental Functions, edited by A. Erdélyi
(McGraw-Hill Book Co., New York, 1953), Vol. 2, p. 90, Eq. (11).
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and

El(zle“'+Z1c)+E20(z2c°_1+22c0) = (21 216) (1 —21) 7!
X[E1(1—210)+ E2*(1 =250 ]+O0(NY), (3.41b)

we see that (3.28) is verified.

The analyticity properties of R(8) have been studied
in I and from that discussion and from (3.38) we con-
clude that the average nearest-neighbor spin correlation
functions are infinitely differentiable functions of 7
even at 7', where they possess an essential singularity.

A discussion of any of the other correlation functions
requires use of an appropriate many variable distri-
bution function satisfying (2.47). However, as long as
the separation between the spins is small compared to
N2, it is possible to study ((d/dT){v0,000,m))E, In terms
of v(x) alone. Indeed, from the facts that v(xy,- - - ,x;) is
non-negative and that if we integrate over one variable
we get the corresponding » function of one less variable
we conclude that if »(a;; 6)) is sharply peaked at some
value of xj, v(xy,---,x5 - ,a%; 01, -,0;,---,0:) as a
function of «; is also sharply peaked. We also know from
T that »(x;; 6;) is sharply peaked about x;=x0(8;) if
|T—T:|>N"2 or [6;/>>N~2. We therefore conclude
that if all 6; except one are much larger than N =2, then

v(n, - ',xk)"'IjI v(x)), (3.42)

an approximation which may be verified by substitution
in (2.47). To apply this observation first consider
splitting up the integrals in (2.36) which define the
inverse matrix elements A7Y(0,k; 0,k )z, and
A~Y(0,k; 0,k") rr into two parts, one coming from inte-
gration over 2>N~2 and one from ~A"2. At least as
long as

|k—k |<KN? (3.43)

the first region will give an order-1 contribution that
depends on £—#’ and is independent of §, but the second
region’s contribution is of order N2, independent of
|k—Fk'|, and does depend on §. These order-of-magni-
tude estimates hold for any collection of bonds consis-
tent with (1.1). We therefore may calculate {(d/dT)
X{a0,000,m)) &, when §=0(1) and

MK N? (3.44)

from expressions analogous to (2.45) by using the ap-
proximation (3.42), since the region in 6; space where
(3.42) fails does not contribute to leading order in N—1.
However, it is easily seen that this procedure amounts to
replacing inverse matrix elements 4~! by (4™1)g, in
the formulas for ((¢0,000,m)) £,. It is clear from (2.36) and
the preceding analysis of this section that

(A7HO0k; 0.8 rL) By = Ar(k—F')

+AIN2R(3)+O(N2)  (3.452)
and

(A71(0,k; 0,k rR)E, =0, (3.45b)
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where A; and A; may be computed. A similar analysis
can be carried out for the more general case of two
spins in different rows and we conclude that the ana-
lyticity properties of ((d/dT){c0,00:,m))E, at T are the
same (at least to leading order in N—! when /24 m*<<.\'%)
as those of the previously considered case /=0, m=1.
More precisely, we may obtain the behavoir of
((d/dT){0,001,m))E, When 8=0(1) from its Onsager
(V —=c) limit by replacing In|1—7/7,] by R(8) and
adding a suitable constant to make the § —x behavior
in the random lattice match the 7~ 7. behavior of the
correlation functions of Onsager’s lattice.

4. TWO-VARIABLE INTEGRAL EQUATION

To extract further explicit information from the
general formalism of Sec. 2 for the power-law distri-
bution (1.1), we need to study the integral equation
(2.47) in the case where at least two of the variables 6,
are of the order N72. In I we have found that when
6~XN-2 and 8~1, the integral equation (2.26) for »(x)
could be approximated by a linear first-order differential
equation which could be exactly solved. For the multi-
variable case (2.47) or (2.49), however, the corres-
ponding approximations lead to a second-order partial
differential equation which we are unable to solve
exactly. In this section, we therefore concentrate on the
two-variable function #(x1,%;) and study the integral
equation (2.49) in detail. Many of our considerations
may be taken over to (2.47), but, since they are not
needed for the following developments, these more
complicated equations will not be further considered.

min [Xo1(z1—a1) / (a12+b12—a121), (a12+-512) /a1] min[Noz2(z2—a2) / (a22+ b22—a222), (a22+b22) [a2]
v(x1,20) = / dxy’ /
x| x

01 02
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As remarked in I, the u(\) of (1.1), while it does not
correspond to a temperature-independent P(E,), differs
when 6=0(1) from a temperature-independent P(Es)
by negligible terms of order N~!. Similarly, because
because 7T';-T, is infinitesimal, (2.49) for (1.1) is equiva-
lent to

1 0 T
v(xl,x2)=/ dy NyN1 / dxy / dxs
0 —» —

Mot (a2 +6:2)+ary
X B(xl- >

Mo~ laax’+y
X 5(:’02

where for notational convenience all tildes have been
omitted and Aoj=tanh?B;E,’. In a manner identical to
I, we conclude that »(x1,x2) vanishes unless

)\02~1x2'(022+b22)+02y
)V (xl,)x2l) ’ (4 1)

)\02_102562/'}"}’

aixoj | nj=1< %< a4, (4.2)
where x¢; is given by (3.5) evaluated at 6; and 7. It
is also clear that

v(—x1, x9; — 01, 02) =v(x1,20; 01,62) , (4.3)
and similarly for x,. It is therefore sufficient to consider

a;>0. Then when (4.2) holds, we integrate over y and
obtain

dle

X N[ o1 (a2 4012 —a1x1)/ (21— a1) ]V " Nor 21 "012 (%1 — a1) 2N oo w2 b2 (w2 — a2) 2

,012+512—01x1 @2 +bo® —asxs
X5(>\01_1x1 —)\oz_‘xg'-——“——)/ x,x0). (4.4)
xX1—ay Xo—a2
We transform variables as we did in the one-variable equation of I by defining
7= (%;—205)/ (N0, '+ ;) (4.5)
and
sz = )\o,-(xo,-——a,-)xofl(koj-}- aijj)_l (46)
so that
0<7,<B?<1. 4.7)
Also define X (91,72) by
v(21,%2) = X (n1,m2) (dn1/dx1) (dna/ dxs) = X (1,m2) Nortor =+ xor) (Noaxor ™ 4 202) (1 —71) 2(1 —n9) 2, (4.8)
so that
B2 B2
/ / 4‘((7]1,7]2)11‘{]2 11171 =1, (4.9)
0 0
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Then (4.4) may be written as

9 Bit—n, Nl g Ba—n, 1
L Pt ) 114 )]
O \Nor Yxo1 B2 +mao™? In2 \ o2 Y02 Ba2 + 2209

min [B1%,mB1~2] min(B2?, 12822 xorFm Naxor ™ /Xoz+712 N o2z
=/ dny’ / dny’ X(')l',ﬂz')}\u{w)\m“( - >< p )
0 0 1—m 1—n.

ZorFm Norxor ™! B2—m Xoz+n2"No2x02 ™! By2—mno
X3 )\01_1< —Noz™? . (4.10)
1—n' Mot w1 B2 4-mao™? 1—ny Moz g Bo? 4 nexces ™!

In writing (4.10) we have explicitly used the fact that (1.1) is of power-law form by moving all factors involving
n1 or 72 to the left-hand side of the equation. Because of this factorization, we may convert (4.10) into a partial-
differential difference equation by differentiating along the curves:

B —m By?—mno
c=< / ) (4.11)
N w01 By Hmxer™? Noz 2o Bo?+noxos !

Specifically, we apply the operator
(1 =B 2n) (Ao 'woi2Bi2+m) 9 R (1 =By 2p0) oz w022 Bo2+1m2) 0
+ _
Noi txor? 41 om oz 2x 2241 e
to (4.10) and if 7, <B;~* and 7, < B;™%, we obtain

(4.12)

NB1 2By 2X (mB172,m2Bs72)

(1=Br ) Ao "202B12+m) 9
= (Ao B1%ror + m¥or ) "2 (Nor " Bo®x02 + 1729‘702_1)_2< .

Ao txo2+1 om

(1—=B22p2)(Noz 022 B2+ 12) 0 i
+ —4N— 1)[(Xox“B121'01+n1x01_1)2()\02_1322x02+772xn2"1)2X(771,’72)]

No2 Tacge? -1 ane
((1 —Br2m) Mot war 2B +m) 9 J (=B %) N %022 Bo+12) 9
= -+ —_—
Nor 'z 241 om Noz L2 +1 o2

¢2(1 —Bi~m) . 2(1—By )
l Nor o +1 T)\02—1x022+1

'rN—Z)X (myme) . (4.13)

If we also make the exponential change of variables We know from (2.51) that
made in I:

n=e7, j=1,2 (4.14)

and /:1"32 de U(TI,T2) = U(Tl) . (4.17)

U(ry,re) = X (n1,m2) (dm/dri) (dns/d7s),  (4.15) .
If we integrate (4.16) over r,, we find that if we require

we obtain lim enU(7y,72)=0, (4.18a)

‘ [[ ( L 2) ( 1 1 ):I and Slmllall\ fOI T
2

U(n,‘rz)) lim enU(ry,m2)=0, (4.18b)
then

0 /(1—Bi 2 ") (B1*x01?A o1 e +1)
=<_91'—1< 1+ o %n?)
8 /(1—By2 ) (By2x02®\ oz le™+1) NLU(m)=U(n+InB?)]
I (R e
(4.16) ol B?(14- Ao '%012)

a7e

:]U(‘rl,'rz) . (4.19)
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This is just the r; derivative of (3.28) of I. Therefore,
we conclude that the boundary condition (4.18) holds.

So far our analysis has been exact. To make further
progress, we must make explicit use of the fact that we
are interested in #~N~2and | T—T,| ~N—2 by defining,
in analogy with I,

8= — 8\~ /22, (14 21.) 2N (4.20)
We further know from I that I’'= T, if
InB2(0)= —N"1, (4.21)
and so we define §; by
Moy l(1 =2 D)2 (145, D)2 —e N T'=IN=25;  (4.22)

where, as N — o, § is to be of order 1. Explicitly ¢ is
given by (3.1) with 7=T,. We note that

InB2=—N"[1—(2N)"15;]4+O0(N7?) (4.23a)
and
x0;~E NN 26; (4.23b)
and further define
q;= Tj—ln4]\‘r¢j—l , (424&)
with R
U(leT2) = U(41,92) ’ (424b)

to find that when ¢;,=0(1) and §,=0(1), (4.16) is
approximated by

‘\'ﬁ(qlaq‘l)
—U(qi—=N""[1—=Q2N)6.], g2— N [1—(2.V)'6,])
F A
=—T[(1—3V""p1e M)A+ ""p1e?) U(q1,92) ]
6(11
3
S LES AR S lCE R A Y
q )
: XU(q,q2)]. (4.25)

It is now convenient to define
1=3(qitq2), p2=3%(q1—q2)

V(pr,p2)dpr dpa=Ul(qr,g)dgs dgs.
Then if we expand
20(—N""[1—3N"161], o — N [1-3V"15,])
=V(pr— N [1=N"5(61+62) ], pot+N"24(61—62))
oV (pr,p2)
=V(pnp2) =71 —J\v_li(lsrf'(sz)]—ma;i

p1

(4.26a)
and

(4.26b)

aV(P1,[’2) . 9?
1N

aps op1?
XV (p1,p2)+0(N79),

+.V21(8,—02)

B[

(.27

ISING MODEL WITH RANDOM

IMPURITIES. I1I 995

we find the approximate partial-differential equation
a? d
——V(p1,p2) +—L3 (81 82) —1e P (pre™ P>+ poe??)
api? 9p1
s +ier(prerr+ae ) JV (p1,02)
+—1{3(81—82) — 1€ (6™ —oe™)
dpa

Ter (@rem—goe ™) JV (p1,p2) =0. (4.28)

To complete the determination of our approximation
to V(p1,p2), we need a set of “boundary conditions” for
(4.28). One condition is obviously

V(Php?)zo

The others can be obtained by noting that the exact
equations (2.51) should also hold in the approximation
we are considering. Therefore, we have

(4.29)

/ dgs Dlgrg) = U(g2) =3[ Kn(gn)]"
Xexp[ —bagz—iga(erem)]  (4.30a)
and
f dgo Ulguge)=U(q) =3[Knn(é) T

- Xexp[—61q1—3¢1(en+e" 1) ].

If we integrate (4.28) with respect to ¢;, we find

(4.30b)

9% d .
—U(g2) +-—[82+3¢2(e2—e=2) 1U(g2)
0g2* 9gs

=—%¢1[qlim e U(qr,g2)+ lim e~ 20(g1,¢2)]. (4.31)
1% q1>—

Clearly (4.30) will hold only if

lin; (en+e 1) U(gy,q2) =0, (4.32a)
g1—>1%
and similarly, by integrating with respect to ¢i,

lim (e»+e2)U(q1,g:) =0. (4.32b)

q2->10

The function V(p1,ps; 61,62) has a useful symmetry
property. If p; —>—p; and §; >—4§;, Eq. (4.28) is left
invariant. Furthermore, this transformation leaves
the subsidiary conditions (4.30) invariant. Therefore,
we conclude that

V(=p1, —p2; —81, —82)=V(p1,p2; 61,02),

and similarly for U.

Thus far, we have paralleled the analysis given in I
for the approximate function U(r) and (4.28) is analo-
gous to (4.3) of I, the principal difference being that
(4.3) of T is a first order ordinary differential equation
we may solve exactly, whereas (4.28) is a second-order

(4.33)
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partial dilferential equation which we are unable to
solve. However, in I we did not need the complete
solution of (4.3) in order to study the NV —x,§ —=, or
8 — 0 behavior of C,”. The complete solution was only
needed if in addition to these qualitative results we
desired to be able to plot C,” numerically. Therefore,
even though we cannot analytically solve (4.28), we
can study the limiting cases:

(1) ¢1—¢, p2 —= with ¢1/¢, and &; and &, fixed;

(ii) 8;—= and 8§, —= such that 8;/¢1, 62/¢s, and
¢1/¢2 are fixed;

(iil) ¢1’\’0 and ¢2’\’0, ‘ 01 J —l~ —ln¢1, | 621_1’\' ~lIl(;Sg.

These cases will allow us to extract important qualitative
features of

([(d/dT){0,00,1) ])E, and (InS,),.

We may study cases (i) and (ii) together by means of
a scale transformation. For convenience, first set

01=¢, p2=k¢ (4.34)
and write (4.28) as
9?2 Ié]
V(pr,p2)+——{3(61+62) —i¢[ e 7 (e P2 +-xe™)
P12 0p1
3 —e?i(eritke #2) [}V (pr, pe)
+5;{%(51— 82) —igle (e —ke™)
2 —en(er—xe )1}V (pr,p2) =0 (4.35)

When ¢ — <, we expect V(p1,p2) to be a sharply peaked
function of each of its variables. To be more precise,
we define p1° and p,° to be the solutions of

%(al_f_ 82) _:}_(ﬁ[e—m“(e—mo_f_ Kem“)

—er(er™ ke 1) ]=0  (4.36a)
and
§o1—0)—Jole (e —xer?)

— em“(epzo — Ke—P2°)]= 0. (4.36b)

Adding and subtracting these equations, we find

P]o‘f—p-g(): —arcsinh(él/qb) (437&)
and

P10 —p2"= —arcsinh(8:/kg) . (4.37b)

We then expand (4.35) about p,° and p.° as

92 19
—V(p1,p2)+~——{(1+(6:/¢))"/2
ap,? 29p:
X[ p1=p1°+pa—pa® ] +rp(14(62/xp) )" /2
L XLpr—p1°—patp2 T} V(p1,p2)

+———{ (14 (61/0)) ' *[ pr— p1°+p2— p]
2 6?2

— k(14 (82/k¢)) ' 2[ pr— p1°— pat+p2"]}

XV(p1,p2)~0. (4.38)
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We may now scale ¢ out of this equation by defining

pi—p =" p; (4.39)
and .
V(p1,p2) ="'V (p1,92) - (4.40)
We then find
o 19
_V(Pl,P2) +- —{ (1+(51/¢)2)1/2(P1+P2)
dp1? 2 dp;
F (14 (82/k)2) 2 (p1—p2) } V(p1,02)
19
= (4518 (o17+p2)
2 dp»

—k(14(82/x6))"2(p1—p2)} V(p1,p2) =0.  (4.41)

It is easily verified that a solution of (4.41) which is
non-negative is

V(p1,02) = exp(aripr®+ arsprpetaseps?),  (4.42)

where
an=—H{{1+(51/8)] *Hal 1+ (2/x9)2]2}
([0 (51/8)2] 24l 1+ (30/x9)*] %)
Q= — , ,  (4.43b)
[1+(51,’4))2]1/2-K[1+(52,/K¢)2]1/2
arr=—{[ 1+ (51/9)* T4 1+ (82/x$)*]' 2}

Xl([1+(&/¢)2]”2+K[1+(52/K¢)2]”2)2 1}

(4.43q)

[14(61/9)* ]2 —k[14(8:/x)2 ]2/ 2
(4.43¢)
It is also clear that
an<0, a»<0, (4.44a)
and
cntap—|an| <0, (4.44b)

so that the subsidiary condition (4.32) will hold. Thus,
we conclude that as § —=,

V(p1,p2)~C exp{¢—"[an(p1—p1°)*
Fan(pr—p1") (po— ") Fasa(pa— p2°)2 ]},

where C is an appropriate normalization constant. This
approximation is valid as it stands for case (ii) and is
appropriate for case (i) if we approximate arcsinhx~x
in (4.37). A cruder approximation to (4.45a) is

V(pr,p2)~8(p1—p1°)8(p2—p2°).

This approximation is precisely what is expected on the
basis of (3.42).

The last case we consider is (iii), which is necessary
for the study of analyticity properties near 7. Because
this case is more complicated than the previous cases,
we will first present a heuristic analysis which yields a
result accurate enough for the applications of this paper.
Then we will give justification for this analysis by a more
careful calculation that yields a more precise approxi-

(4.45a)

(4.45b)
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mation much in the same sense that (4.45a) is a precise
justification of (4.45b).

When ¢~0, it is convenient to recognize that we are
not interested in V(py,p,) for arbitrary 8, —3., but only
for 6;—8:~0. To be precise, define

6=1(51+5y) (4.462)

and
€= 5(51—52) . (446b)

The only reason we need consider €0 is that in (2.52)
there occurs 92/38,08,. Therefore, since

1(62 82>
51=52_4 062 Je?

we really need only consider

92
001962

€=0

?V
and —
€=0 Je?

aVv
VI(-‘J: —

de

=0

We may derive differential equations for these deriva-
tives by differentiating (4.35) with respect to e. There-
fore, instead of (4.35), we consider the three simpler
equations
%V, 0
,__]_(_?i_li_mz+_{ 5_.%¢[e—m(e—pz+,(em)

9p,? ap1

—eri(er+kem) |} Vi(p1,p2)

a
_.%d)____[e—m(e—m_,(epz) — epl(epz__xe—lw)] Vj(Pl,PQ)
9p2

OVia(p,p2)
==7
apa

where we define

for

J=0,1,2, -, (447)

£y
Vi(p1,p2) =5—_V(p1,p2) l[e=0, j>1 (4.48a)
E’

and

Vo(p1,02) = V(p1,02) | e=o, (4.48b)

and where there is no confusion, we will often omit the
subscript 0. The subsidiary conditions for V; are (4.29)
and (4.30) with e=0. There is no positivity requirement
for j>1, but subsidiary conditions similar to (4.30)
are obtained by differentiation. Therefore,

0 ~ a,‘
f dan Ufan) =3~ i—{[Ku(on) T

Xexp[ —8ga—3¢2(e2+e )]}  (4.49a)
and

Y R 1 97
/ dq: Uj(91,92) == "‘"{ [K5<¢l)]—1
—o 2 967

Xexp[ —8g1—ipi(es+e )]} . (4.49b)
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We begin our considerations of (4.47) for j=0 by
noting that if we set $=0, the equation reduces to

AV IV
—t6—=0, (4.50)

3?12 d9p1

which has the trivial solutions
V(p1,p2) = [const e-5714-const’ ] f(p,), (4.51)

where f(ps) is some arbitrary function of p,. This func-
tion cannot be determined merely by considering the
region where p;=0(1) as ¢ — 0. To study it, we need
to define

p1>=p1t+Inig,

P1<=P1—1n%¢, (452)

with
Vo (pr,p2) = V(pr,p2),  V(prc,p2)=V(pr,p2). (4.53)
If we now consider the limit p; fixed and ¢ — 0, we find
2
9 V>(1>1>,172)+ a
ap1>? Ip1>

[6+er>(er+xke22) JVs(p15,p2)

B}
+3;Ee"‘>(e“—xe‘m)]V>(p1>,p2)=0. (4.54)
2

Using the fact that

d
—x6(x) =0, (4.55)
ox
we see that a solution to (4.54) is
Vs (p1s,p2) = consts(p: —3 Ink)
Xexp[ —op1>—2x'1%e7>].  (4.56a)
Similarly, we find a solution
V<(pr<,p2) = consté(pa+3 Ink)
Xexp[ —dp1<—2«'2eP1<].  (4.56b)

Furthermore, it is easily verified that because in our
approximation x®~1, the constants in (4.56) may be
chosen so that the subsidiary condition (4.30) is satisfied.

Loosely speaking, we now use (4.56) as a sort of
boundary condition to determine the function f(p,).
More precisely, we note that as ¢ — 0, we obtain (4.50)
as an approximation to (4.47) with j=0 if

[p1l+alng=0(1) for 0<a<l. (4.57)

For this range of p; we expect solutions of the form
(4.51), except f(p,) may depend on a. We may obtain
an equation from (4.47) that will determine this slow
variation of f(p,) with p; by remarking that if we let
p2=¢x and then let ¢ — 0 with x fixed, we obtain an
equation with a 9/dx term in addition of the other terms
of (4.50). Such an equation describes a function that
as a function of p, is in some sense localized with a width
¢. In view of (4.56), it is natural to make such a scale
transformation about p,= =41 Ink. Therefore, we define
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the scaled variables p:

pg:F% Ink= :*:P:t%(ﬁK—l/Q(l —K2) , (4.58)
where the big upper (or lower) signs go together and
p+>0 if —1|lnk| <pa<j|lnk|. Correspondingly, we
define

Vi(pnpe)=1ex 12 [ 1=k V(prp2).  (4.59)
Then from (4.47) we obtain
PV, 8 )
+o—Vy——eTnV =0, (4.60)

ap* Iy Op+

We may solve (4.60) by Laplace transforming on p,
and reducing the resulting equation to Bessel’s equation.
This yields

V y=const(2mi)! / ds esr+A (s)[ 2(seTr1)t/2]%s

—ioe

X K[ 2(se¥r)' 2], (4.61)

where we must reject the corresponding solutions involv-
ing I; to get a bounded function as Fp, —+. In
order to determine the function A4(s) as we must study
how the two functions V., which are valid approxi-
mations to V when ¢ — 0 only when p,=0(1), are to
be connected together through the region where p is
large, and (4.61) is not a valid approximation. This will
be done in Appendix A, and we will demonstrate that if

Ay (s)=sT?, (4.62)
we may choose the constants so that not only may V.
and V_ be connected together, but also (4.30) may be
satisfied. Indeed, if (4.62) holds, we may evaluate!!
(4.61) as

Vi(pr,p)=Cips %% exp(—pyleTr1).

To verify that C. may be chosen so that (4.30) holds,
we note that when p, satisfies (4.57), the exponential
factor in (4.63), which causes V to vanish when
pa= =3 Ink, approaches 1 and may be omitted when p,
differs from +3 In« by order 1 as ¢ — 0. Therefore, when

(4.63)

§1~0(Ing)

the precise value of p, is irrelevant to order 1, in evalu-
ating (4.30). We further remark that the form (4.63)
is guaranteed to break down when pi~O(¢™!). In
particular, we cannot replace p, integration from zero
to O(¢™!) by zero to « because the integral of V or
V_ will diverge. One way to piece V., and V_ together
is to restrict
0< P4 < A™! y

11 Tables of Integral Transforms, edited by A. Erdélyi (McGraw-
Hill Book Co., New York, 1953), Vol. 1, p. 283.
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where A4 is some arbitrary number of order 1 and then
write an approximation

V(pr,p2) ~ 4612 1—x? | T1[Cop, 1+ exp(—py~le?)
+C_p_~Pexp(—p_ler)]. (4.64)

We then compute

/ dgr U(q1,92)

g2+Ink . Ink/2
=[O~ [ anvinp)
g2—Inx

—Ink/2
= P[C,T (=5, pe~m A1) +C_T (5, emA~Y)], (4.65)

where I'(g,x) is the incomplete I' function.!? Since § and
¢ are small, we may expand this as

e O, — 14 (e A=) ]
+C_[1—(gemA—)5]}. (4.66)

Because 8~O[(Ing)™'], A®~1, so that the precise
value of our order-1 cutoff 4 is immaterial, but we must
keep the first two terms in the expansion of the incom-
plete T' function. Then if we choose

C+= C¢6 ’ C_= C¢_6 )

C=5(g =49,
(4.30) is satisfied.

Approximation (4.64) is sharply peaked about p,
==+7 Ink. When p,; satisfies (4.57), the width of the
peak at —% Ink is roughly ¢~'** and thus spreads out
as p; increases. Similarly, the peak at } Ink has a width
¢~ 1% and thus spreads out as p; decreases. When
p1~=xIng¢, the narrowing peak joins on to the § function
previously found. We can study this joining process in
more detail by retaining a term in (4.47) that we dropped
in obtaining (4.54) and consider

with
(4.67)

O°V >4 (p1>,P2+) _
+ (6+32e7>) Vs y (P15, P24)
9%p152 9p1>
a - -
+——(er 2« *poy — e P) Vs i (p15,P24) =0, (4.68)
D2+
where p,, is defined by
(i¢)2,(—-1/2(1 ‘K2)52+= P2—% Ink. (4,69)

However, the details given by this equation are irrele-
vant for our purposes. It is also necessary to study how
the spreading é function disappears when p,=1n¢p=0(1).
This will be done in Appendix A. We may summarize
these considerations by the cruder approximation

Vo(pr,p2)=$6[¢0 —¢* I leom
X[8(pa—% In)+8(pet+3 Ink)]  (4.70)
12 Reference 10, Vol. 2, p. 133.
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when (4.57) holds and zero otherwise. This is the
approximation that is used in the sequel.

To obtain an approximation for ¥ which is valid at
the same level of accuracy as (4.70), we first remark that

when k=1, V; may be exactly computed. We know that
if k=1,

Vo=3[Ks(®) I 5(p2) exp[ —8pr1—3a(er+e )], (4.71)
so that when j=1, Eq. (4.47) becomes

vy 9 ]
+—[o+ig(er—e ) (er*+e ) JVi—ip—
ap12 o

apz
X[(er+er)(err—e ) V1= —3[ Ks(¢) ]!

X &' (pa) exp[ —op1—3d(er—+e )], (4.72)
Using
9
—xd'(x)=6'(x), (4.73)
ox
we find a particular solution to (4.72):
Vi(pr,p2)e=1=3[Ks(8) 718" (p2) fr(p1), (4.74)
where
af df
__1+[5+%¢(em_e—m)]_._l
dp,? dpy
= —expl—spiHig(ente )], (475)

To this particular solution may be added a solution of
the homogeneous equation corresponding to (4.72).
However, we note that in (4.35) the term proportional
to ¢ may be neglected when |e|<<p,. Therefore, for
all k as ¢ — 0, V; will be concentrated along the lines
p2==3% Ink just as Vy is. In the case k=1 this means
that the only solution of the homogeneous equation
that is allowed which is less singular at p,=0 than
(4.47) is proportional to Vo(p1,p2)e=1. It is also clear that

/ dpr / dps Viiprpe)=0, j>1. (4.76)

Clearly, (4.74) satisfies this condition but Vo(py,ps)
does not, and hence (4.74) is correct as it stands.
The general solution of (4.75) is

f1=/ dpy p1 exp[ —op1—3o(eP+e )]
»

+Ci exp[ —op1—3¢(e"+e ) ]4-C, / dp1

p1

Xexp[—8pr1—3p(eP+e )], (4.77)
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The constants Cy and C, are determined by subsidiary
conditions (4.49), and we find

dp
»n

d (1
Vi(pr,p2) | a1 = —08"(p2)— “[Ka(do'):]—l
3612

XCXPE—éﬁl—%¢(e”l+e—ﬂ)]}. (4.78)

In the general case when (4.57) holds (4.47) may be
approximated as
av, vV,
+6__= _5(4)—6 __¢6)—le—bm
oy

ap,?
X308 (p2—3 Ink)+5'(po+3 Ink) J. (4.79)
This equation has the particular solution

Vi(pr,p2) = 8[o7 2 —* T f1(p1)

X3[8'(p2—3 Ink)+6'(po+3 Ink)], (4.80)

where fi(p;) satisfies

a2 f
dpy?

d
—}-6-11:—6—"".

dp

(4.81)

As above, we reject any solutions of the homogeneous
equation corresponding to (4.79). The general solution
of (4.81) is

S1(pr)= 871 pre P14 Cye0714-Cy. (4.82)
The constants C; and Cy may be determined by (a)
use of the subsidiary conditions (4.49) and (b) the re-

quirement that f1(p;) be finite when 6 — 0. We then
obtain

7]
Vi(pu,p2)~ _a—a{ Leom—3(¢°+¢7%) J(¢7°—¢)) "}

X3[8' (p2—3% Ink)+6'(po+3 Ink)].  (4.83)

This form makes manifest the symmetry property
(4.33).

When p;+Iné=0(1), approximation (4.83) breaks
down. In this case (4.47) may be approximated as

2V, o d
{6+ Eger(erFre )} Vik-dp
61)12 apl aﬁz

Xer(er—ke~m) Vy= — 5[~ — 118" (ps—3 In)

Xexp[ —opr1—3ox!/2err]. (4.84)
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Proceeding as before, we reject the solutions of the
complementary equation that are proportional to
3(p2—13 Ink) and find that the unique solution of (4.84)
which satisfies (4.49) is

a ©
Vilpp)~ g ~4'T" f B

p1

Xexp[ —op1—3px! /2P ] (po—% Ink).  (4.83)
This solution vanishes when p;+1n¢>0(1). An
analogous solution holds when — p;41n¢=O(1). There-
fore, we conclude that when (4.57) does not hold, V,
may be approximated by zero. Finally, we may verify
the consistency of our approximations by noting that
when k=1, (4.83) and (4.85) reduce to (4.78).

The functions V,(p1,p2) is more complicated than V.
Indeed, we cannot explicitly solve (4.47) when j=2
even with k= 1. However, for the very limited purposes
of Sec. 5, it will suffice to use approximation (4.83) for
V1 to find the corresponding approximation for V.
when (4.57) holds. In this approximation (4.47) becomes

3V,
apr?

oV, 9 )
Fo—=—ALe" =3’ ) (60 —0") )
dpy 96

X[8"(p2—3 Ink)+5" (po+3 Ink) ].  (4.80)

As before, we reject the solutions of the corresponding
homogeneous equation that as a function of p, are less

(L(d/dT){(v0,601,0)]*) s —((d dT){o0,001,0)) s
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singular §"'(p,) and write
Va(p1,p2)~3[8" (p2—3 Inx)
+0"(pot3 Ink) Jfo(pr), (4.87)
where
dfe  dfs @
+o—=—([e"1—3(@*+¢7")J(@ " —¢")'}. (4.88)
dp12 dpl 96

Requiring that (4.49) be satisfied and that f, be finite
when 6 — 0, we find

a?

Vapiypo) ~—
2(p1,P2) Py

X {67 [emtn—3(g0+¢78) (1—3p) 160 —¢)1)
XA[8" (p2—3 1nk)+8" (p+4 Ini)].

Finally, an analysis similar to that leading to (4.85)
allows us to conclude that for our purposes Vy(p1,ps)
may be approximated by zero when (4.57) does not hold.

To summarize, approximations (4.70), (4.83), and
(4.89) are the results of this analysis of case (iii) that
will be used in Secs. 5 and 6.

(4.89)

5. VARIANCE OF (d/dT){w00e1,0)

After the preliminaries of the previous section we may
now study the variance of (d/dT){c0,001,0) when
T—T.=0(V?). From (2.52) and (2.31) we have

L L < < . X £ x a-_),
= (21r)“2 / d6, / 6, / dEs P(E,)) dx; / dxs / d.’i‘l / AT
- —r 0 —%0 —% —o0 —oc 6T16T2

XA[o(x1,22)9(T1,82) —v(21; Tr)v(we; To)v(Er; T)v(Ee; T2) JL(1 =220 200 (202439~ 251 ]

If we define

W (&; Ty)dgi=Ulg)dg;,

where W'(¢) is given by (3.11) and

f=ee,

X1 =22®2)50 @ (5 @210y ) 14252 ] }. (5.1)
(5.2)

(5.3)

and if we use (4.5), (4.14), (4.23), and (4.24), we find that (5.1) may be written, when 6= 0(1), as

0 w0 62 < L £ o« R . . R N .
(‘10?/ ddn/ d¢z<86 Py / dql/ liqe/ dQl/ dq2L U(g1,92) U(31,82) — U(g1) U(g2) U(3:) U(32)]
0 0 1002 J — — — e

+o0(1).

S1=02=5

Xtanhz(g1+q1) tanh%(qz,-{-g'?)) (5.4)

In the upper limit in the ¢; integrations we have been allowed to replace A’ by « because of (3.42). Furthermore
there is no additive constant in (5.4) because as § —< this variance must vanish and it is easily seen using (4.45)
that this is indeed the case. An identical expression holds for the variance of (d/dT){o¢,000,1) if we replace Cyo by
Co1. These variances are of order 1, which is to be contrasted with the average values which are of order InNV2. We
also see from (4.33) that these variances like, the average values, are even functions of 6.

To study the analyticity of (5.4) near §=0 it is useful to consider the average and the second moments of
(4/dT){g0,001,0) separately. The behavior of the average is easily obtained if we recall the behavior of R(8) near
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6=0 studied in Sec. 4 of I. We then see that

62

{(d/dT){v0,001,0)) Es= Cm—————[ln26 —y¢(|26]71)]=4Co Z By, (2n—1)(26)*=1 (5.5)

n=1

where = is defined to mean that the most singular terms of both sides are the same as § — 0, ¥/(z)=I"(2)/T'(z), and
B,, are the Bernoulli numbers.

We obtain the corresponding approximation to the second moment of (d/dT){c0,001,0) by remarking that the

singularities in (5.4) occur only at §=0 and may be obtained by restricting the integration variables ¢, ¢ to the
region

0<¢1<e, 0<¢:<e, (5.6)

where e is some small positive constant. Therefore we study

€ € 62 (-5} (-] 0 00 N R
/ i1 / e / dgx / dgs f i / 4320 (g1,0) D(@032) tanhd(i+s) tanh (g:-+32)] simspms
0 (1] 1002 J —x —o0 —o0 —0

1 € € 0 o0 0 o0 62
=;/ dquf (1¢2/ dplf sz/ dﬁx/ d§2(:9;[V0(P1,P2)Vn(ﬁlaﬁ?)j_zvl(?lyp'l)vl<ﬁlyﬁ2)
0 0 —%0 —00 —o0 —o0 2

‘—ZVO(PI,Pz)Vz(I;l,i;Z)) (anhd (pr-+po-+r-+52) tanbd (pr—potFi—pr).  (5.7)

To obtain the most singular part of this expression we use approximations (4.70), (4.83), and (4.87). Consider the
first term in (5.7) separately and write

1 3 € 00 00 2 o0 a..
- / de, / des / dp1 / dps / dp: / dp»
4/, o o — e — 08

X[V o(p1,p2) Vo(pr,02)] tanhg (p1+pa+pi+p2) tanhd (pr—pot-pr1—pe)

1 02 —lnda ~Ing o0 oo
——lg-é;;/ d¢1/ d¢z/ / dﬁl/ (ip2/ dpoed(PrPUG2(¢0 — p?) =2 §(pa— 5 Ink) 4+ 8(p2+3 Ink) ]
1 —o0 J —0

ne¢

X[8(p2—3% Ink) +56(p2+73 Ink) [ tanhd (p1+po+pi+ps) tanhg(pr—pot+-pr—p2)—17], (5.8)

where the —1 in the last bracket has been added to make the bracket vanish as p1+$; — &=« but makes no con-
tribution to the final answer. It is now convenient to reexpress ¢ and « in terms of 7 and «, where

¢1=7 cosa, ¢.=r7sina, (5.9)

and we recall k¥*~1. We may also do the p, and $. integrals to find that the most singular terms in (5.8) are given by

1 62 € —Inr —Inr
dr ré%r“‘—r")*/ da/ /

Xe d PO tanh}(p1+FH1+1n tane) tanhi(pi+pi—In tana)+tanh?d (p1+p1)—2]. (5.10)
ty=3(pr+p1)

Let

and

L=%(p1—P1) (5.11)
and do the {_ integration. In the remaining ¢, integral the integrand vanishes exponentially as £, — =+ %, so we
may replace ¢~2%+ by one and the limit —In7 by = to obtain

0* a?

Q—-/ dré? r(r"’-—r’s)‘zlnr-i—Q—/ dré? r(ro—r%)—2, (5.12)
"0t J, Yot J,
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where
1 */2 ©
Qj=—- / da / dt 1 tanh(t+% In tana) tanh(?—3% In tana)+tanh?—27. (5.13)
2 /o 0

The first 7 integral in (5.12) may be written as

€ 1 0 €
/ drrInp(ro—rd)"2=— —— [ dr(r=8124r%/2)(r =312 —y5/2)71, (5.14)
0 8 a! 6! 0

This integral is the same as the one studied in Sec. 4 of I and we may use that analysis to find

¢ 1 9
/ dr r Inp(r=0—r#)~22=— —— | §|~'[In| §| "' —y(] 8| 7H)]. (5.15)
0 495
Furthermore, if we integrate the second term in (5.12) by parts,
5 / dr 13—y = 35 / dr (-39 (S — %)= —3[In| 5| ~—3| 5] —4(| 8| -1)]. (5.16)
0 0
This is clearly less singular than (5.15), so the most singular term in (5.12) is
1 92
Qo —8*——18|""[Infs| 7 —y(|8]~H]. (3.17)
495° 9|4l

The analyticity of the remaining two terms of (5.7) may be investigated together using the relation (which is
easily demonstrated by integrating by parts twice)

/ dpz/ dﬁg[é’(!&-% an)'f—ﬁ,(Pg-*'% II\K)j
- X8 (Br—} In)+8 (Fa-t-3 Ine) ] tanhd (pr+FrotpatBo) tanh (prot-F1—Pa—s)
- / dps / dpaL(pr—3 In)+6(pat-2 In)I[8" (Fr—3 In)+8"(Bart-d Ini) ]
Xtanhj (p14-p1+pa+p2) tanhi(pr+p1—pa—p2). (5.18)

Therefore we define I as

1 € € o0 N o 00
1=_5 / dé / Ao / dp / dps / dp / ApoL Vi(p1,02) Vi(Pr,p2) +Vo(pr,p2) Va(Pr,p2) ]
0 0 —o0 —x J —x —0
Xtanhg(pr+pi+pe+p2) tanhd (pr+pr—pe—p2)

1 € € —Ing —Ing 9
—— [t [ton [ an [ (et eIt —er
2 0 0 Ing Ing i)

ad 92
x;;{[e—m-%(¢6+¢-é>]<¢r6—¢6>~*}+ae-m<¢—6—¢b>—l~a§{a—*te-éﬁl—%<¢6+¢—6><1—a@)]w—&—qsé)—l})
x[ dp» / 452 305 (pr—3 In)+8' (pr-t-3 In) JAL8 (Po— 3 Ink)+-8' (ot In)]

Xtanhg(pr+pr+pe+pe) tanhd (pr+-pr—pa—p2).  (5.19)

We now rewrite the second term in (5.19) by writing

d
A G L G (5.20)
1
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integrating by parts on i, transferring the derivative in the resulting expression to 1, and integrating by parts
again. This yields
1=+ 1+ 15, (5.21)
with
1 92

€ /2 —Inr ~Inr
Il=-—-——f drr/ da/ de/ dpi[e =L (ri4r=8) JLe= P —3(rP4r=0) J(r 2 —r®) 2
4:652 0 0 Inr Inr

X/ dps / dps 1[8'(p—3 In tana)+8'(p2+3 In tana) J5[6'(P2—3% In tana)+4'(p2+3 In tana) ]
Xtanh§(p1+pi+pe+p2) tanhi(pi+pr—pa—p2), (5.22a)

1 € /2 —Inr 62
I=- / drr / da / dBr— {51 [e5P1— 3 (i) (1—8B1) ] (r —r?)~1}
4/, 0 Inr 96*

X/ dp f dps A[6'(p2—1 In tana)+8' (po+3 In tana)]
Xi[8'(p2—3% In tana)+8'(F2+3 In tana) J[tanhd (—Inr—+pe+pi+pe) tanhg(—Inr— po+p1—p2)

+tanhi(Inr+ po+p1+p1) tanhi(Inr —pa+-p1—pa) 1, (5.22b)

and

1 € /2 —Inr 62
Is= ——/ dr r/ da/ dpr—{ 6 [148(r0 470 (r—t —r®) L Inr ]} [e~Pr — 3 (rP+r=0) J(r 4 —r)~!
4 0 0 Inr 652

X/ dp / dpe 3[6' (p2—3% In tana)+8'(p2+3% In tana) ]38 (P2 —% In tane)+8'(p2+3 In tane)]

X[tanh}(p1+p2—Inr+ps) tanhi (p14-p2—Inr—p,)
~+tanh} (p1+pa+Inr=4ps) tanhi(pr—po+lnr—p.) . (5.22¢)

It is now straightforward to analyze (5.22). [, is studied ~where
exactly as (5.8) was. I, and /; are studied by making

the substitutions Lo i - i
L(pi—Inn)=x (5.23a) Oj=1/; dx '/0 da‘/; dpe ‘/_ dp,
in their first terms and X[ (p2—1% In tana)+§'(p2+3 In tana) ]
1(pr+Inr)= —x (5.23b) X[ (p2—% In tana)+8'(Po+3 In tana)]

h 1 5 —1(py—
in their second terms, then combining these terms to- Xtanh[x+5(patp2) ] tanblo—3(p2—p) ] (5.29)

gether and expanding e** about x=0. The results are I, is more singular than I, or I3; therefore we combine
(5.24) with (5.17) to find

192 9
I75= Q- —6 ' —{—3| 6| +In|s| ' —¢(|6]™D)}, (5.24 1 92 9
Q ) 95 65{ | |+ n|é| ¥(| [ )}, (5.24a) <[(d/dT)(00.W1,0>]2>E2%C102{;Q0£62816] [8]—!
62
- . 1 5 9 93
I3 Qaalalanlal ¥(|8l™)], (5.24b) I

63

13%—01%56—63[—%l5|+lnlﬁ|“—¢(l5]“)], (5.24¢) X[—%HI+1nl5i“‘—¢(lﬁl‘1)]|. (5.26)
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Asymptotically!® as § — 0

Infal-t—g(|6]=) =315 + % Bub® (2n). (5.27)

n=0

We therefore see that the second moment (5.26) is
infinitely differentiable but not analytic at 6=0.
Furthermore, by comparing (5.5) and (5.26) we see
that the singularities of ((d/dT){c0,001.0))5,° and
([(d/dT){c0,001,0) )k, are different. Therefore we con-
clude that the variance (5.1) possesses an infinitely
differentiable essential singularity at §=0.

Finally, we remark that just as in Sec. 3 we were able
to study ((d/dT){c0,001,m)) &, near §= 0 when I*4- m><<V*
using »(x) alone, we are able to study the corresponding
variance in terms of #(x;,22). An analogous argument
allows us to conclude that the variance of (d/dT)
X{co,001,m) at least when IP+m?*<V* is infinitely
differentiable but not analytic at §=0.

6. BEHAVIOR OF SPONTANEOUS
MAGNETIZATION

The magnetization of an Ising model with 20+ 1
rows and 29T columns in the presence of a magnetic
field H is defined in the thermodynamic limit as

M(H)= (2 (2m+1)]1 ZL aik). (6.1)

lim
9N 00, GL>o0

The spontaneous magnetization is then defined as

lim M(H)=M.

-0t

(6.2)

However, since it has proven impossible to compute
the partition function of a two-dimensional Ising model
in the presence of a finite magnetic field, it has not been
possible to evaluate M by direct application of (6.2).
Instead, one way of evaluating M for Onsager’s lattice
is to use the relation

M= 6.3)

lim
124-m2 >0

(00,001,m)-

From this formula the spontaneous magnetization Mo
for the Onsager lattice of Sec. 3 with interaction energies
E, and E, may be shown to be'

Mo=[1—(sinh2E,8 sinh2E,8)2 /% if T<T,

6.4
=0 if T>Tc.( )

It is important to realize that for most lattices other
than Onsager’s, (6.3) cannot be taken as a definition
of the spontaneous magnetization because in general
the limit will not exist. For example, consider one
particular member of the class of lattices we have been
considering where the variation of E, is E°, E°, E,!

13 Reference 10, Vol. 1, p. 47.

14 This famous result was first obtained by C. N. Yang [Phys.
Rev. 85, 808 (1952)] from a somewhat different point of view.
The point of view adopted here is that of Ref. 7.
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I, and then repeats periodically. In Appendix B we
generalize the formalism of Sec. 2 to compute for this
lattice

Sn(l)={o1,001,m) 6.5)

and to show that S.(/) is no! independent of /. In
particular, for any given m, S, () may take on one of
three values depending on whether / is between £,° and
E®, E)' and Eo!, or E® and E,'. This dependence on /
does not vanish as m —« and S, (/) can take on three
distinct values. In fact, because S,(/)'/*> depends on /,
a limit will not exist if in (6.5) / and m go to infinity to-
gether. In this case, we expect the analog of (6.3) to be

M= 8. (1)1 4 5.(2) 2+ 5.(3) 2 +S.(H)*]  (6.6)

and we may think of S,(/)!/? as a measure of the local
magnetization of the /th row.

This dependence of S.(/) on ! implies that {(g,000,m)
is not a probability-1 object even as m-—x. The
spontaneous magnetization defined by (6.2) must be a
probability-1 object because it is a property of the
entire lattice and not just of a particular row, and we
may compute M in terms of spin-spin correlations as

M:<Sool/2>la‘z~ (()7)

A direct application of the formalism of Sec. 2 to
evaluate (6.7) is extremely difficult because of the
necessity of considering » functions with an arbitrarily
large number of variables. We will therefore confine
ourselves to the simpler problem of studying the
geometric rather than the arithmetic mean of S,!/2(l)
and consider (InS.(!))r,. We have been able to study
this average only by restricting ourselves to sets {£,}
which are symmetric about the /th row. We will combine
the formalism of Sec. 2 with Szegé’s theorem!® to ex-
press (InS,())g, in terms of »(x1,x2) and use the results
of Sec. 4 to establish (1.5).

The formalism of Sec. 2 is easily applied to an
arbitrary set { £} to show that

a(O) a(m~1)

<0'0,00'0,m>2= y
g=m+D a®

(6.8)
where ™ is the 2X2 matrix whose elements are given
by

@11 = a9y ™ = (1—2,2)A71(0,0; 0,m) rr, (6.92)

d[g(m)z —021(_7"): (1 —'212)14—1(0, O, 0, m+ I)RL

—Zl5m,0,

(6.9b)

and the matrix elements of A~! are given by (2.36).
This determinant is a block Toeplitz determinant of

15 G. Szegd, in Communications du séminaire mathématique de
I'université de Lund; téme supplémentaire dédié 3 Macel Reisz,
1952, p. 228 (unpublished). Szego only proves the theorem for
a12(6) real. For the case that a,2(6) is complex see I. I. Hirschmann,
J. D’Analyse Math. 14, 225 (1965); A. Devinatz, Illinois J.
Math. 11, 160 (1967).
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2X2 matrices. To the authors’ knowledge there is no rather than matrices. Since we have
explicit formula known for the limit of such a deter- (0T — A = () 7«
minant as [ —<. However, if we make the restriction 2(0,0; —6)=(0,00; 6), (6.14)
. . ais(—0)="[az(8)]". (6.15)
Ex(j)=Es(—1—7), (6.10) , - . . T
then If, in addition, Ing,»(6) is continuous and periodic with
Z(0,0) = a(—9M, 0), (6.11) period 2w, we may apply Szegd’s theorem'® to (6.13)
in the form
au(”‘)=a22("‘)=0, (6.128.) . .
and : — 1 —1 —1
lim InS,,=- db, (2m) dfs (2m)
a1\ = —ag ™ = —(2m)~! " 8/« —
r lnau(el)—lnalg(ez) 2
i(m+1)0 —i0 i0y—1 X[ - :I . (6.16)
X | dbe (1421677) (14-21¢") sind (6;—65)
v P _ [It is easily seen by direct substitution that (6.16) is
X[b+i@(0,m) —a) JLb—i@(0,Mm) —a) I equivalent to the more familiar form of Szegé’s theorem
=Q2m)~ [ df e™an(0), (6.12b) lim InSp= Y nkik_n, (6.17)

which defines a12(6). Thus (6.8) may be reexpressed as

a1® apa(m=1)]

Sm=(0'0,00'0,m>=ﬂ: (()13)

am(—m-f—l) awg(lb

(the =% sign is chosen to make (v¢,000,») positive), which
is now a Toeplitz determinant whose entries are scalars

where

k= (2m) / d0 6" naw(6).]  (6.18)

Because (6.16) holds (at least for sufficiently low tem-
perature) for all sets { £,} consistent with the symmetry
requirement (6.10), we may average InS, over these
sets by use of the two-variable function »(x),x,) as

1 0
<1DSM>52=;/ d6, (21!') 1/ dB, (21r / (]\71/ dxs V(L] Xoj 01,0)

I 14216702 py+ l(.lz —dg)

9

[( 1431670 by +i(x1—ay)

|
1 1+3.ei01 bl—z(xl-—al)

1+Z16"82
14270 b1+’L(x1 —(11)

bo—i(xs _a2)> /Sin%(el .__92)J

+(m

+
1421 b1 —i(x1—a,)

1+zle—‘*"2 b2+i(x2—dg) 2
I 2 ) / sin%(al+og)] ] (6.19)

142172 py— l(xg —(12)

When §=0(1), we use (4.5), (4.14), (4.15), (4.20), (4.23), (4.24), and (4.26) to approximate (6.19) as

N2 N2 0 0
<lnSw>E2=-—1r‘2/ (l¢1/ d¢2/ (1;01/ dps V(pr,p2)
0 0 —o0 —o0

arctan e~ (P1+r2) 4 arctan e—(Pr—p2)

arctan e~ (P1+p2) —grctan e~ (P1—p2)\ 2
< )+(
1—¢2

+Ca+o0(1). (6.20
d1+o2 >:| o). (6.20)

The dependence of the right-hand side of (6.20) on V> may be made more explicit if we use approximation (4.45)

for V(p1,p2) to show that for ¢; and ¢, large

* * arctan e~ (P1tP2) —grctan e~ (Pr-p2)\ 2
/ ‘Zi’l/ dp» V(Pl,Pz)[( )

b1—

<arctan e~ (r+p2) Larctan e~ (P1—p2)

b1+

2
) ]+%r2(¢1+¢2)—2~(%a¢1—1¢r1)2, (6.21)
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so that the N2 dependence of (6.20) is given as

4

1 N2 w/
(InSy) g~ _4—1 / dr r1 / da(sina~+cosa)~2= —1% In\'2+const. (6.22)
0

We exhibit this dependence on N2 explicitly by subtracting out the asymptotic behavior (6.21) from the ¢1, ¢2
integrand of (6.20) and obtain

* * “ * arctan e~ @172 —arctan e~ (PPN 2
(lnSw)Eg= —T—Z/ (14)1/ deps {/ dpl/ (][)2 V(pl,Pg)[< )
0 0 —® —w b1— 2

(arctan e~ (mFr)farctan e~ (r1—r2)

b1+

2
) }—%72(¢1+¢2+ 1)_2} —% lﬂ.\'2+CM+0(1) . (623)
The constant Cy may be computed from the requirement that the § —»— (6.23) and the 7'— T, behavior of
InM o? agree to order O(1). From (6.4) we see, correct to leading order in N7, that as T — 7', —
1nMo’\'%{1n(1 —T/Tc)—}—anBc(zlc_l—{—zlc)(l —'Zlc)_IEEl(l —Zlc)+E20(1 —cho)]} . (6.24)

Here we have replaced E; by E,° since F;—E,°=0(N"!) and have used identity (3.41b). Furthermore, we use
approximation (4.45) to show that as § —»—x

(InS.) 2/* " /’C " [(arctan[&ﬁf‘—i—(é%lﬂ—1)”2]-—-arctan[&ﬁf‘-ﬁ-(6%2‘2-{-1)”2:])2
N ) Es™~ — T 2103 e -
0 0

b1— 2
+<arctan[6¢r‘+(5"q51‘2+ 1)V/2]4arctan[ d¢s 1+ (8% 2+ 1)’”])2:'
d1+¢2
—%1!'2(¢1+¢2+1)'2‘*% ln,\'2+C]|1=CA\[’+% ln(——5 /.\‘2)+CA\1 y (()25)
where
* * arctan[y,~'— (yr 2+ 1)V2] —arctan[ys~ ' — (yo 724 1) 2\ 2
oremen o )
0 0 YVi—Yy2
arctan[y, ' — (vi 2+ 1)V/2]4-arctan[yy ' — (y27241) /2?2
+< ) —iwz(yx+y2+1)_2:|. (6.26)
y1+y2
Comparing (6.24) and (6.25) and using (3.1), we find

Cy=1In[f(@+2)]-Cy . (6.27)

It is now a simple matter to study the § ——0 behavior of (6.23) by using approximation (4.70) for V(py,p2).
We find

(InS.) o~ — 572 /

0

‘ Ir r=1(r— — %)~ f " 1 / o 1p am[("‘rctanEe‘“(tana)”2]—arctan[e‘»l(cota)‘“])?
( —r da adpy e
0 Inr

sina — cosa

arctan[ =71 (tana)!/2]4arctan[ e (cota)!/2]\ 2
+ _ > ]—% InN2. (6.28)
sina+cosa

We may determine the » dependence of the p; integral accurately enough to compute the terms in (6.28) that
diverge as 6 — 0~ if we use

(tana)!/?— (cota) /2
arctan[ e?1(tana)!/2]—arctan[ e~?!(cota) /2] = arctan( > (6.29a)
p1 —P1
and erte
(tana)!/2+(cota)!/?
arctan[ e ?'(tana)!/*]+arctan[ e (cote)? =7 O(— p1)+arctan|: :', (6.29b)
el’l — e_])l
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where o)
x)=1, x>0
6.30
=0, %<0 ( )
and the branch of the arctangent is defined by
arctan0=0. (6.31)

Using (6.29), we find

/2 ~lnr arctan[ e~?'(tane)!/?]—arctan[ e~?}(cota) /2 ]\ 2
1r_2/ da/ dpy e‘“"[(
0 Inr

sina.— cosa

sina+cosa

P P —P1(to 1/2 t —p1 ta) /2N 2 /2 00
+(drCtdn[8 (tana)® ]+ arctanle{cota) ]) ]N—ﬁ“l(l—r_5)+21r—1/ da/ dp (sina+cosa)™2

(tana)'/*+(cota)'? R (tana)'/>— (cota) /2 T°
Xarctan( >+1r"2 / do / dp: ](sina—cosa)—zl:arctan< ):l
0 —o0

ePl—e—P1

+ (sina+cosa)“2|: arctan(

where the last equation defines C,. Putting this ap-
proximation in (6.28), we obtain

(InS,) 2~ —/ dr r1(r41)"1
0

-—-2C25/ dr r 1 (r—rH)~1—11n\2. (6.33)
0

Now

—/ dr r1(r*4+1)"1=6"1In(14¢€?)
0

=§"11ln2—1 Ine+0(8) (6.34a)
and

5 / dr r it —r¥) 1= —1 In(et+1)/ (e —1)
" =—}In(—9)+3 In(—} lne+0(s).

The coefficients of the terms in (6.34) that diverge as
6 — 0~ do not depend on e and thus are correctly given
by our approximations of »(x1,x;). On the other hand,
the constant terms do depend on € and consequently are
not computable from approximation (4.70) for v(x1,%2).
We thus may combine (6.33) and (6.34) to find, as
6—0,

(6.34b)

{(InS.)g,= —% InN2+51 In2
+Cs In(—=8)40(1). (6.35)
If we recall the definition of 6(3.1), we obtain (1.5).

Furthermore, since S, lies between zero and 1, we infer
that as § — 0~ the geometric mean of S, is
constNV—1/221/8( —§)C2, (6.36)

In Onsager’s lattice S, is not a probabilistic quantity
and the analog of (6.36) is the square of (6.4), which,

ePl4-¢P1

(tana)'/2+(cosa)!/?

)T}=—6-‘(1—r-6)+2C2, (6.32)

ePl—e—P1

8 — 0~, behaves as
constV"1/2(—§)1/4, 6.37)

Clearly, as 6 — 07, the ratio of (6.36) to (6.37) may be
made arbitrarily small. We speculate that the further
increase in randomness that comes from totally destroy-
ing the symmetry requirements (6.10) can only serve
to further decrease this ratio so that the geometric
mean of S, in an arbitrary lattice is bounded above by
(6.36) as § —> 0.

In the following paper,® by considering boundary
effects in our random Ising lattice, we demonstrate that

(Sx'?)gy=M > const(T.—T). (6.38)

The only way that as 6 — 0~ the geometric mean of
So'72 [(6.36)] can be so much smaller than the arith-
metic mean is for P(S,!/?), the probability distribution
function for S,,1/?, to be very concentrated near S,1/2=0
while still having a long tail that is appreciable in the
region where S,!2N12=0(1) as N —=. One such
probability function is discussed in Sec. 4 of the follow-
ing paper. We will only remark here that such a spread-
out probability distribution is not surprising. The fact
that there is or is not a spontaneous magnetization is a
property of the lattice as a whole. However, since the
distribution of bonds F(j) is by no means uniform, we
do not expect the local magnetization S,(/)!/2 to be
uniform. When 7’> 7, each S,())!/? is expected to be
zero. However, when T<T,, even though the arith-
metic mean of S, will be different from zero, there will
exist large strips in our lattice where the bonds E(5)
are so much weaker than the average that if all bonds
had the strength of these bonds, the critical temperature
would be less than 7. In these strips the value of
S,!/2(l) is expected to be much smaller than the arith-
metric mean. As the strips get larger, the value of
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S,1/2(l) should get smaller. Therefore, as § — 0~ the
local magnetization should break up into strips such
that the strips in which S,!/2(/) is comparable to the
arithmetic mean become more and more separated by
strips where S,,1/2() is extremely small.

The foregoing description can be, of course, no more
precise than the foregoing calculations. In particular,
it is not clear how dependent this description is on the
narrowness of P(F,). Nevertheless, it does show that on
a microscopic scale even our lattice with a narrow dis-
tribution function can be dramatically different from
Onsager’s lattice. It also suggests that there is a great
deal of structure in the asymptotic behavior of the cor-
relation functions and their joint probability functions
when the separations and the correlation lengths are
larger than or comparable to 2. It is the intent of the
next paper of this series to make more precise what some
of this structure may be.
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APPENDIX A

In this appendix, we justify the analysis of case (iii)
of Sec. 4 by demonstrating that in this approximation
V(p1,p2) is nonvanishing only when

—1Ink| < pa<3!Ink| (A1)

and by studying V(p1,p.) when (A1) holds but p.
defined by (4.58) are not of order 1. The analysis is
complicated and roughly proceeds as follows: (i) When
| 1] +1ng=0(1), we find an approximation for V> and
V< that is more precise than (4.56). These two solutions
are expressed as an integral of some appropriate
Green’s function times the function f(p,) of (4.51). (ii)
We then obtain a one-dimensional homogeneous
integral equation for f(p,) by requiring that when p,
is of order 1, Vs and V< and their p; derivatives are
equal. Such a condition may be imposed and, indeed,
must be imposed because V> and V< must join together
as smoothly as possible since the exact V(py,ps) is
analytic in p; for p; of order 1. Only if (A1) holds will
this equation have a nontrivial solution. (iii) We then
approximately solve this integral equation for p, away
from =%|lnk|. (iv) This approximation to V(p1,p2) is
then used to restrict the possible solutions for V. found
in Sec. 4 by demanding that the p, — =3|Ink| asym-
ptotic behavior of V(pi,p.) agree with the py —o
asymptotic behavior of V.

When p;> is of order 1, we found in Sec. 4 that
V(p1,p2) is sharply peaked about —3 Ink with a width
proportional to ¢*. In this region V was approximated
by Vs, satisfying (4.68). When p; is still of order 1 but
p2 is away from —3lnk, V is approximated by Vs,
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pl> = In%

'Y

>

I'1c. 2. Boundary curves in the {5, p;5’ plane along
which V5 and V. are to be joined.

which satisfies the approximate equation (4.54). One
solution to (4.54) was considered in (4.56). However,
this approximation is not accurate enough for the
present purpose. It merely says that to leading order
in ¢ the region away from —3 Ink does not contribute
to the subsidiary condition integral over ¢; and g¢..

To study (4.54) (and the analogous equation for
V<) in more detail let

po> <= p2F3 Ink,

. A2)
p1><)" = p1> < FIng [sinhpas ) | £35 Ink, (
and

Vs (P15 )y Po> ) = Vo) (P1s<r,p2),  (A3)

where the lower signs and subscripts in parentheses go
together. Then (4.54) becomes

sy  Vso ad
T h 5‘——;+S‘¢’,HP2><<)““4
Ip1> (<) Ip1>(<) P>

Xexr> Sinh2pg>(<)1?>(<)=0. (Ad)
Furthermore, set

t> <) =coth| pos )| —1 (AS)

and

Vo) (P1s<) s> <))
=sinh’pas ) Vs ) (P1> ), P25 <)) (A6)

and obtain
V> (o Vs Vs
e et g, (A7)
1> P> > (<)

From (4.32) we see that Vs, satisfies the boundary
condition

Vs (1> «,0)=0.

This boundary condition is not by itself sufficient to
specify a unique solution to (A7). To obtain further
boundary conditions we recall from (4.51) that if
P1>«)'~=Inig, V(p1,p2) is given by

(A8)

[conste=»1+-const'] f(p2) . (A9)

This approximation may also be obtained from (A7)
by omitting the last term. Therefore, we should be
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able to recover the form (A9) from either Vs or V., and
we will impose the restriction expressing the continuity

of V(pr,p2) in p1at pr=0 of

Vs (Inde, pos+3 In)

=V(—=Inig, poc—3 Ink)= f(p2), (A10)
where in the last equation we have redefined f(p.) by a
constant factor. Indeed, V(p1,p2) is not only continuous
but even differentiable in p; at ;=0 and so we would
like to also impose

9
—‘—V>(;171>, 172>+% Ink) | pi>=Inlé
P>
a ¥ 1
=_“V<(P1<: P2<—% InKk) | pre=tnto- (A11)
dp1<

It is slightly unfortunate that the partial differential
equation (A7) is for V instead of 7 because the bound-
ary condition (A11) for 77 at the fixed point pis <
==Inj¢ implies a boundary condition for V along a
curve in the pis /)¢ plane (Fig. 2). If Vs «y(p1>«y',f)
were to be matched along a line pis )= const, then
(A7) could be interpreted as a heat equation for a
semi-infinite rod with a conductivity that depends ex-
ponentially on position. The boundary condition (A8)
specifies that at time /s (<y= 0 this semi-infinite rod has
zero temperature with the exception of the end where
the temperature is prescribed [by a single function like
f(p2)]. The lines pi1><)’ = const correspond to the

Vs[Ini¢—1 Ink+In|sinh(pos+3 Ink) |, pos—+3% Ink]
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—— Curves of constant pI>
..... Curves of constant Pi<
F1G. 3. Curves in the pi, 2 plane along which
$1> and pi< are constant.
curves in the p;,p; plane:
const= p1==[Ini¢p+3 Ink
—Ini|sinh(p.F3 Ink)|], (A12)

which are shown in Fig. 3. These two sets of curves
clearly do not coincide. However, from (A9) we see
that when §~'~ —Ing, (8*/9p1™)V (p1,p2)~OL(Ing)™"]
when p, is of order 1. Therefore, V(p1,p2) and 8V (p1,p2)/
dp1, while not exactly independent of p; along the
curves pis <y’ = = (Intp—2 Ink), will be independent of
#1 to leading order in ¢ as long as p, is away from
+%Ink. On this basis we replace the requirements
(A10) and (A11) by

= V5[ —Inlg+} Ink—Ind|sinh(poc—3 Ink) |, poc—3 Ink]=f(p), (A10)

Vs(p>, po>=+3 I06) | prs—inté—t lnxtindlsink (pe>+1 1nx)
p1>

- p1<

where = means equality of the leading term as ¢ — 0.
Let

dps
&> t> <) = f(p2)—.

t> <

(A13)

Then (A10’) gives the additional boundary condition

Vs oy (EInde,ts ) = g5 (b <)) - (A14)

We may now follow the procedure indicated above and
express Vs ) (P>t <)) in terms of f(p2). Define the

Green’s functions Gs«)(p1>«)s¥>«)—1') to satisfy
(A7) with the boundary conditions

Gs (P> b —=t'=0 for &<V,

A15
[#1><)| > —Inie (A15)

V<(P1<, P2<—% an) ! p1<=—Ini¢p—} Ink—~In}|sinh (p2<—} Ink)}

(A11")

and

G> o (£Inig, toy—t)=b8(t>y—1').  (Al6)

Then when ,.>0,

Vs (p1s ) sl> <)
=/ dl' G <)(p1>y (>0 =g (). (A17)
0

Even without the explicit form for G5 (<) we may now
see why V(p1,p2) vanishes outside the strip (A1). From
(A2) and (A5) we see that

if P2=% an, then = o0
and

(A18)

if pp=—31Ink, then te=w.
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P2

ts =@
q=émK

B

te =@

P =-3ink

Fic. 4. Plot in p1, p» space showing the directions in which the
timelike variables ¢~ and ¢, increase. Arrows point in the direction
of increasing “time.”

From our interpretation of (A7) as a heat equa-
tion [or, equivalently, from (A14) and (A17)],
Vs (1> t><) and 8V>«)/dp1>«) depend on the
values of Vs («)(=Inig¢,ts (<)) only for times £ (<) that
are smaller than ¢ . Outside the strip (A1) the time-
like variables £ and /< are increasing in the same direc-
tion (Fig. 4). Therefore, the values of (8Vs/8p1)(p1,p2)
and (0V/3p1)(p1,p2) which we are trying to equate by
(A11’) are both computed from (A17) in terms of an
integral over f(p’) where po’ is greater (or lesser) than
po if pa is greater (or lesser) than 3|Ink| (or —3|Ink|).
However, the Green’s functions for Vs and V. will be
different. Therefore, we conclude that if dVs/dp, and
dV</dp, agree to leading order in (Ing)~! for some value
of p, they cannot, in general, agree for some other value
of p, unless they both vanish identically. However,
when (A1) holds, the timelike variables are increasing
in opposite directions, so that if dV/dp, is determined
by values of f(p.) for po’> p,, then V./dp; is deter-
mined by values of f(ps') for p,’<ps. Therefore, we
conclude that V(p1,ps) can only be different from zero
(to our approximation) when (A1) holds.

To obtain further information on f(p;) in the strip
(A1) we need the explicit form for G (<. To obtain this,
Laplace-transform (A7). We define

G><<)(P1>(<>',8)=/ dt G(pr>)',0)e b (A19)
to find ’

%G <) 0G> (<) L~
— ————— P> 5Gs ()=0 (A20)
1> P>
with the boundary condition
Gs><)(£ Indg, s)=et. (A21)

Clearly, we obtain G< from G5 if we replace pis’ by
—pi<’ and 8 by —4. This equation may be solved and
we find

+1i%
G (P1><), 1> =) =(2mi) ds e? (>0t

[2(sexr>@ ) TR K [ 2(sexv>0)112]
(s¢)F32K 5[ (s¢p) /2]

, (A22)
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where the numerical coefficient of ¢ is arbitrary,
reflecting the arbitrariness of the path along which V>
and V< are joined. We now use (A22) and (A17) in
(A11’) to obtain the approximate one-dimensional

integral equation for k>1 and p, away from =3 Ink

2

[Csinh(p2—} In) ]2 / 4: (5)

—41Inx
XGs[coth(} Ink— p2) —coth(} Ink—p2)]
3Ink

= —[sinh(pat3 Ink) ]2/ / dps J(P2)

P2
X G [coth(pe+3 Ink) —coth(Po+3 Ink)], (A23)
where
- 0
G o () =F 4™ ————G> < (P15 ) | pi>o=tinte
pl>(<)

K5l (s9)'?]

dsests't-——————— (A24)

K[ (s)'"*]

To analyze (A23) further it is useful to define the
variable £ by

=¢(2mi)~

et = (k272 —1)/(k—€27?) (A25)

so that as p, goes from —3% Ink to 43 Ink, £ goes from
— % to 4 o,

coth[ po+3 Ink ]—1=2(k>—1)" (ke t+1) (A26)
and

sinh?(py+3 Ink) = § (k—«1)?

X (e fx1) e t44)"1.  (A27)
Define also g(¢) by
dE
f(P2)=g(E)a=g(é)2(K"—1)
: X (ke2r—1)"" (ke 22 —1)"". (A28)

Then (A23) becomes
£
et f

= e / 0 g(BG L2t —eH]. (A20)
¢

dE g(BFS[2(k—r1) (et —eb)]

This integral equation is somewhat complicated by
the fact that when (=0, Gs)(f) as given by (A24)
does not exist. This must be interpreted as meaning that
G () is a distribution at t=0 instead of a function.
This may be made more precise if we note from (A22)
that

lti_rg G> < (pr></,1)=0. (A30)

Then if we recall (A8), we may integrate the partial
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differential equation for G (<) (A7) and find If ¢<<t, we may approximate G «)(t) by
( 9 +5 9 > Gs o) ()~ —¢"2(2mi)~!
pr1>* P>

" X/t ds e 5125 (s¢p) L2 UEO[T(F6) ]! sgné
Xf dt G><)(p1><),1)=0. (A31) o

= X{(s¢)? [T (1—06) 1" —(sp)? [T (148) 7'}
(A35)

Therefore

/ dt Gs <) (pr><)’,f) =conste~®><'+const’  (A32) The integrand of (A335) is analytic in s except for a cut
—o which may be taken on the negative real s axis. We may

and deform the contour to go around this cut and obtain

o

/ dt G (<)(1)=—28 const. (A33) o)~ b2? /x s et 95— (o)) 5. (A36)
o ) 0

However, this constant can be no larger than O(¢!/?)
because V(p1,p2) is normalized to 1. Therefore we
conclude that

If, in addition,
thi~1 (Ko™, (A37)
we have

G (D~ 38%(¢70 2 —gp?/2) 21, (A38)

dt G5y () =0[¢'25]=0[¢"2(In¢)"']. (A34
/_m >0 (()=0Le!*3]=0[¢"*(lng)™"].  (A34) If, instead of (A37), we have

1 (>¢71), (A39)
then

Gs oy (1)~ 821811181 (A40)

Since 6~ '=0(Ing), approximations (A36) and (A40) show that G- )(f) is much larger than its integral as
given by (A34). Therefore we may use (A34) to rewrite (A29) as

/ dE Go[2(c—x1) (et — ) ILetg () — ety (&) ]+ / dE G L2(c—r) (et — e T e-tg(E) — e~ Tg(2)]

= ~g(s>[ /

ek

di G>[2(K——K"l)‘l(ee—t-)]+fe di G<[2(K—-K“)_l(6_5—i):|l

0

=g(f){/ dt G>[2(K-K“)_‘(85—i)]+/ di G<[2(K—K_1)(e_5—f)]} . (A41)

In the two 1ntegrals on the right-hand side, if £is of order 1, we may repalce G <) by approximation (A38) because
(a) the argument is never larger than order 1 and (b) the dlstrlbutlon at £=¢ does not contribute to leading order
because the rest of the integrand vanishes there. We may approximate G (<) in the integrals of the right-hand side
by (A38) as long as || S¢~1. When |#] 2 ¢, the extra factor of ¢71*! in approximation (A40) acts as a cutoff and
assures us that the integrals converge. We therefore obtain the leading term correctly if we replace — % by —¢~'.
Therefore (A41) is, when £=0(1), correctly approximated as

%(K*K‘l){¢‘5“—¢"”}’252l /

—o0

dE (et—ef)~ ‘[6‘&(5)-6‘g(£)]+/ dE (e t—e B e tg(t) —e Eg(i&)]}

0

= ()3 (k—x1){¢7%/2—g?/2} 252 '/

—¢t

di [(ef—t)~14(e ¢ —t')"l:]} . (A42)

We therefore obtain

f dEgB)+ [ dE (= F=1)"[g()—g(®)]+ / dE (e #F—1)"1[g(H) —g())]
- - ‘ = g(O[In(et+¢~)+n(et+¢7) ]+ —g(H)2 Ing.  (A43)
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This expression is valid for & of order 1 as ¢ — 0. It is
clear that the only possible solution is

g(&)=rconst for Ing+ | ¢|<1
and (A44)

g(§)=0 for Ing+|£[>1.

When ln¢+ | £] =0(1), g(&) approaches zero in some
manner which is not explicitly needed for our purposes.
We finally make use of (A28) to obtain the desired
result

J(p2) = const(k?—1) (ke*P*—1)"!(ke~2p2—1)~!
for |potd Ink|>>¢~1. (A45)
It now remains to use (A45) to demonstrate that the
choice of the functions V. of Sec. 4 is correct. To do
this we first notice that f(p.) possesses simple poles at
p2==3% Ink with equal residues. This implies that the
6 functions at p,= =41 Ink that we obtained in approxi-
mation (4.70) must have equal coefficients. It is this
equality of coefficients that is produced by the choice
Ay(s)=sT8 If A (s)=s>*t with ayTF4, then, if we
satisfy the boundary condition (4.30), the correspond-
ing 6 functions of (4.70) will not have equal coefficients.
To see in slightly more detail how V. of (4.63) joins
to (A45) we note that as p, — O(¢™))

Vi(prpe)= 1712 1—k2| V(pr,p2) —
o[£ (p2FL Ink)d2(1—x2) 148, (A46)

All quantities in the square brackets are of order 1, so &
may be set equal to zero. However, (A46) with § —» 0
is exactly the form (A45) takes when p,— =+1 Ink,
so we conclude that Vi(p1,p) given by (4.63) is asymp-
totically equal to V(py,p.) obtained from (A45).

Finally, it may be argued that we have only fixed the
form of A4(s) when s — 0. This is indeed correct; how-
ever, a more detailed specification of A4.(s) merely
alters the detailed nature of the sharp peaks at
p2===7 Ink and can alter neither the qualitative picture
of V(p1,p2) given in Sec. 4 for $~0, |8§|~~ —In¢ nor
the final approximation (4.70). Indeed, we may use our
function f(p,) in conjunction with V. and the Green’s-
function representation (A17) to study in detail how the
one peak of V(py,p.) spreads out and vanishes when
| #1] +1Ing=0(1). However, since these refined details
do not affect the results of Secs. 5 and 6, we will pursue
them no further.

(C(‘“(O, 4+ 1))> <az+b2

0322(4:)Tl’+3)> a*+b?
D@, 4N +-1)) (

a 222(4M'4-3) a

McCOY AND T. T.

a222(4:)Tl'+2))<a2+b2
22(40' +2)
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APPENDIX B

We may study the m —= limits of the correlation
functions S, @ () for the example of Sec. 6 where the
variation of E, is E,°, E»°, E,', E,' repeated periodically
by a straightforward application of Szegs’s theorem.
[The superscript (4) indicates the number of bonds in
the fundamental cell which is periodically repeated.]
For concreteness consider a lattice with the rows
labeled as in Fig. 5. Then in any row we can always
apply (6.8) and write [S,®()]* as a 2mX2m block
Toeplitz determinant. It is clear from Fig. 5 that in the
thermodynamic limit if

E)0 > Eyl, (B1)
then
Sn®(0) > Sp®(2). (B2)

Furthermore, the lattice is symmetric about row zero
(in fact, about any even row) in the sense of (6.10).
Therefore S,(0) is given by the mXm Toeplitz
determinant (6.13). We will demonstrate that this ex-
pression is not invariant under the substitution (B1)
so that S, (0)5=S,®(2).

To evaluate (6.13) we need an expression for
ZW(0,; ) that appears in (6.12b) when 9 —.
Since

lim £®(0,97; 6)
M >0

exists, we may let 91 tend the o« through multiples of 4
without altering the limit. For this particular lattice
we have

D®(0,49M')= —DW(0,4M), (B3)
so we have

FW(0,490) = 2@ (0,40 , (B4)

where we may evaluate the right-hand side in the
N —oc limit by use of the recursion relation (2.23),
which in this case becomes

<1(,;<‘“(0, 4:)]Z’+1)> <a2+b2 a>
@O, 4m'+1)/ \ a 1
10 C®(0,491)
o s o) @
0 z2(4M")/\D®(0,40)

To compute (B4) we need a recursion relation connect-
ing 491" and 4(d'+ 1). Therefore we iterate (B5) to find

az 2 (4’ +1)>
a 222(491+-1)

<a2+b2 0222(4311'))(;(4)(O,4:)IZ')> <yu y12><C(4)(0,4':)R’)> (B6)
X = , (B6
a 222(45)11') “ (O,43TZ’) y21 Yoz D(4) (0,43“')

where, if we use

22(4IN) = 222 (AN +3) =\ (B7a)

and

222 (45]1"*‘ 1) = 222(43Rl+ 2) = )\1 ) (B 7b)
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we have

yu=[(a*+8)+ e J[(a*+ b2+ o\, ]

+a[a?+ b+ J[a?+ b2+, (B8a)
V2= G)\o{[(a2+ b2)2‘+ a2)\0:][a2+ b2+ )\1]
a8+ rJ(@+A)), (BSb)
ya1= a{[(a®+b2)*+a*\; J[a>+ B>+ Ao ]
+>\1[02+b2+)\1](02+>\0)} y (B8c)
and
Vo= No[ @*(a*+ b+ No) (@*+ b2+ 1)
+Ai(a®+No)(a®+A1)].  (B8d)

The matrix in (B6) is independent of 91U because of the
underlying periodicity of the lattice, so the determina-
tion of ™ (0,49’) as N’ — =< is reduced to determining
the eigenvector of (B6) with the largest eigenvalue.
From (B6)

x®0,4(U+ 1) ]= [ynux@(0,40)+ y12]

+ [(ya1x @ (0,49 )+ y25 17, (BY)
so, letting
x@®=x®[0, 4N+ 1)]=x®(0,40M"), (B10)
we find
*®=(2y,) {yu—yet[ (Va2 —y11)?
+4y12y21]“2} , (Bll)

where the plus sign is chosen for the square root in
order that x®=x, [defined by (3.5)] when A\;=\,.
If we now use (B11) in (6.12b), we find

a1 ap™v
Sn®(0)=det | : : , (B12)
a3 D a1 ®
with
ap™=2r)"! / df ei™%a,, ) (6) (B13)
and )

a1 @ (0) = {b—ia+1i(2y2) " (11— Yoot [ (Y22 —y11)?
+4y12y2 M)} b+ia—i(2y21) 7 (Y11 —ye
+ D’zz —y11)2+4y12}’21]”2)}_1 . (B14)

From inspection of (B14) we see that a;»®(6) is not
invariant under the interchange Ao<>\;.. To verify

MODEL WITH RANDOM

IMPURITIES. II 1013
4
[
3
(1A I T
2 —t ——t—t
- T
|
E7
o} E
34
=1
[
-2 ————+—+—+
EZ 11
-3
€2
-4

F16. 5. Lattice used to demonstrate that S.(!) may depend upon /.

that this implies that .S, (0)=S,®(2) we note that
(B14) has the required property (6.15) that

a1, (=0)=[a®(0) ]
and, furthermore, that it may be put in the form
a1 (6) =4[ (yee—y11)*+4ymy12]"
X [y21(b+ia)?+y12+ (b+ia) (yo—yn) ]
(1—A1®)(1— A2 ) (1 — A3e) (1 — A 40\ 12
=<(1——A1e—"9)(1-—Age“’)(l—Age‘“’)(l—AM")) '
(B16)
The A4’s are the roots of a polynomial of eighth degree

and will not be explicitly written out. However, if the
A’s are suitably chosen, we can easily see that if A\ — Ay,

(B17)

Furthermore, since (yso—y11)>+4y21¥12 is invariant
under Ao <> Aj, this substitution merely permutes the
A’s and, in particular, 4, and A4, are left invariant while
As<> A, We may now apply Szegé’s theorem!® [in
the form (6.17)] to (B12) and find

S.@0)=[(1-4)(1—=A42)(1—=A4)(1—A42)]"*
X[(1—=4,45)(1—A24) T2[(1— A1 42)(1— A, A4
X(1—Asds)(1—AsA)T 2. (B18)

This is clearly not invariant if 43> 44, so we conclude
that S, ®(0)7.5,®(2) if Ag%\1.

(B15)

;11—>(11, 112—)(12, and /13"');14.



