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where the second equality utilizes (2.6). Finally, the
Maxwell relation'

In computing C, it is convenient, given H„ to first

choose M, then evaluate x=rM ' by combining (2.6)
and (A1), and express the right-hand side of (A7) in

terms of x and M. If D=D/V is set equal to zero in

(A7), C, is identical to C(r.
It is clear from (A4) that T 'C ~ satisfies a "scaling"

relation. The same is true of T 'C~. It can, in fact,
easily be shown that

((7S/(7M) r ——((7H—/BT) &(

completes the derivation.
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for an appropriate function f(x) and constant X.
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A numerical study of the Kondo problem is presented. The calculations are based on the Suhl-Abrikosov-
Wagaoka integral equation for the scattering amplitude t(~,T) of the s-d exchange Hamiltonian. Use is
made of the exact analytic solution first given in detail by Zittartz and Muller-Hartmann. It is shown
that, because of the resonance in Imt{~,T) which occurs at the Fermi energy (m=0) at low temperatures,
the tunneling density of states of a dilute paramagnetic alloy is very slightly reduced at zero bias voltage.
There is, however, a possibility of detecting this change by studying the derivative of the conductance.
The details of the Zittartz —Mu*ller-Hartmann expression are found to be unimportant for the low-tem-
perature behavior of the transport coe%cients with the exception of the thermoelectric power. A rein-
vestigation of the thermoelectric power shows that some care is necessary in the evaluation of the integrals
E =J dc' c4 np(cd)7'(m, T)8f/Bco, because of the strong co dependence of the electronic lifetime v {(st,T}
~

I Imt {co,T)j ' at low temperatures. While the transport coeflicients reflect the behavior of the scattering
amplitude in a small energy interval about the Fermi energy, the specific-heat anomaly is found to be
related to the temperature derivative of t(co, T} at large values of the energy variable co comparable to the
bandwidth. We also point out that the quasiparticle approximation is not valid for electrons interacting
with impurity spins due to the rapid variation of t {~,T) near the Fermi energy.

I. INTRODUCTION
' 'N this paper, we study numerically the low-temper-

ature anomalies of dilute magnetic alloys. The s-d
exchange model (or Kondo Hamiltonian) is widely ac-
cepted as a reasonable description of the interaction
between conduction electrons and the localized mag-
netic moments of the impurity ions. This model
Hamiltonian consists of a simple contact interaction
between the impurity spin S,'"'I' and the electron spin
density at the position of the impurity:

J
H, .=H„„—P S, .'s ((R,).

X 2

Here EIj„.„ is the kinetic energy of the noninteracting
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electron system, .V is the number of atomic cells, and
J is the coupling constant. Ke shall consider only the
case of antiferromagnetic coupling (J)0).

In the course of explaining the resistance minimum
of dilute magnetic alloys on the basis of the s-d exchange
Hamiltonian, Kondo' discovered that in perturbation
theory the one-electron scat tering amplitude has a
logarithmic singularity at small temperatures and ener-
gies. V'arious nonperturbational methods' ' have since
been developed to explain quantitatively the anomalous
behavior of the physical properties of dilute magnetic
alloys. Of particular interest to us are the methods of

' J. Kondo, Progr. Theoret. Phys. (Kyoto} 32, 37 (1964).
'H. Suhl, Phys. Rev. 138, A515 (1965}; 141, 483 (1966};

Physics 2, 39 (1965).' A. A. Abrikosov, Physics 2, 5 (1965}.
4 Y. Nagaoka, Phys. Rev. 138, A1112 (1965); Progr. Theoret.

Phys. (Kyoto) 36, 875 (1966).' J. Appelbaum and J. Kondo, Phys. Rev. Letters 19, 906
(1967); Phys. Rev. 170, 542 (1968}.' K. Yosida, Phys. Rev. 14?, 223 (1966};Progr. Theoret. Phys.
(kyoto) 36, 875 (1966).' A. Okiji, Progr, Theoret. Phys. (Kyoto) 36, 712 (1966}.



Suhl, ' Abrikosov, " and Nagaoka. 4 Suhl applied disper-
sion relation technqiues to the s-d scattering problem
and obtained a set of two coupled nonsingular integral
equations for the non-spin-flip and the spin-flip parts
of the electron scattering amplitude. Essentially the
same equations were obtained by Abrikosov, who used
a graphical technique to sum up the most singular
terms in the perturbation series for the scattering ampli-
tude. The complete equivalence of the Suhl and
Abrikosov methods has been proved by several au-
thors. "Nagaoka considered the hierarchy of equations
of motion starting with the equation of motion for the
one-electron Green's functions. He decoupled the higher-
order Green's function so that a closed set of equations
for the hrst two Green's functions was obtained. Later
on, Falk and Fowler" and, independently, Hamann"
showed that Nagoaka's equations could be cast into
the form of a single nonlinear singular integral equation
for the non-spin-flip scattering amplitude. The solution
of this integral equation is due to Hamann, "Bloomheld
and Hamann, " and Zittartz and Muller-Hartmann
(ZMH). "Hamann, as well as Hamann and Bloom6eid,
truncated the integral equation by neglecting the regular
contributions to the kernel as small compared to the
singular ones. Their solutions for the t matrix are ac-
curate for small energies and thus quite sufFicient to
explain the anomalies in those physical quantities
which only depend on the scattering amplitude for
small values of the energy. The exact solution of
Hamann's integral equation is due to ZMH.

In Sec. II we discuss the relation between the t

matrix and the one-electron spectral density and the
density of states. In Sec. III, we present the results of a
detailed numerical study of the ZMH analytic expres-
sion for the scattering amplitude. Section IV is devoted
to the question as to how far the details of this expres-
sion are of importance in the computation of measur-
able physical quantities.

II. SPECTRAL DENSITY AND
DENSITY OF STATES

The spectral density of one-electron states in an alloy
is given by

pslloy(k, G&)

j. —ImZ(k, (o)
(2.1)

vr Lco —eq —ReZ(k, cg)]'+PImZ(k, cu)j'
Here ek is the kinetic energy of our electron with mo-
mentum k. The effect of interactions on the spectral

8 S. D. Silverstein and C. B.Duke, Phys. Rev. 161, 456 (1967).
~ H. Keiter, Z. Physik 214, 22 (2968)."D.S. Falk and M. Fooler, Phys. Rev. 158, 567 (1967)."D. R. Hamann, Phys, Rev. 158, 570 (1967)."P. E. Bloomfield and D. R. Hamann, Phys. Rev. 164, 856

(1967}."J. Zittartz and E. Muller-Hartmann, Z. Physik 212, 380
(1968).

Ke shall neglect the 6rst two terms which result from
electron-electron and electron-phonon interactions since
they are also present in the pure host material. In so

doing, we assume that Z,j,i and Z,j,h are the same for
the pure host material and for the alloy. This assump-
tion is quite generally made for low concentration of
impurities although it is hard to justify rigorously. One

may incorporate the real parts of the 6rst two terms
on the right-hand side of (2.2) by interpreting eq to be
the renormalized electronic energy. Near the Fermi
surface, such e6ects may be simply expressed in terms
of an effective mass m*, i.e., eq= k'/2m".

To lowest order in the impurity concentration,
Zei- jt&z„ is given by

Z,(; „(k,(u) =n;t„„((o), (2.3)

where n, is the impurity concentration and tj, q(a&) is the
one-electron non-spin-flip forward-scattering amplitude.
Since the interaction which we are considering is a con-
tact interaction, the scattering amplitude and hence the
self-energy are independent of the momentum k of the
electron

t~g(co) =—t(cu), Z.i; p(k, cu) —=Z(co) . (2.4)

This fact makes it especially easy to compute the density
of states of the alloy. In terms of the spectral density,
the density of states can be written as

n(cu) =no(~)+ Zp. ii.,(—k,~)
k

=no(~)+ de~no(c~)p. u„y(k, (u), (2 5)

where no(e&) is the density of states of the host metal.
We choose no(ek) to be a Lorentzian, namely,

no(tk) nOD /(tg +D') . (2.6)

The reason for this choice is that the ZMH solution
for the t matrix, which we shall use in our later work, is
also based on this bare density-of-states function.
no=—no(eq ——0) is the density of states at the Fermi
energy (all energies are measured relative to the Fermi
energy ep). From the exact sum rule,

np(eg)de, =1,
we see that

no= 1/sD. (2.7)

in the case of the Lorentzian band model. '4

'4 no is the density of states per unit cell. To obtain the total
density of states, one has to multiply by the number of atoms in
the system.

density is entirely contained in the self-energy function

Z(k, &o) which, in general, may be split into three
contributions:

z(k, (g) =&,),((k,(o)+Z, ) ph(kp))+Z, &;,„p(k,(a) . (2.2)
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Using (2.3), (2.4), and (2.6) in the evaluation of

(2.5), one finds that the change in the density of states
is given by

an(zo, T)= n—(oo, T) n—o(zo)

ZMH were able to obtain an exact solution of the
approximate Suhl-Abrikosov-Nagaoka integral equa-
tion for t(oo, T) under the assumption that the density-
of-states function of the pure metal is a Lorentzian
Lsee Eq. (2.6)).For convenience, we state their solution
for t„,(oo, T) here"

=n~noz(zo) 2—Ret„t(oo, T)
D 1 X(oo T)

e~8(&u, r) (3 1)
2zrzno(zo) LK(zo T))''z

t„,(oo, T) =

(
(d

+ 1 ——Imt„,, (oo, T), (2.8)
Dz The functions X(co,T) and K(oo, T) are defined as

follows:
where t„„(a&,T) is the retarded forward-scattering ampli-
tude. For energies well within the band (IzoI«D), this X(co,T)= 1—( zyr—)' p(oo)oI -,'5(S+ )1+ A(T)] jypo(zo)
result simpli6es to

&n(zo) =n;zzo' Imt„.,(oo, T) . (2.9)

It is well known that the imaginary part of the scatter-
ing amplitude is bounded by the unitarity limit po(~) =D'/(~'+D'), (3.2b)

pD pcs
X A(l+—

)—4(l —'—), (3.2+)

—Imt„, (zo, T) & 1/zrzzo, ( )=—
I (, )I'+L~vp ( )j' ( + ). (3 3)

and hence we see that"
'

An(co, T) (p,

The relative change in the density of states is less than
the concentration of impurities. For values of the con-
centration of the order of 10 ' which are common for
dilute magnetic alloys, it would therefore be dificult to
observe An(zo)/zzo in a tunneling experiment. However,
one might try to do experiments with magnetic impurity
concentration of order 10 ' as long as one has a sufhcient
concentration of nonmagnetic impurities which would
destroy the long-range Ruderman-Kit tel-Kasuya-
Yosida (RKKY) polarization effects that induce im-

purity spin-impurity spin coupling. Moreover, there
might be a chance of observing the derivative (d/dzo)

An(co, T), which is large because of the rapid variation
of Azz(zo) with energy. "We shall come back to this
point in Sec. IV A.

" lnK(oo, T)
dM (3.4)

The function A(T) which enters K(co, T) via X(oo,T)
has to be determined self-consistently from

co —2zD
dzo(tanh-', Pzo) t„,( zo) . (3.5a—)

(oo —zD) '2ixv

For convenience, we shall use the alternative condition
obtained by ZMH to determine A (T),

lnK(zo, T)doo =0. (3.5b)atro(A, T)=—

Here P(s) denotes the digamma function and y= Jno
is a dimensionless coupling constant which is assumed

(2.11) to be much smaller than unity. The function 8(oo, T),
which we will henceforth refer to as the phase, is given

by a principal-value integral

III. NUMERICAL RESULTS FOR
NON-SPIN-FLIP t MATMX

In this section we shall discuss the results for the
scattering amplitude t,.z(oo, T) which we have obtained
by evaluating numerically the analytic expression for
t(zo, T) as given by ZMH. " It is evident from Sec. II
that this provides all the information needed to deter-
mine the one-particle excitation spectrum as well as the
density-of-states function.

"A. Griffin, in Lectures bootes of McCill Summer School on
Superconductivity, edited by P. R. Wallace I,'Gordon and Breach,
Science Publishers, Inc. , New York, to be published).

"This was suggested by A. Griftin.
"A similar analysis of Bloomfield-Hamann solution for t(co, T)

is contained in a recent paper by B.X. Ganguly and C. S.Shastry,
Phys, Rev. I,

'to be published'}.

The physical meaning of A(T) becomes apparent from
the exact result

A(T) = (2zrDI/I) '(AEk; —E;„z), (3.6)

and to the interaction energy.
The following general features of f„,(O, T) follow

immediately from (3.1):
"t„tas given here differs from the corresponding quantity in

the paper of ZMH by a factor of J, i.e., t &(co,T) =Jt~PMH(~, T).

which relates it to the diGerence between the incre-
mental kinetic energy of the electrons,

alloy p . host ~etal
)
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(a) If the density-of-state function of the host density-of-states function of the host metal np(pp). In
material np(a&) is an even function of pp, then mathematical terms, if we define

Imt„i(pi, T) = Imt„, ( pi,—T),

Ret...(~,T) = —Ret...(—~,T) .

(3.7a) V(p, r) —= lim [—(1/y)X(p~, T)]

(3.7b) =»r+4 (p &—pi 2»r) 4—(p), (3 13)

then t„i,(p, r) is given by

t„,'"'(pp, r) = lim t„„(~,T)

1 V(pr)
1—— —e"~(' ', 3.14

2i7rnp [K„(p,r)]'"X(,T) = I —( ) t o( )L-.'5(5+1)+.4]
T-+0

where
+ypp(p~)(ln

~

D/pp I +i ', pr sg-np~) I,(, )= II'(, )I-'+ '5(5+1) (3.15)
and of the fact that

tt( =o, T)=0,

one can easily prove the inequality

and
1

tt„(.,r) = P—
2~ . —

(3.8) (3.16)

This applies, of course, to our case since np(pi) is a
Lorentzian.

(b) Imt„, (pi, T) & 0 for all pi and T.
(c) Making use of the asymptotic form of the func-

tion X(p~, T) for T=o, namely,

—Imt„, (pt, T) ~&
—Imt„, (0,0)

= ir '(unitarity limit) . (3.9)

Furthermore, for arbitrary temperature, X(co=0, T)
takes the simple form

X(pi=0, T) = —y ln(T/T»), (3.10)

Here, .4(T) is treated as a t.emperature-independent
constant for reasons which will become clear later on.
Because of (3.8), using (3.10), we find that

t„,(~=o, T)

1 ln(T ~ T»)
1 ——— (3.12)

2&rnp {[ln(T!T»)]+pr 5(5+I))'"
The remarkable feature of this simple formula is that
the right-hand side depends on the coupling constant
only through the ratio r=T/T». Thus T» completely
determines the temperature scale on which t„„(pi=0, T)
varies.

(d) A more general statement can be made in the
weak coupling limit (~y~~o). It has been shown by
Miiller-Hartmann" (MH) that, in this limit, the scat-
tering amplitude approaches a function which is in-
dependent of the coupling constant y. This obtains for
fixed values of the dimensionless temperature g and the
dimensionless energy variable p= pi/tteT» Moreov—er, .
this function does not depend on the specific form of the
"E. Miiller-nartmann, Z. Physik. 223, 267 (1969).

where the Kondo temperature T~ is defined by

T» = (D/&e) exp((1/7) (1—(»7)'[45(5+1)+A]) ),
(3.11)

with

D= (2/n. )D exp('Y@„i„,) = 1.13D.

For ? =0, this expansion has been derived by ZMH.
As one can see, the temperature dependence of the
lowest-order contribution for A(T) is negligible for all
physically reasonable temperatures.

The results of the numerical calculation of Eq. (3.5b)
agree qualitatively with the expansion (3.17).To obtain
the values of A(T) listed in Table I, we computed the
integral

Mp(A, T) = dpp lnE(pp, T) (3.18)

for specific values of A. To find A, we then determined
graphically the zero of Mp(A, T) as a function of A.

The right-hand side of (3.14) is evidently independent
of the coupling constant y and of the density-of-state
function of the host metal np(pi) The .important question
of how well this simple limiting expression for t,.i, (p, r)
approximates the scattering amplitude for finite but
small values of y will be answered by our numerical
results.

The analytic expression for the scattering amplitude
is complicated a great deal by the presence of the uni-
modular factor e*' in the expression for t„.,(pi, T) and by
the fact that the function X(pp, T) depends on the func-
tion A(T) which has to be determined self-consistently
from Eq. (3.5). Neither tt(pi, T) nor A(T) can be ex-
pressed by simple analytic functions.

In deriving (3.11), we have treated A(T) as a con-
stant. This is justifiable since, as was pointed out by
ZMH, the over-all magnitude of A(T) is small, being
of the order of the coupling constant y. Thus for small
enough y, A can be neglected relative to the term
—,'S(S+1) in (3.11). For small y, one can obtain an
asymptotic expansion for A by expanding the integrand
in the Eq. (3.5b) in powers of y. This yields

A(T) = ——PpyS(5+1)[1+0(T/D)]+0(y-"). (3.17)
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TABLE I. The values of A obtained for two difkrent values of
the reduced coupling constant y. See Eqs. (3.17) and (3.18) in
text. 0.08

—0.08—0.11
0.031
0.050

006

Within the numerical precision of this procedure, we
could not detect any temperature variation in .0 over
a temperature interval of 100'K.

Let us note here, that, as far as the scattering ampli-
tude is concerned, A(T) is of no importance. In con-
trast, however, it turns out that A(T) is crucial for the
calculation of the specidc heat of dilute magnetic alloys.

To compute 8(td, T) numerically, we use the expression

002

0 0
In

1
8(ot, T) = I'— FIG. 2. The real part of the scattering amplitude is shown as

GO K(oi', T) a function of ln~. The unimodular factor ef8 is included in the
(3 19) computation of these curves. See Eq. (3.20}.

M QP K(ot) T)

which is identical to (3.4) since

and

=0
GO GO

E(td', T) =E( td', T) . —

02

0l

sin {9

It is obvious that the integral in (3.19) is easier to
handle in a numerical integration than the integral in
(3.4). The convergence of the latter depends on the
delicate compensation of the contributions from large
positive and large negative values of the integration
variable ~'.

In Fig. 1 we have plotted sin8(e, r) as a function of e

for four different values of the dimensionless tempera-
ture ~. The dimensionless coupling constant y was
chosen to be y= —0.11.The curves for 6nite values of
7. and the one for v. = 0 di6er qualitatively. For the values
of r W0 for which we have computed 8(e,r), it approaches
zero smoothly from above as e goes to zero. In contrast
to that, it appears that 8(e, r=0) goes to zero with a
large negative slope if e goes to zero. We have not been
able to do the numerical integration of (3.19) for values
of ~ which are small enough so that the increase of
8(e, r= 0) becomes visible. The evaluation of (3.19)
for small values of td at T= 0 is difficult since E(to', T= 0)
has a logarithmic singularity at cv'=0.

It is easy to see that 8„(e,r) defined in (3.16) is ob-
tained from (3.19) if the Lorentzian ps(td) which occurs
in the function K(at, T) (see (3.2) and (3.3)] is replaced
by unity. We have done this and found that the values
of 8„(e,r) so obtained do not deviate significantly from
those of 8(e, r). We conclude that 8„(e,r) is a very good
approximation to 8(e,r) for values of ~y~ as large as
0.11.

Figures 2 and 3 show the results of the numerical
evaluation of

Re&-t(ot, T) = — K t"
(td, T)/ReX(td, T) sin8(ot, T)

2x ns(cd)
-0,I

aIld
+stryps(td)tanhs}8ot cos8(co, T)] (3.20)

-02

FIG. 1. sin8 is plotted as a function of ln~=ln{co/TK} for four
values of the dimensionless temperature ~= T/Tg. See Eq. (3.4)
in the text. We have taken y= —0.11 which corresponds to
T~= 9.84'K. Subsequent figures involve the same dimensionless
variables and the same value of y.

Itn/„, g(ce, T) = — {I —K "-(td, T)
2nn p(ot)

X[ReX((0,T)sin 8(ot, T)+-,'~yps(cd)

&& tanh-'Pot sin8(co, T)]}. (3.21)

t To obtain these expressions for Re, Imt„t, we have
used (3.2a) and the mathematical identity 1m'�(s —ix)
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= ——,'s tanhs. x$. Ret„& and Imt„& are plotted as func-
tions of the dimensionless energy variable e for various
values of the dimensionless temperature r. The results
are independent of the coupling constant

~ y ~

for values
of ~y~ as large as 0.11. The resonance peak in the
Imt„, (»,r) gets sharper with decreasing r, and its maxi-
mum value approaches the unitarity limit [Imt„,(0,0)
= —1/sf as r goes to zero. At T= 0, the resonance peak
(which has a horizontal tangent at »=0 for all finite
temperatures) degenerates into a cusp with an unde-
6ned derivative at &=0:

008—

4' 0.04—

0.02—

lim —Imt„~(», r =0) =+ oo .
'"~p 8e

(3.22)

This behavior can be derived from the following asymp-
totic expression for t„,(», r=0), given by MH:

Imt„(», r =0)=—
2g plp—

'S(S+1) 1

)2+- — +0
2 ln'» In'~ »~

» —+ 0. (3.23)

The singula. rity of Imt„, (», r =0) at »= 0 is refiected in
Ret„&(», r=0) by an infinite derivative at »=0.

To give a quantitative picture of the influence of the
unimodular factor e'~ on Re/„t and Imt„&, we compare
these functions in Figs. 4 and 5 to the real and ima-
ginary parts of the function

t, te—=o(»o T)—= [2vrino(»o)) '

X[1—K '"(»o T)x(»o T)], (3.24)

which is obtained from (3.1) if the unimodular factor is
replaced by unity. Ke should emphasize that, at v =0,
the imaginary part of the function defined in (3.24) has
the same asymptotic behavior for small e as the imagi-
nary part of the exact ZMH solution (3.23). As the
graphs show, the imaginary parts of t„,'—=' and of the
exact solution (3.1) differ considerably only for») 1.

03 ~ T 0

T'=0.25

0.2—

E
1

O.I—

T IO

I
-4

I I I I I I I I I

-2 0 2 4
In

Fxo. 3. The imaginary part of the scattering amplitude is shown
as a function of in&. The unimodular factor e'~ is included in the
computation of these curves. See Kq. (3.21).

0 I

-5 -4 -2 0
In E

Fro. 4. Comparison of Ret,«(e, r) with Ret,«~='(e, v) for T= ~.
The dashed curve represents Ret„t'='(e, v). See Eq. (2.34).

For 7-= 1 the real parts of these two functions are also
in fairly good agreement as long as e(1. In view of the
behavior of 8(», r= 0) it is not surprising that, for r= 0,
the real parts of I„t,'=' and of the exact solution differ
both for ~(1 and for e&1. Nevertheless, the approxi-
mation (3.24) which has a relatively simple analytic
structure may be useful for the computation of low-
temperature transport properties which only depend on
the value of Imt. ..(», r) at small values of ».

A. Tunneling Density of States

Since there is no way of measuring the spectral func-
tion p"'&(oo,k) directly, the most detailed information
about the scattering amplitude that one could hope to
obtain would come from a tunneling experiment. The
quantity which one probes in a tunneling experiment is
the density-of-state function n(»o). Let us, for simplicity,
assume that the tunneling diode has the following
structure: a pure metal on one side of an oxide layer
and a dilute paramagnetic alloy of the same metal on
the other side of the oxide layer. No paramagnetic ions
will be assumed to be in the oxide layer itself. The
conductance of such a diode can be expressed as

G(V) =dI(V), 'd V

=4se(l Tl ) d»o n~e'o'(»o)no"or(»o+eV)
dV

X[f(o&) f(oi+eV)]. (4.1)—

IV. PHYSICAL QUANTITIES DIRECTLY RELATED
TO THE SCATTERING AMPLITUDE

Having worked out quantitatively the details of
ZMH s expression for the non-spin-Rip scattering ampli-
tude in Kondo's model, we now turn to the question
of how much of the detailed structure is reflected in
measurable physical quantities.
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Here 4pr(~T~') is the average tunneling probability
and V is the applied voltage [f(pp) is the Fermi func-
tion7. n " '(«p) and n~" &(«p) are the density-of-state
functions of the pure metal and of the alloy, respec-
tively. For small voltages (eV««v), n '"(«p) can be
treated as a constant. Using the expression (2.8) for
the difference between the density of states of the alloy
and that of the pure metal, one obtains for the relative
change of conductance AG(V) =—[G(V) —G(V= 0)7/
G(V=0) at zero temperature,

7r
0.5

O

02
I

K

O. I

pm pn;[Imt, „.,(eV) —Imt„, (0)7
AG(V) =

I+pm pn, Imt„, (0)

pm pn;[I mt „,, (e U) —Imt „t(0)7,
for n,« 1 (4.2)

where no denotes the density of states of the pure metal.
Since the impurity concentration in dilute magnetic
alloys is usually small, n;~10 ' or less, AG(V) is a small
quantity. However, for small temperatures it varies
very rapidly with V. For example, at zero temperature
it follows from (3.25) that

d pr5(S+1) 1—Imt„,,(pp) —,pp
—+ 0. (4.3)

(Av 2n 0 cu ln'u

Thus at zero temperature the derivative of AG(V) with
respect to V becomes infinite as V approaches zero. For
finite temperatures (but T«Trr), the derivative re-
mains finite even for V=O. The maximum value of
d[AG(V)7/dV occurs at V Trr and is of the order
n;(T 1nT/Tx) ', so that one has to go to very low
temperatures if one wants to make d[AG(V)7/d V large.
Nevertheless, it might be possible to detect the rapid
variation of AG(V) experimentally. This would, at
least, give some information about the width of the
resonance in the scattering amplitude.

0.2—

O.I—

The large anomalies in the conductance of tunneling
diodes containing magnetic impurities"" certainly can-
not be explained by the change in the bulk density of
states of the alloy. Other mechanisms such as scatter-
ing from impurities located inside the oxide layer are
probably responsible for these eBects.22

B. Transport Properties

While a tunneling experiment, in principle, enables
one to measure the density of states and hence the
scattering amplitude at arbitrarily high energies, the
transport coefficients depend on Imt, .i(pp, T) for small
values of the energy only. In general, the transport co-
efhcients can be expressed in terms of the following
integrals":

dhp v'(pi) «p" r;(«p, T)—n p(«p),
BGO

(4 4)

where np(«p) denotes the density of states of the pure
host metal as before and v(p&) is the speed of an electron
with energy ~.

The electronic lifetime due to impurity scattering is
given by the imaginary part of the scattering amplitude,

'( r T) p=i2n, Imt„, («p, T) . —(4.5)

Since Bf(«)/8« is sharply peaked at «=0, the main con-
tribution to the integral (4.4) comes from a narrow
region around e=o, This suggests the following well-
known approximation for these integrals

I I I I I I I I I

2 4 6 8 IO
T

Fro. 6. Resistivity ratio R(T)/Ro (where RO=——3Jn;/nOe~e+')
is plotted as a function of T. The dashed curve represents the result
of the approximation (4.6) in which R(T)/RO= —Imt .t(~=0, T).
The solid curve represents R/Ro= —Jn0vy /2n;EO, where EO is
computed numerically according to Eq. (4.4).

Bp vp Bf
K„,~ du co"—

2n; Imt„t, (O,T) Bpp

(4.6)

I I I I I I I I t
-2 0 2 4

In

Fxo. 5. Comparison of Imt t(t T) with Imt„t~ '(~ T) for T =1.The
dashed curve represents Imt„t'='(e, T). See Eq. (3.24).

"A. F. G. Wyatt, Phys. Rev. Letters 13, 401 {1964)."J.M. Rowell and L. Y. L. Shen, Phys. Rev. Letters 17, 15
(1966).

J. Solyom and A. Zawadowski, Phys. Status Solidi 25, 473
(1968).
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Q(T) = (1/eT)ltr/Eo. (4.7)

For a band which is described by a Lorentzian density-
of-state function of width 2D, we find the following
dispersion of the electrons for energies near the Fermi
energy (&a«D):

v((o) = vy(1+v(u/D) . (4 g)

Here 8 is a constant of the order of unity. As a direct
consequence of the symmetry (3.7a) of Imt„&(&u, T),

where v~ is the Fermi velocity. This approximation is
not too good, however, since at low temperature
Imt„, (co, T) is itself a, rapidly varying function of e.""
We have illustrated this in Fig. 6 using the example of
the electrical resistance which is proportional to Eo.
For other transport coeScients which involve integrals
E„with e&0, such as the thermal conductivity, the
approximation (4.6) is even worse. On the other hand,
computation of the resistivity shows that, to a very
good approximation, Imf„,(~,T) may be repla, ced by
Imt„,~ e(u&, T—) Lsee (3.27)]. We infer from this that no
conclusion about the detailed structure of t„,(ra, T) can
be easily drawn from a comparison of the experimental
data for the transport coefficients and the theoretical
expressions.

So far, we have completely neglected the normal po-
tential scattering arising from the impurity ions. If one
intends to compare the theoretical expressions for the
transport coeKcients with experimental results, this
has certainly to be taken into account. As we shall show
in some detail, the anomalous low-temperature maxi-
mum in the thermoelectric power cannot be understood
even qualitatively if the scattering of the electrons from
the electrostatic impurity potential is neglected. ""

In terms of the integrals E„, the thermoelectric
power Q(T) can be expressed as

where
t~+y(a&, T) = ty+e"'yt~(&a, T),

ty (2ivn——o) '(1 —e"")

(4.9)

(4.10)

is the scattering amplitude of the electrostatic potential
alone, b v being the phase shift associated with it. J is an
effective coupling constant given by

J=J cos'-b y. (4.11)

The expression (4.9) was derived from a more general
expression for tJ+p developed by Schotte" under the
assumption that ~((D so that the band structure of the
host metal is unimportant. For the computation of the
integrals E~ and Eo, one needs the electronic lifetime

r;(co, T) = (2n;) '$1mtg~y(co, T)] '

= —L2n~] '[(2vn&) '(cos2by —I)+cos2by
&&Imty(co, T)+2 sin2by Reti(co, T)] ' (4 12)

For the range of energy ~~~~ &feeT for which we need
r;(cv), the phase shift of the electrostatic potential can be
treated as a constant. Then tz(cu, T) has the same sym-
metry properties as t„,(ru, T). r;(co) can be written as
the sum of an even and an odd function

r, ((o)T) = r;...„„(cu,T)+ r;,.ed(~, T),

it follows that at low temperatures

Kr O(——T/D) .
Thus Q(T) becomes small of the order 1/D and inde-
pendent of the temperature in contradiction to the
experimental observations. " However, the symmetry
(3.7a) is removed if the ordinary potential scattering is
taken into account in addition to the exchange scatter-
ing.

Assuming that the electrostatic potential V(r) of the
impurity can be approximated by a contact potential
V8(r), one can write the scattering amplitude with the
inclusion of potential scattering in the form" "

where

1 (2xno) '(cos28y —I)+cos28y Imty
7i, , even

2n, L(2v.no) '(cos28y —1)+cos2hy Im/y]' —Lsin26y Rety]'
(4.13)

7 s, o(ld

1 —sin28y Retg((a, T)

2n, L(2xrto) '(ros2by —1)+cos26y Imty]'-' —[sin2by Rety]'
(4.14)

» See, e.g. , J. M. Ziman, Electrons and Phonons (Oxford University Press, London, 1960), p. 384.
&4 It shouM, be emphasized that, while the approximation (4.6) for E„ is inaccurate because of the rapid variation of Imt t(~,T),the usual expressions for the transport coeKcients involving the integrals K„{seeRef. 23) are still exact in spite of the strong cydependence of Imt t(~,T}.» K. K. Murata and J.W. Wilkins, in Proceedings of the Eleventh International Conference on Lmo Temperature I'basics, St. Andrews,A@68 edited by J. F. Allan, G. M. Finlayson and D. M. McCall. (University of St. Andrews Printing Department, St. Andrews,Scotland, 1969), p. 1242.
~' J. Kondo, Progr. Theoret. Phys. (Kyoto) 34, 372 (1965).
'7 K. Fischer, Phys. Rev. 158, 613 (1967).
2s D. K. C. MacDonald, W. B. Pearson, and I. M. Templeton, Proc. Roy. Soc. (I,ondon) A266, 161 (1962)."K.D. Schotte, Z. Physik 212, 467 (1968)."' Y, Naggpka, Progr. Theoret. Phys. (Kyoto) 39, 533 (1968).
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'v'~e note t.hat r„.,-.„enters in Ep w i ein p, while r„,~,~ deterniines KI. M, e
. I h o i i (4 6' b ' ''. ~, we o tain

e n egra p gives the con-

'A pP I 1
—I

(cos 5i —1)+cos28r Im/y(oo=0) (4.15)

Using (3.12), we can write th'

')r'f) p 'L'p inc. —I

1n"-'T+7r'-5 5+1
(4.16)

In the same approximation E'
n, ~ can e reduced to

2l )'lp F)2

Kg~ ——
I'2i

Iny o

sin26i 1 —cos20~ —-
Pl ' + 'S(5+1)]"') 4k T (2A r)

X 1/~ y~ )LReX(oo, T)sin8(oo, T)+ImX( T)m oo, cos8 oo, T)]. (4.17)

The integral still caan not be evaluated exactly and
as a further approximat'a ion, we set

c y an so, bi Fischer27 and K dy an ' '. , on o. ' s. expanding

8(oo, T)=0, (4.18) (Inr) —'~ —--
1 —p ln(T/D)

which means that we ado t
f hor t e real part of t„,(rd T). We

e a opt the approximation (3.24)

that this
'

h
e are aware of the fact

is might not be a ood ais h g approximation for very
ernperature, where

ecomes important in determining Ret„,(ro, T). As we

ig emperatures, where perturbation theory is a-
o eor erof theKo

e approximation should not
oo a . ising (4.18), we find from (4.17) that

sin 26~
kI) T

»o r'r (In'r+or'S(S+1)]'"
4.19

in powers of y, we find, in this limit )

Q„,«(r) = (orykir/2e) sin28„L1+y In(T/D) 4 23

n contrast to this, Fischer and K. don o ound

(7„,«(r)

This failure of (4.22) to reproduce the()'su or r is due to the approximation (4.19).

10—

and hence

where

Q(r) = (7rkir/2e—)sin2br q(r), (4.20)
O~06

h

q(r)= (/In'r+rr S(S+—1)] cos2b In—cos28y lnr (4.21)

q(r) is plotted in Fig. 7 as a function of r

thermoelectric power de
a t e sign and the ma nitudg eof the
ower epen on the sign and the

nitude of the phase shift b~ throu h t
e mag-

me epen ence of ~&~7-~ on

02

P(r) —(7rkr&/2e) sin26r (lnr) (4.22)

In the hi h-'gh-temperature limit, (4.22' s
ith th t btier ur ative expression for Q(r) obtained

I' IG. 7. Thermrmoe ectnc popover ratio

(b) corresponds to th pp o Eq. (4. 0) a Ma
spec Ivey. Curves (c} and (d) a

ing 0 and EI numerica]lv.
are

'" J. Kondo, Progr. Theoreg . eoret. Phys. (Kyoto} 40, 695 (1968)0
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and
(4.24)

s.ke sin28~ m'$(5+1)
(&)=-

2e 1 —cos28~ flnrf'

cos2by n'$(5+1) 1
x 1— +0

1 —cos26q 2 ln'r ln'r

Since
flnr f

'= fy f'(1+OLy ln(T/D)g),

(4.25)

the high-temperature expansion of Q(r) clearly agrees
with perturbation theory. Ke note that the asymptotic
expansion (4.25) is meaningful only if

cos26~ w'5(5+1)
~&i.

1—cos26y 2 ln'r

For small values of the phase shift 6y, this requires
very large values of r.

In a very recent publication, using the solution of
Hamann and Bloomfield for the scattering amplitude
and making the same approximation that led us to
(4.20), Maki" obtained the following expression for
the thermoelectric power":

sin28~
Maki

2e Dn'r+s'b(5+1)]'" —cos28r in'

s'$(5+1)
X (4.26)

ln'r+m'5(5+1)

In the two limits lnr~ &~, this expression agrees
with the exact expansions (4.24) and (4.25). For
temperatures such that

the factor
1 r&nm' (5+51),

1r'5 (5+1)/ f
ln'T+ vr'5 (5+1)$

by which Maki's expression diR'ers from our approxi-
mate result (4.20) is nearly unity. In particular, at the

'~ K. Maki, Progr. Theoret. Phys. (Kyoto) 41, 586 (1969).
"The negative sign in Maki's expression is erroneous (private

communication).

In the limits lnr ~ &~, the integrals Eo and E~ can
be evaluated exactly. The results are given in Appendix
A L(A14) and (A15)j.Using these expressions, one ob-
tains the following exact asymptotic expressions for
the thermoelectric power:

ske sin26p m'5(5+1)
(r) =

2e 1+cos28v finr f'

cos28r gr'5(5+1) 1
x ~+ +0, r-+0

1+cos28~ 2 ln'7 ln'r

Kondo temperature the expressions (4.20) and (4.26)
are identical. We have plotted the functions (4.20)
and (4.26) in Fig. 7. Experimentally, a fairly sharp
extremum of the thermoelectric power is observed near
the Kondo temperature. "'4 It is evident that the func-
tions (4.20) and (4.26) do not exhibit this extremum.
In order to avoid the approximation (4.6), we have
evaluated numerically the integrals ICO and Eq in (4.7),
using the complete expressions tJ for two values of the
phase shift due to normal potential scattering, sinby
=0.08 and 0.45. These results are included in Fig. 7.
It can be seen that Q(r) is very sensitive to the phase
shift considered.

f Q(r) f
attains a maximum near Tx

and decreases at higher temperatures. These features
are in agreement with experiment and with earlier
numerical calculations by Suhl and Wong. "

%e should note that the thermoelectric power we
have computed is independent of the impurity con-
centration. The impurity concentration is a multiplica-
tive factor in both Eo and E~, and consequently cancels
out. However, at temperatures higher than the Kondo
temperature, the scattering of electrons from phonons
becomes comparable to, and possibly more important
than scattering from impurities. Consequently, the
integrals ICq and ICO in (4.7) have to be computed with
the total electronic lifetime

1/r„,= 1/r;+ 1/r ph (4.27)

rather than r; from (4.12) alone. Since r~h(r;) is in-
dependent (dependent) on the impurity concentration,
the resultant thermoelectric power will depend on the
impurity concentration in general. In the limits,
however,

aild
1/.;»1/. ,& (4.28a, )

1/r, »&1/r;. (4.28b)

Q(r) will become concentration independent. The
former situation is realized at temperatures r&1. The
latter condition holds true already for temperatures
much less than the Debye temperature and, in this case,
the thermoelectric power approaches that of a pure
metal, Q~gtgj Q~et, g] is usually at least an order of
magnitude smaller than that of the alloy near the
Kondo temperature.

In summarizing the discussion of the transport
coefficients, one can say that they do not provide in-
formation about the detailed structure of the Rondo
resonance as it was worked out in Sec. III. Just as in
the case of the density of states, the best one can hope
for is some information about the width of the reso-
nance. In addition, we have seen that measurements of
the thermoelectric power allow one to indirectly draw
some conclusions about the electrostatic potential
associated with a paramagnetic impurity in a metal.

'4 M. D. Daybell and O'. A. Steyert, Rev. Mod. Phys. 40, 380
(1968)."H. Suhl and D. Kong, Physics 3, 17 (1967).
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C. de Haas-van Alphen EfFect

Several authors"' have interpreted the observed
fieM and temperature dependence of the damping of
the de Haas —van Alphen oscillations in dilute magnetic
alloys in terms of the electronic lifetime r(ep, T) Lsee
(4.5)].Their approach was to take Dingle's'P expression
for the periodic part of the free energy of the alloy in an
external magnetic field and to replace the electronic
lifetime 7-, which in Dingle s paper is treated as a
constant, by the energy- and temperature-dependent
lifetime that results from the s-d exchange interaction.
The effect of the magnetic field on the s-d scattering
amplitude is neglected, however.

We feel that such a procedure is not firmly based on
theoretical arguments. A rederivation of Dingle's ex-
pression for the periodic part of the free energy by
Brailsford" sho~s that it is not necessary to assume that
the electronic lifetime is a constant. The electronic ex-
citation spectrum however, must have the characteristic
features of a quasiparticle spectrum, i.e., near the Fermi
energy, the electronic self-energy Z(ep) must be a slowly
varying function of cv. As we have shown in Secs. II
and III of this paper, this is not the case for the Kondo
model. Z(ep) is a rapidly varying function of ep near ep =0
and the quasiparticle picture does not apply. Further-
more, it is questionable whether it is a good approxima-
tion to neglect the inQuence of the magnetic field on
the s-d scattering mechanism. The magnetic fields
applied in the experiments which are reported in Refs.
36 and 37 range 2—5 kOe and the temperatures at which
the measurements were carried out range 1—5'K, so
that for the extreme values T= 1'K. and H=5 kOe we
have

Ij, gg Jl~-,'kgT.

Thus, in this case, the magnetic energy is of the same
order of magnitude as the thermal energy and certainly
not negligible.

It appears that a more careful theoretical considera-
tion of these points is necessary before conclusions about
the scattering mechanism can be drawn from the ob-
served field- and temperature-dependent damping of
the de Haas —van Alphen oscillations in dilute magnetic
alloys.

D. Specific Heat

It has been shown by several authors" "~ that the
anomaly in the electronic specific heat which is ob-
served in dilute magnetic alloys can be attributed to
the resonant scattering of the electrons from magnetic
impurities. In terms of the change in the density of
states hn(ep) discussed in Sec. II, the incremental

36 F. B. Paton and K. B. Muir, Phys. Rev. t.etters 20, 732
(1968)."H. Nagasawa, Solid State Commun. 7, 259 (1969).

'8 R. B. Dingle, Proc. Roy. Soc. (London) A211, 517 (1952).'9 A. D. Brailsford, Phys. Rev. 149, 456 (1966).
«9/. Brenig and %. Gotze, Z. Physik. 217, 188 (1968).

specific heat can be expressed by the well-known exact
formula

OC

hC(T) =— Dn(ep, T)epf(cp)dpp, (4.29)
I9T

where the integral represents the incremental internal
energy of the system due to the interaction with im-
purities. It is suggestive to split AC(T) in the following
two contributions:

dep An(pp, T)pi (4.30)

AC.(T) =

BQ)

( 8
&"(,&)) f( ) (&3&)

kaT

a
AC„(T) =n;npe dpp ep Imt„t(ep)—.

BT
(4.32)

Introducing the dimensionless variables ~ and r again,
we can write this as

8f(e, r)
AC (T) =n rip~knTx de e Im/„q('e, r)

BT
where

f(e, r,'=/exp(e/r)+1 j-—'.

(4.33)

With (2.10), we then can give the following estimate for
DC (r)

DC„(r)& ,'n;n

eking'Txr-

&e,eying'T. (4.34)

Henceforth we shall call dC and AC the normal and
the anomalous contribution to the specific heat. We
recall that for an electron gas interacting with normal
nonmagnetic impurities the change in the density of
states Dn(ep, T) is temperature-independent, so that
there is no contribution to the specific heat from the
derivative of hn(ep, T) with respect to the temperature.

In what follows we shall examine AC„(T) and DC, (T),
giv'en by (4.30) and (4.31), using the expression (2.8)
for An(pp, T) ZMH an. d Brenig and Gotze~ developed
an elegant way of singling out the important contribu-
tion to the specific heat. They vere able to relate the
internal energy of the system to the coeKcients of the
asymptotic expansion of t„i(ep, T) for large ep. Neverthe-
less, we find it worthwhile to discuss the integrals (4.30)
and (4.31) directly. We will show that, in contrast to
all other quantities which we have discussed so far in
this section, the specific heat depends crucially on the
presence of the unimodular factor e'~ and on the tern-
perature dependence of the function A (T) in the ZMH
expression for the scattering amplitude t„i(pp, T).

I.et us first consider the normal contribution to the
specific heat. Because of the factor df/BT in the in-
tegrand of (4.30), An(ip, T) is only needed in the energy
interval ~ep~&kaT Thus it is sufli. cient to work with
the approximate expression (2.9) for An(cp, T), with the
result
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'1'hus AC„(r) goes to zero at least a,s fast as T. Compared
to the specific heat of the free-electron gas

Cfree el 300~8 7-

is closely related to the occurrence of an anomalous
contribution to the specific heat.

From the expression (820) for (re)'De)A/BT, Eq.
(4.36) may be written in the form

AC„ is small because of the concentration factor e;.
It is possible to separate hC from the measured total
specific heat of the alloy but this is not very interesting.

At this point, it is necessary to define more precisely
what type of contribution to the specfic heat we con-
sider to be typical for the Kondo e6ect. Looking at the
first line of (4.34), we see that, for fixed r, AC„vanishes
in the limit y —+ 0. In contrast to this, there are quanti-
ties which, in the same limiting process, remain finite.
An example of this is the thermoelectric power as given

by Eq. (4.18). As was pointed out by MH, the latter
type of behavior is typical for physical quantities which

show Kondo anomalies. It may, in fact, be used to
characterize a Kondo anomaly in any physical quantity.

Following ZMH, we shall now search for a contribu-
tion to hC, which remains finite in the limiting process
described above and disregard all contributions which

vanish like AC„ in the limit y ~ 0. Using the expression
(2.8) for hn(p), T), we have

AC. (T) = n; n p'

CO

+ I — Im/ t (d)7 Gl

D' BT

—n(gite+ I)re), (4.35)

As we show in Appendix B, the contribution from the
second term in the integrand vanishes as y goes to
zero. The important anomalous contribution comes from
the first term. Since the first term contains a factor
(p)/D), this means that the anomalous contribution
arises from the behavior of Ref„)(p),T) at energies of
the order of D and is not directly related to the reso-
nance structure in f„p(p),T). The latter is confined to the
energy region j

p)
~

& IC a Trr. As the calculations in

Appendix B show, the part of DC, which remains finite
(in the limit y ~ 0) is proportional to the derivative of
A(T) with respect to T

(a/ar)) F(p, r)) '
AC. (r) = dp- . (4.37)

2n' „~V(p, r) t
'+pr'S(S+1)

This agrees with the results found by ZMH as well as
by Brenig and Gotze. DC, (r) is evidently independent
of the coupling constant.

fntegrating DC, (r) with respect to temperature, we
can find that portion of the total internal energy the
temperature variation of which is responsible for the
occurrence of the anomalous contribution to the specific
heat

E,(Tp) = AC.(r)d T

7K AC'„(r) dr . (4.38)

The integral in (4.30) is a dimensionless quantity of the
order of unity. . Thus the magnitude of E,„„„(Tp) is
governed by k~T~ ——De"&. On the other hand, there are
certainly perturbative contributions to the total inter-
nal energy which are of the order y'D. For small y,
these are much larger than E,„o, (Tp). An& attempt to
first compute the total internal energy of the system
and to obtain the specific heat by differentiating the
result with respect to temperature appears to be
hopeless.
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APPENDIX A

Introducing the variable x=-,'Pcs, we can write the
integrals E„in the form

gC, (T)= n;7ry'D(r) A/r) T) . (4.36)

This clearly indicates the importance of the function
A(T) in the ZMH forward-scattering amplitude. The
fact that we did not find any temperature variation in
A(T) in our numerical calcula, tion of A(T) does not
mean that hC, (T) as given by (4.36) is small. The large
factor D makes up for the smallness of BA/BT which, as
Eq. (820) shows, is of the order D '. The derivation of
(4.36) in Appendix 8 also shows clea, rly that, as was
first pointed out by Hamann and Bloomfield, the
presence of the unimodular factor in the exact solution

dx x"r;(x,r) cosh 'x. (A1)

Here we have assumed that p(co) and np(p)) can be
treated as constants and have replaced them by their
values at the Fermi energy. Because of the factor
cosh 'x in the integrand of (A1), the electron lifetime r;
is important in the interval

~ x~ & 1 only. To obtain the
asymptotic behavior of Ep and Ei in the limits
1nr ~ & ~, it; is therefore sufFicient to derive an
asymptotic expansion for 7.; which holds for all x such
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that
~
x~ &1. The most convenient starting point for

such an expansion is the following expression for the
scattering amplitude which can be derived from (3.1)
by a mathematical tra, nsforma, tion (see MH)

where

t„),(x,r) = (2i7rnp) '[1 s—(x,r)7. (A2)

V (x,ri = lnr+ g (x),
g(x) = k(p ix(x) —4(p)— (A4)

is the dimensionless function deiined in (3.12). Here
iso is the solution of the equation

I I (p)r)~ X—)X p

s(x, r) =———
[~ I' (p, r)

~

'+pr-'$(S+1)]'" x+ixp

fx ' V(x', r) ' '
Xexp —P ln

I

&I*', )I'+ '&I&+)))-
(A3)

in which

I'(x, r) x—ixp

[~ V(x, r)
~

'+pr'$(5+1)]'" x+ixp

n'$(S+1) 1
1— ——-+0 [1+2ixr —O(x'r"-)],

2 ln'7. ln'v

I (x, r) x ix—))

[i I'(x, r) ' '-+m'$(5+ I)])"x+pxp

r ~0 (A7)

pr'5(S+1) p 1
=1— — +O~ —, r —) ~ . (Ag)

2 in~7. kin'7.

QC I (x', r) I' f/X
I' ln ——

I)'("' )I'+ 's(s+)))*—*'

The principal-value integral in the argument of the
exponential in (A3) can be expanded as follows:

I'(x,r) =0, r& 1 (A5)
)r'$(S+1) 1

tanh x+0
ln4~

and it is zero otherwise. It is easy to verify that in the
limit of ~ going to zero

xp(r) = I/r+O(r) .

The following two asymptotic expressions are im-
mediate consequences of (A4) and (A6)

lnr ) a ~ . (A9)

To obtain this expansion, we have made use of the
analyticity of g(x) in the upper half of the complex x
plane. Combining the results (A7)—(A9), we find the
following asymptotic expansions for Ref„t and Imt„~'.

1 prPS(5+1)
Re(...(x,r) = 1—

2prnp ~lnr~' 2 ln'g

pr'$($+ 1) 1
+0 —,'m tanhx, lnz~ ~ ~

ln'7-
(A10)

pr'$(5+1) 1
2 — — +0 —,T —+0

2 ln~r ln3v
Imi...(x,r) =—

2nnp pr'5($.+1) 1

2 ln2~ ln'r

(A11)

Inserting these expansions into (4.13) and (4.14), we obtain asymptotic expansions for the even and odd parts
of the electronic lifetime

cos26r prPS($+1) 1+0, g —+so
ln'r

1—
1 —cos26y 1 —cos26y 2 ln'r

1 cos2)l v )r'$(5+ I) 1—1+ +0, 7. —+0
~R.O 1+cos26l 1+cos26V 2 ln'r ln'g

(A12)

n, ir'$(5+1)
sin26y &x tanhx 7';,, „, lnr —+& ~ ~

K?l 0 )1nz " (A13)

In (A13) the appropriate asymptotic expressions for r; given in (A12) have to be inserted. Finally, we obtain
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for Ep and &i~

Ey ERIS0 g $ (((! p H

cos28v ~'S(S+ )+0
n'7 ln'71+cos v

— 1+
np 1+

1 1
Ko s sv

1 — cos28v s S(S+n' +0
2 ln2~1—cos v

s'S(S+1)n'
frkeT si v

! 1„
i

3 2 ln'rpp' np
I

(A14)

(A15)

~PE+DIX &

he anomalous part 0 pthe s ecific he*tt
wo integrals. To(435), we must ~~mp~t~g' y

'der the integralbegin with, we consi er

aIld
np

Im ———
3

2'
1m(Xe")

p( )((

x —+
88 84 88

(8-)

Ii —=np'

notice t

8 I»X ((o,T)/8T =y-,'w (8/8T) tanh-,'Pcs

tiall for u&i)&ksT. Using this, one can
h i d oat the third term rn e

'

at (C as a function o em
'bl T ht . It is therefore negligi e. o e

f ZMH and limit the temperatureadopt the procedure of ZM an im'

(86)
erature derivative of Im „t,

~ ~

MT) asg p
i~3.4~, one gets a variety o

h foliovenient to regroup them in e

+12™+I3™, (82)
where

fL pI I
1

2Ã
d(d (dp(G&) 1 E

that these integrals vanishish in the limit
h hi 1 thvalue of 7., w ic is'Y

'th I' fi t1 t see 87). Starting wittain upper limit see- (,T)f( ) (81)
8T

mX BX(ReX)' ReX ImX
)( 1— cos8+ sin~

E
ImX ReX

E
t (ImX)'

cos8+i 1— s»8

BX
&& Im f(co) . (83)

BT

t 3 is considered as aThe symbol 8X/8Ti! ~ means that
constant in the differentiation,

ll p 8.4'
I lm (~)2

2K 8T Qo

(R.eX)' ReX ImX
cos8+

(89a)

(89b)

(ii) icgi &(d„.:
(810a)i

(ReX)2/E —1
i
&cy p (~),

IReX lmX/E( &cia(p. 8 10b)

c is a constant of order unity which
is independent of y. Using these boun s, we a

ke e x' -'. (87)k T D'(k T )' (0«-', ).
'd these functions in two

'
o intervals,Then we consi er es

1 a&
i
&ca, and

i
co

i
&(e„wherename y, ~ cu, re

(88)(d, =D('—l(keTa) .

Omitting t e e ai s,h d t 'ls we merely state the upper bounds
that we have found.

(i) i(di &co, :
i
(ReX)'/E —I

i &1,
(ReX ImX/El &c

np
/I Zm/—

2K QQ

BX
sin8 R- f((d)

BT', g

deuce K '(' Rc — (yp(co)+y p ((a))
BX

811)
BT g

8X

BT g

otic

fl p

22) — p

(ReX)' ReX ImX
cose+~-(-)((--(~*) ((- )- +
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BA

(812a) (~v)'—=

(812b)

Now

It ')'(a)) & 1/ I & I

K ')'((o) &c, (u)jd. .

sin the asymptotic expansion for

bounds for Re(c)X/ctT
f &) (see Re . , ppe

(i) cd&(a, :

'8 ReX

1 BT A

1 I p~

T 2m

(813a)
(ii) ~)u,. :

tt ReX: 1,y', p(m) 2~

BT A 6 T PD
(813b)

Using (812a), we obtain

g Re+
d~ ~ K—I»— ~&C)kB'rTK

dT

x I +j (
—)+(- ) +'» (jj)4')

klSTK
Kith the help of the condition 3.5b we have

and from (812b) and (813b),
d '((d) 1——Ret„,(co,T)F((a,T), 821cop (d — ~e, F M T 821

vp(~)+v'p'(~)!
BT

db) co K RC
whereA

p
& ck rT )

' ""(1+'pl) . (814b) F( T)

c

pt' ct lnK(~0', T)

Q3 —
CO 8T

BA a) jj( ',
T))+

BT 8A

Since no vr/D, it f——ollows that

~BTK
fIi'

f
=ciker [lnr =f+ln

D &BTK We obtain the estimate for I3'~

ReX(~,T)
d~ p(~)—. 817

E(ij)j T)

rais involved in this expression have been

which vanish in the limit y ~ 0, one finds

ke " (cl, ctr)i V(e, r) '

efined inr e r is the dimensionless function e

follows that its magnitude is of order

1
+l~l+I~l' =olim Ii'"~& lim c(n.y '

I V I o I V I
~o P PK

(819)
Using the definition (3.4) for 8 the integral I3™

can be written

uP Im(Xe") Fbio / co F
I ' =— did jdp((u)

D2x

d ' 8 1 F( ', )') BA 8 )oK( ', 2'))
M l9T g ctT 8.4

+ '+ j I '+i&I ') (»5) I
' I3™

f
&~rioF„,.„A)p(jd) )

eR„„,t((e, T
0

(823)

~ 0, v fixed, this vanishes obviously.
I ' b their term in e

h h we have already shown to e neg
'

of that Iy does not con-Thus (815) completes the proof that

bounds (89a)—(810b), (812a) and

lI' l«(iso/2 )( v)'(~~/~
xC~.2/f~l+ l~fD2(1+I~ )

~ ~To obtain 83~'8 T we differentiate the condition7

(3.5b) and solve for BA/clT. This yie s

re F,„,„ is the maximum value of I' co,T for all co

and for kiiT&D (k»T»
the details, we state that

djd p(&a)
f
Ret(cu, T)

f
~&c)k&T»+c2D~Q'

(825)

0

0

re the first term arises from the resonance in
co T near~=0 an t esecon

m lar e values of cd Since F»,x
remains finite as y approaches zero, it follows t a

lim fI3™
f

=0.
I vl
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I Im 1 ™andn that the integralsThus we have show '

l. ,t
~ ~

~ 0 withI im VaniSh in the im 'YI,im, and hence
7- fixed.

of the other IntegralWe now turn to the evaluation o
in (4.35)

?l pI Re= ——
2 du (d P—((d)

D

f(~), (82~)XIm (l' — - cv

and
d —'(~) —Ret,„,((o, ) f &u .d — cg — „„T (&u) . (82')iAV CO P CO re

D
IRe=—2np'

f? pI Re—
3

Ip =I I«+I,Re+I3I« (827)

t at arise fromthe various terms t a
th i t di threethe differentiation in t e inperforming e

'
t e in

integrals just as in the case o

A) co—p((u)
D

Re(Xe*') ()tt ();I c)tt

QK ()T a BT ()A

where

?? pRe—
1 (Ad (o—p(&a)

D

I R' and I~R' can be shown too vanish in

limit.
Re 'KSUsing (3.1), we can write

XIm — — e' f((d), (828)
()T g ()XQE e=I31 +I3Re Re

3 (831)

where ((', )(( ) (', )]
d(d

E " a)' c).1 ReX(cg', T)
c0 — d(d' wy)' —p((d')d(d—ca) L I+2~p((d)1mi„„((d,T)]f(c0)— d(d

I —= —— —(cu) [I+2m r(o(co) Imt„„((a,T)]f((d I'(Ad p (al31

cl,nd
1? pRe-
1r

(833)p(
QC D

tri ution toit ~0 with v e .o
' '

i
'

fix d. The important contrih to vanish in the hmiR' can a ain be s own oThe integral I31 c g
I R' which can be writtend h to IR' comes from 3~ w

'I R' ana nence o3

np B.4 "
co I'

I„R'=—(s-y)'— (tee—f((d)—
BT „D

(d

p((d')+
CO GO

I

P
d~ p(~)f(~)—

D

ReX(co', T)
I(tee' p((u )

CO CO )

E
+2R (ko p'(&o) Imt, «(u,—T)f((d)

D

IOQ
Q7

I~( )f( ) d —, ~(—') = ~' )+( —,)

uare brackets can be calcu ate yl d by elementary methodsThe first integral in the square rac

ylo

cu' ReX((d', T)~
I

co' —(a E((u', T)
(834)

(835)

ir in e r' '
own to vanish in the limit

~, y~~0 so t a orird inte ral can again be shown o v
' '

it ~
—+ 0 so t a orThe second and thir in egr

'(t:1/ST. '-IR~I;,"~r(,D''(~q-:-
is discussed in the main text.The significance of this expression is i

(836)


