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In computing C, it is convenient, given H,, to first
choose M, then evaluate x=7M~2 by combining (2.6)
and (A1), and express the right-hand side of (A7) in
terms of » and M. If D=D/V is set equal to zero in
(A7), C. is identical to Cy;.

It is clear from (A4) that 7-'Cy satisfies a ‘“‘scaling”
relation. The same is true of 7-!Cp. It can, in fact,

easily be shown that

However,

()
oT )y,

where the second equality utilizes (2.6). Finally, the
Maxwell relation®

(611;/ a]‘) M (GH/ 6T) A
(8H,/aM)y  (3H/dM)p+D

. (A10)

(3S/9M)r == (6H/3T)x (A11) T-Cy=Co(T)+ (x| H| %) ~\In| H|  (A12)
completes the derivation. for an appropriate function f(x) and constant A.
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A numerical study of the Kondo problem is presented. The calculations are based on the Suhl-Abrikosov-
Nagaoka integral equation for the scattering amplitude #(w,7) of the s-d exchange Hamiltonian. Use is
made of the exact analytic solution first given in detail by Zittartz and Miiller-Hartmann. It is shown
that, because of the resonance in Im¢(w,7’) which occurs at the Fermi energy (w=0) at low temperatures,
the tunneling density of states of a dilute paramagnetic alloy is very slightly reduced at zero bias voltage.
There is, however, a possibility of detecting this change by studying the derivative of the conductance.
The details of the Zittartz—Miiller-Hartmann expression are found to be unimportant for the low-tem-
perature behavior of the transport coefficients with the exception of the thermoelectric power. A rein-
vestigation of the thermoelectric power shows that some care is necessary in the evaluation of the integrals
Kn=f_o% dww™no(w)7(w,T)d/f/dw, because of the strong w dependence of the electronic lifetime 7(w,7)
« [Im¢(w,T) ]! at low temperatures. While the transport coefficients reflect the behavior of the scattering
amplitude in a small energy interval about the Fermi energy, the specific-heat anomaly is found to be
related to the temperature derivative of ¢(w,7) at large values of the energy variable w comparable to the
bandwidth. We also point out that the quasiparticle approximation is not valid for electrons interacting
with impurity spins due to the rapid variation of {(w,7T) near the Fermi energy.

I. INTRODUCTION electron system, .V is the number of atomic cells, and
J is the coupling constant. We shall consider only the
case of antiferromagnetic coupling (J>0).

In the course of explaining the resistance minimum
of dilute magnetic alloys on the basis of the s-d exchange
Hamiltonian, Kondo! discovered that in perturbation
theory the one-electron scattering amplitude has a
logarithmic singularity at small temperatures and ener-
gies. Various nonperturbational methods*~7 have since
been developed to explain quantitatively the anomalous
behavior of the physical properties of dilute magnetic
alloys. Of particular interest to us are the methods of

! J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).
2H. Subl, Phys. Rev. 138, AS515 (1965); 141, 483 (1966);
Physics 2, 39 (1965).

N this paper, we study numerically the low-temper-
ature anomalies of dilute magnetic alloys. The s-d
exchange model (or Kondo Hamiltonian) is widely ac-
cepted as a reasonable description of the interaction
between conduction electrons and the localized mag-
netic moments of the impurity ions. This model
Hamiltonian consists of a simple contact interaction
between the impurity spin S;™? and the electron spin
density at the position of the impurity-:

J
Hs,z=11km-—?z S;ime-s<!(R;). (1.1)
N

Here H i, is the kinetic energy of the noninteracting
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3 A. A. Abrikosov, Physics 2, 5 (1965).

+Y. Nagaoka, Phys. Rev. 138, A1112 (1965); Progr. Theoret.
Phys. (Kyoto) 36, 875 (1966).

®J. Appelbaum and J. Kondo, Phys. Rev. Letters 19, 906
(1967); Phys. Rev. 170, 542 (1968).

% K. Yosida, Phys. Rev. 147, 223 (1966); Progr. Theoret. Phys.
(Kyoto) 36, 875 (1966).

7 A. Okiji, Progr. Theoret. Phys. (Kyoto) 36, 712 (1966).
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Suhl,? Abrikosov,* and Nagaoka.* Suhl applied disper-
sion relation techngiues to the s-d scattering problem
and obtained a set of two coupled nonsingular integral
equations for the non-spin-flip and the spin-flip parts
of the electron scattering amplitude. Essentially the
same equations were obtained by Abrikosov, who used
a graphical technique to sum up the most singular
terms in the perturbation series for the scattering ampli-
tude. The complete equivalence of the Suhl and
Abrikosov methods has been proved by several au-
thors.®® Nagaoka considered the hierarchy of equations
of motion starting with the equation of motion for the
one-electron Green’s functions. He decoupled the higher-
order Green’s function so that a closed set of equations
for the first two Green’s functions was obtained. Later
on, Falk and Fowler!® and, independently, Hamann!!
showed that Nagoaka’s equations could be cast into
the form of a single nonlinear singular integral equation
for the non-spin-flip scattering amplitude. The solution
of this integral equation is due to Hamann,!! Bloomfield
and Hamann,? and Zittartz and Maiiller-Hartmann
(ZMH).!3 Hamann, as well as Hamann and Bloomfield,
truncated the integral equation by neglecting the regular
contributions to the kernel as small compared to the
singular ones. Their solutions for the ¢ matrix are ac-
curate for small energies and thus quite sufficient to
explain the anomalies in those physical quantities
which only depend on the scattering amplitude for
small values of the energy. The exact solution of
Hamann’s integral equation is due to ZMH.

In Sec. IT we discuss the relation between the !
matrix and the one-electron spectral density and the
density of states. In Sec. ITI, we present the results of a
detailed numerical study of the ZMH analytic expres-
sion for the scattering amplitude. Section IV is devoted
to the question as to how far the details of this expres-
sion are of importance in the computation of measur-
able physical quantities.

II. SPECTRAL DENSITY AND
DENSITY OF STATES

The spectral density of one-electron states in an alloy
is given by

paltoy (k,w)
1 —Im2(k,w)
o [w—ex—ReZ(kyw) P4+ [ImS(kw) ]?

(2.1)

Here ¢ is the kinetic energy of our electron with mo-
mentum k. The effect of interactions on the spectral

8 8. D. Silverstein and C. B. Duke, Phys. Rev. 161, 456 (1967).
9 H. Keiter, Z. Physik 214, 22 (1968).
1 D. S. Falk and M. Fowler, Phys. Rev. 158, 567 (1967).
11D, R. Hamann, Phys. Rev. 158, 570 (1967).
(1;26% E. Bloomfield and D. R. Hamann, Phys. Rev. 164, 856
(1;36'8]) Zittartz and E. Miiller-Hartmann, Z. Physik 212, 380
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density is entirely contained in the self-energy function
2(k,w) which, in general, may be split into three
contributions:

2 (k,w) = Zet-e1(k;w) + Zetph (l,0) + Zerimp(kiw) . (2.2)

We shall neglect the first two terms which result from
electron-electron and electron-phonon interactions since
they are also present in the pure host material. In so
doing, we assume that Zei.e1 and Ze1.pn are the same for
the pure host material and for the alloy. This assump-
tion is quite generally made for low concentration of
impurities although it is hard to justify rigorously. One
may incorporate the real parts of the first two terms
on the right-hand side of (2.2) by interpreting ex to be
the renormalized electronic energy. Near the Fermi
surface, such effects may be simply expressed in terms
of an effective mass m*, i.e., ex=k?/2m*.

To lowest order in the impurity concentration,
Zel-imp 18 given by

Eel-imp(k,w) =nilkk(w) ) (2'3)

where #; is the impurity concentration and fxx(w) is the
one-electron non-spin-flip forward-scattering amplitude.
Since the interaction which we are considering is a con-
tact interaction, the scattering amplitude and hence the
self-energy are independent of the momentum k of the
electron

Lk(w)=1(w), (2.4)

This fact makes it especially easy to compute the density
of states of the alloy. In terms of the spectral density,
the density of states can be written as

Zet-imp(k,w)=Z(w) .

1
n(w) = no(w)“}‘_: Z Palluy(k)w)
A"

o)+ / dewno(epaoy(kw),  (2.5)

where no(ex) is the density of states of the host metal.
We choose #o(ex) to be a Lorentzian, namely,

no(ex) =ioD?/ (ex2+ D) . (2.6)

The reason for this choice is that the ZMH solution
for the ¢ matrix, which we shall use in our later work, is
also based on this bare density-of-states function.
fle=mno(ex=0) is the density of states at the Fermi
energy (all energies are measured relative to the Fermi
energy ep). From the exact sum rule,

%

/ 1lg(6k)dék = 1 ,

’V_lo'—' 1/7I'D

we see that
2.7
in the case of the Lorentzian band model.!*

1 7y is the density of states per unit cell. To obtain the total

density of states, one has to multiply by the number of atoms in
the system,
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Using (2.3), (2.4), and (2.6) in the evaluation of
(2.5), one finds that the change in the density of states

is given by

An(w,T)=n(w,T)—no(w)

w
=11;i102(w)[2— Relroc(e0,T)
D

+<1 —i> Imlm(w,T):l , (2.8)
D2

where £, (w,T) is the retarded forward-scattering ampli-
tude. For energies well within the band (|w|<D), this

result simplifies to
An(w)=nne® Imtyer(w,T) . (2.9)

It is well known that the imaginary part of the scatter-
ing amplitude is bounded by the unitarity limit

—Imtrec(w, 7)< 1/, (2.10)
and hence we see that!®
An(w,T)
!————1§;1,~. (2.11)
| 770 ‘l

The relative change in the density of states is less than
the concentration of impurities. For values of the con-
centration of the order of 10~ which are common for
dilute magnetic alloys, it would therefore be difficult to
observe An(w)/7, in a tunneling experiment. However,
one might try to do experiments with magnetic impurity
concentration of order 1072 as long as one has a sufficient
concentration of nonmagnetic impurities which would
destroy the long-range Ruderman-Kittel-Kasuya-
Yosida (RKKY) polarization effects that induce im-
purity spin-impurity spin coupling. Moreover, there
might be a chance of observing the derivative (d/dw)
An(w,T), which is large because of the rapid variation
of An(w) with energy.'® We shall come back to this
point in Sec. IV A.

III. NUMERICAL RESULTS FOR
NON-SPIN-FLIP { MATRIX

In this section we shall discuss the results for the
scattering amplitude #,c(w,7") which we have obtained
by evaluating numerically the analytic expression for
t(w,T) as given by ZMH." It is evident from Sec. II
that this provides all the information needed to deter-
mine the one-particle excitation spectrum as well as the
density-of-states function.

15 A, Griffiin, in Lectures Notes of McGill Summer School on
Superconductivity, edited by P. R. Wallace (Gordon and Breach,
Science Publishers, Inc., New York, to be published).

16 This was suggested by A. Griffin.

17 A similar analysis of Bloomfield-Hamann solution for ¢(w,T)
is contained in a recent paper by B. N. Ganguly and C. S. Shastry,
Phys. Rev. (to be published).
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ZMH were able to obtain an exact solution of the
approximate Suhl-Abrikosov-Nagaoka integral equa-
tion for #(w,T) under the assumption that the density-
of-states function of the pure metal is a Lorentzian
[see Eq. (2.6)]. For convenience, we state their solution
for lret(w,T) here!®

( X(w,T)

ret wyT = 1—
fre(,T) 27rino(w)\ [K(w,T)]"?

eww.ﬂ). (3.1)

The functions X(w,7) and K(w,7) are defined as
follows:

X (e, 7)=1=(m)%0(@)[1S(S+1)+4(T) ]+vpo(w)

A2 o

po(w) =D?*/(w*+D?),
K(w,T)=|X(w,T)|*+[rvpo(w) *S(S+1).

(3.2b)
3.3)

Here y(z) denotes the digamma function and y=J7,
is a dimensionless coupling constant which is assumed
to be much smaller than unity. The function 6(w,7),
which we will henceforth refer to as the phase, is given
by a principal-value integral

1 = InK(w,T)
/ — . (3.4)

0(w,T)=—P
2

T Jw W —w

The function 4(7) which enters K(w,T) via X(w,T)
has to be determined self-consistently from

1 © w—2tD
A(T)=— / dw(tanh}fw)———/re(—w). (3.5a)
o (w—1iD)?

21wy w—1

For convenience, we shall use the alternative condition
obtained by ZMH to determine A(7),

InK (,T)dw=0.

—o0

MyA,T)= (3.5b)

The physical meaning of 4(7) becomes apparent from
the exact result

A(T)=(2xD|v|) Y (AExin—Einy), (3.6)

which relates it to the difference between the incre-
mental kinetic energy of the electrons,

AEkin: Ekinalloy __Ekin}mst metal R

and to the interaction energy.
The following general features of #,.:(0,7) follow
immediately from (3.1):

18 4,c¢ as given here differs from the corresponding quantity in
the paper of ZMH by a factor of J, i.e., tret(w,T) = Jtret2MH (0, T).
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(a) If the density-of-state function of the host
material 7,(w) is an even function of w, then

Imtret(w,T) = Imlret( —w,T) ’ (373)

Retreg(w, T) = —Rel,et(—w,T) . (3.7b)

This applies, of course, to our case since no(w) is a
Lorentzian.

(b) Imtyet(w,7) <0 for all w and T.

(c) Making use of the asymptotic form of the func-
tion X (w,7) for =0, namely,

lim X(w,T) =1—(m7)*o(@)[1S(S+1)+.1]
T -0

+vpo(w)(In| D/w| 437 sgnw)
and of the fact that

0(w=0,7)=0, (3.8)
one can easily prove the inequality
—TImlre(w,7) < —Imt e (0,0)
=7"!(unitarity limit). (3.9)

Furthermore, for arbitrary temperature, X(w=0,7T)
takes the simple form

X(w=0,T)=—~In(T/Tk), (3.10)

where the Kondo temperature Tk is defined by

Tx=(D/kg)exp((1/7){1— () [1S(S+1)+47}),
(3.11)
with
D: (2/11’)0 exp(VE.,I,,) =1.13D.
Here, A(7) is treated as a temperature-independent

constant for reasons which will become clear later on.
Because of (3.8), using (3.10), we find that

lreL("v‘:Oa T)
1 {1 In(T/Tk) )
T2imi\ {[In(T/Tx) PSS+ 1)}/

(3.12)

The remarkable feature of this simple formula is that
the right-hand side depends on the coupling constant
only through the ratio r=7/Tk. Thus Tk completely
determines the temperature scale on which {;o((w=0, T)
varies.

(d) A more general statement can be made in the
weak coupling limit (|y|— 0). It has been shown by
Miiller-Hartmann'® (MH) that, in this limit, the scat-
tering amplitude approaches a function which is in-
dependent of the coupling constant y. This obtains for
fixed values of the dimensionless temperature 7 and the
dimensionless energy variable e=w/kpTx. Moreover,
this function does not depend on the specific form of the

1 E. Miiller-Hartmann, Z. Physik. 223, 267 (1969).
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density-of-states function of the host metal 7¢(w). In

mathematical terms, if we define

V(e,7)=lim [’—(1/’)’)X(‘-":T)]

¥ -0
=lnr4yE—ie/ 2mr)—¢(3),

then /,.¢(¢,7) is given by

(3.13)

[re'.(()) ((‘)77.) = lim /ret (w7 T)
y->0

1 / V(e,1)
= 1—
2i1rT_La\ [K,(e,r) 142

ew,,(;,r))’ (3.14)

where
K (e,7)=|V(e,7) |2+ 72S(S+1) (3.15)
and
1 © InK,(¢,7)
0,(e,7) =~f—[’/ dé — (3.16)
2r o € —e

The right-hand side of (3.14) is evidently independent
of the coupling constant y and of the density-of-state
function of the host metal #¢(w). The important question
of how well this simple limiting expression for ¢,ci(e,7)
approximates the scattering amplitude for finite but
small values of v will be answered by our numerical
results.

The analytic expression for the scattering amplitude
is complicated a great deal by the presence of the uni-
modular factor €* in the expression for /¢i(w,7") and by
the fact that the function X (w,7") depends on the func-
tion A(T) which has to be determined self-consistently
from Eq. (3.5). Neither 6(w,7) nor A(7T) can be ex-
pressed by simple analytic functions.

In deriving (3.11), we have treated A(T) as a con-
stant. This is justifiable since, as was pointed out by
ZMH, the over-all magnitude of A(7) is small, being
of the order of the coupling constant . Thus for small
enough v, 4 can be neglected relative to the term
15(S+1) in (3.11). For small v, one can obtain an
asymptotic expansion for 4 by expanding the integrand
in the Eq. (3.5b) in powers of v. This yields

A(M)==3¥SS+D[14+0(T/D) ]+ 0(+?).

For T=0, this expansion has been derived by ZMH.
As one can see, the temperature dependence of the
lowest-order contribution for 4(7) is negligible for all
physically reasonable temperatures.

The results of the numerical calculation of Eq. (3.5b)
agree qualitatively with the expansion (3.17). To obtain
the values of A(T) listed in Table I, we computed the
integral

3.17)

AM()(A ,T) =

—%c

dw InK (w,T) (3.18)

for specific values of 4. To find 4, we then determined
graphically the zero of My(4,T) as a function of A.
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TaBLE I. The values of 4 obtained for two different values of
the reduced coupling constant y. See Egs. (3.17) and (3.18) in
text.

Y A
—0.08 0.031
—0.11 0.050

Within the numerical precision of this procedure, we
could not detect any temperature variation in .4 over
a temperature interval of 100°K.

Let us note here, that, as far as the scattering ampli-
tude is concerned, A(7") is of no importance. In con-
trast, however, it turns out that A(7T) is crucial for the
calculation of the specific heat of dilute magnetic alloys.

To compute 8(w,T) numerically, we use the expression

£

1 w K(',T)
6(c,T) =P / do! 1n< ) (3.19)
T Jow =0 \K(w, T)

which is identical to (3.4) since

v 30

w
P / doy'———=0
e WP—o?

K('\T)=K(—u', T).

It is obvious that the integral in (3.19) is easier to
handle in a numerical integration than the integral in
(3.4). The convergence of the latter depends on the
delicate compensation of the contributions from large
positive and large negative values of the integration
variable «'.

and

Fi6. 1. sing is plotted as a function of Ine=In(w/Tx) for four
values of the dimensionless temperature r=T/Tk. See Eq. (3.4)
in the text. We have taken y=—0.11 which corresponds to
T'k=9.84°K. Subsequent figures involve the same dimensionless
variables and the same value of +.
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F1c. 2. The real part of the scattering amplitude is shown as
a function of Ine. The unimodular factor ¢ is included in the
computation of these curves. See Eq. (3.20).

In Fig. 1 we have plotted sinf(e,7) as a function of
for four different values of the dimensionless tempera-
ture 7. The dimensionless coupling constant vy was
chosen to be y= —0.11. The curves for finite values of
7 and the one for = 0 differ qualitatively. For the values
of 750 for which we have computed 6(e,7), it approaches
zero smoothly from above as e goes to zero. In contrast
to that, it appears that 6(e, 7= 0) goes to zero with a
large negative slope if € goes to zero. We have not been
able to do the numerical integration of (3.19) for values
of e which are small enough so that the increase of
6(e, =0) becomes visible. The evaluation of (3.19)
for small values of w at 7= 0 is difficult since K («’,T=0)
has a logarithmic singularity at »'=0.

It is easy to see that 6,(e,7) defined in (3.16) is ob-
tained from (3.19) if the Lorentzian py(w) which occurs
in the function K(w,T) [see (3.2) and (3.3)] is replaced
by unity. We have done this and found that the values
of 8,(¢,7) so obtained do not deviate significantly from
those of 6(e,7). We conclude that 8,(e,7) is a very good
approximation to 6(e,7) for values of |y| as large as
0.11.

Figures 2 and 3 show the results of the numerical
evaluation of

1
Retret(w,T) = ———K~%(w, T)[ReX (w,T) sinf(w,T)
mho w)

a +3mypo(w)tanh3Bw cosb(w,T)] (3.20)
an

1
Imtrei(w,T) = ———(1—K1%(,T)

27”’10(0)
X[ReX (w,T)sind(w,T) +2mypo(w)
Xtanhjfw sinf(w,T)]}. (3.21)

[To obtain these expressions for Re, Imf.e, we have
used (3.2a) and the mathematical identity Imy(% —ix)
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= —17 tanhmx]. Relrer and Imi,e are plotted as func-
tions of the dimensionless energy variable e for various
values of the dimensionless temperature 7. The results
are independent of the coupling constant || for values
of |y| as large as 0.11. The resonance peak in the
Imt,ei(e,7) gets sharper with decreasing 7, and its maxi-
mum value approaches the unitarity limit [Imf,.(0,0)
= —1/7] as 7 goes to zero. At =0, the resonance peak
(which has a horizontal tangent at e=0 for all finite
temperatures) degenerates into a cusp with an unde-
fined derivative at e=0:

i}
lim — Im/ret(e, 7=0)=c .
=0 Je

(3.22)

This behavior can be derived from the following asymp-
totic expression for ¢ei(e, 7=0), given by MH:

1 l‘ w25 (S+1) 1
2+ +o( . )] ,
arii. | 21n% I €]

(3.23)

Im/ret(e, 7=0)= —

e—0.

The singularity of Imt,ei(e, 7=0) at e=0 is reflected in
Ret et(e, 7=0) by an infinite derivative at e=0.

To give a quantitative picture of the influence of the
unimodular factor ¢ on Ret,e; and Imt,;, we compare
these functions in Figs. 4 and 5 to the real and ima-
ginary parts of the function

tretasu(w)T)E [27”'710(“’)]_1

X[ =K, 1) X(w,1)], (3.24)

which is obtained from (3.1) if the unimodular factor is
replaced by unity. We should emphasize that, at =0,
the imaginary part of the function defined in (3.24) has
the same asymptotic behavior for small € as the imagi-
nary part of the exact ZMH solution (3.23). As the
graphs show, the imaginary parts of #,/=° and of the
exact solution (3.1) differ considerably only for e>1.

03—~

-Imt (e,T)

O.l—

] 1 Il 1
2 3

|
-2

'
L.

Fi6. 3. The imaginary part of the scattering amplitude is shown
as a function of Ine. The unimodular factor e is included in the
computation of these curves. See Eq. (3.21).
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F16. 4. Comparison of Refret(e,7) with Relret?=(e,7) for 7=1.
The dashed curve represents Retet=°(¢,7). See Eq. (2.34).

For 7=1 the real parts of these two functions are also
in fairly good agreement as long as e< 1. In view of the
behavior of (e, 7=0) it is not surprising that, for r=0,
the real parts of #.=° and of the exact solution differ
both for e<1 and for e>1. Nevertheless, the approxi-
mation (3.24) which has a relatively simple analytic
structure may be useful for the computation of low-
temperature transport properties which only depend on
the value of Imt,e(e,7) at small values of e.

IV. PHYSICAL QUANTITIES DIRECTLY RELATED
TO THE SCATTERING AMPLITUDE

Having worked out quantitatively the details of
ZMH’s expression for the non-spin-flip scattering ampli-
tude in Kondo’s model, we now turn to the question
of how much of the detailed structure is reflected in
measurable physical quantities.

A. Tunneling Density of States

Since there is no way of measuring the spectral func-
tion p*!o¥(w,k) directly, the most detailed information
about the scattering amplitude that one could hope to
obtain would come from a tunneling experiment. The
quantity which one probes in a tunneling experiment is
the density-of-state function #(w). Let us, for simplicity,
assume that the tunneling diode has the following
structure: a pure metal on one side of an oxide layer
and a dilute paramagnetic alloy of the same metal on
the other side of the oxide layer. No paramagnetic ions
will be assumed to be in the oxide layer itself. The
conductance of such a diode can be expressed as

G(V)=dI(V)/dV

d 0
=41re(|T12>:1—‘;/ dw n™etal () palloy (y+-e V)

—x

X[ f(w)=flwteV)]. (4.1)
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Here 47(|T|?) is the average tunneling probability
and V is the applied voltage [ f(w) is the Fermi func-
tion]. n™etl(w) and n*!'¥(w) are the density-of-state
functions of the pure metal and of the alloy, respec-
tively. For small voltages (eV<er), n™et*!(w) can be
treated as a constant. Using the expression (2.8) for
the difference between the density of states of the alloy
and that of the pure metal, one obtains for the relative
change of conductance AG(V)=[G(V)—G({V=0)]/
G(V=0) at zero temperature,

) o Imt e (eV) —Imtre(0) ]
B 147rign; Imire (0)

AG(V

qriign [ Imire(eV) — Imlre(0) ],

for n<<1 (4.2)
where 779 denotes the density of states of the pure metal.
Since the impurity concentration in dilute magnetic
alloys is usually small, 7,~107% or less, AG(V) is a small
quantity. However, for small temperatures it varies
very rapidly with V. For example, at zero temperature
it follows from (3.25) that

d mSS+1) 1

— Imf (@) ~—————, 0—0. (4.3)

dw 2y wlnw
Thus at zero temperature the derivative of AG(V) with
respect to V becomes infinite as V approaches zero. For
finite temperatures (but 7<<7k), the derivative re-
mains finite even for V'=0. The maximum value of
d[AG(V)]/dV occurs at V~Tg and is of the order
n(T InT/Tk)™}, so that one has to go to very low
temperatures if one wants to make d[AG(V)]/dV large.
Nevertheless, it might be possible to detect the rapid
variation of AG(V) experimentally. This would, at
least, give some information about the width of the
resonance in the scattering amplitude.

0.3~

0.2

-Imt (€,7)

F16. 5. Comparison of Imt,et(e,7) with Imfe?=%(e,7) for r=1. The
dashed curve represents Im/.:*~(¢,7). See Eq. (3.24).
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Fi6. 6. Resistivity ratio R(r)/Ro (where Ro=—3Jn;/fice*vr?)
is plotted as a function of 7. The dashed curve represents the result
of the approximation (4.6) in which R(7)/Ro= —Imiret(e=0, 7).
The solid curve represents R/Ro=—J#ng@r?/2n;K,, where K, is
computed numerically according to Eq. (4.4).

The large anomalies in the conductance of tunneling
diodes containing magnetic impurities??:?! certainly can-
not be explained by the change in the bulk density of
states of the alloy. Other mechanisms such as scatter-
ing from impurities located inside the oxide layer are
probably responsible for these effects.??

B. Transport Properties

While a tunneling experiment, in principle, enables
one to measure the density of states and hence the
scattering amplitude at arbitrarily high energies, the
transport coefficients depend on Imtei(w,T) for small
values of the energy only. In general, the transport co-
efficients can be expressed in terms of the following
integrals?®:

00

af
K,= —-/ do v?(w)w"7i(w,T)—no(w),
e a

w

(4.4)

where 70(w) denotes the density of states of the pure
host metal as before and v(w) is the speed of an electron
with energy w.

The electronic lifetime due to impurity scattering is
given by the imaginary part of the scattering amplitude,

7 W w,T) = —2n; Imlre (w, 7). 4.5)

Since df(e)/de is sharply peaked at e=0, the main con-
tribution to the integral (4.4) comes from a narrow
region around e=0, This suggests the following well-
known approximation for these integrals

ﬁo 'L‘p2 *© a
Ko —— | dow—,

251 Imtre(0,7) J — Ow

20 A. F. G. Wyatt, Phys. Rev. Letters 13, 401 (1964).
(1;‘6]5 M. Rowell and L. Y. L. Shen, Phys. Rev. Letters 17, 15
6).
(1;2681) Solyom and A. Zawadowski, Phys. Status Solidi 25, 473

(4.6)
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where vp is the Fermi velocity. This approximation is
not too good, however, since at low temperature
Imt,e(w,T) is itself a rapidly varying function of e.24:2%
We have illustrated this in Fig. 6 using the example of
the electrical resistance which is proportional to K.
For other transport coefficients which involve integrals
K, with >0, such as the thermal conductivity, the
approximation (4.6) is even worse. On the other hand,
computation of the resistivity shows that, to a very
good approximation, Imi,e(w,7) may be replaced by
Imt,e=%(w,T") [see (3.27)7]. We infer from this that no
conclusion about the detailed structure of f;(w,7) can
be easily drawn from a comparison of the experimental
data for the transport coefficients and the theoretical
expressions.

So far, we have completely neglected the normal po-
tential scattering arising from the impurity ions. If one
intends to compare the theoretical expressions for the
transport coefficients with experimental results, this
has certainly to be taken into account. As we shall show
in some detail, the anomalous low-temperature maxi-
mum in the thermoelectric power cannot be understood
even qualitatively if the scattering of the electrons from
the electrostatic impurity potential is neglected.26-27

In terms of the integrals K,, the thermoelectric
power Q(7T) can be expressed as

O(T)=(1/eT)K1/K,. 4.7)

For a band which is described by a Lorentzian density-
of-state function of width 2D, we find the following
dispersion of the electrons for energies near the Fermi
energy (w<kD):

v(w)=vpr(14dw/D). (4.8)

Here 7 is a constant of the order of unity. As a direct
consequence of the symmetry (3.7a) of Imi,ei(w,7),
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it follows that at low temperatures
K,=0(T/D).

Thus Q(T") becomes small of the order 1/D and inde-
pendent of the temperature in contradiction to the
experimental observations.?® However, the symmetry
(3.7a) is removed if the ordinary potential scattering is
taken into account in addition to the exchange scatter-
ing.

Assuming that the electrostatic potential V(r) of the
impurity can be approximated by a contact potential
V8(r), one can write the scattering amplitude with the
inclusion of potential scattering in the form??:3°

tJ+V(w,T):tV+ em"ti(w,T) , (49)

where

ty = (2imsio) =} (1 —e2idV) (4.10)

is the scattering amplitude of the electrostatic potential
alone, éy being the phase shift associated with it. J is an
effective coupling constant given by

T=17 cos?y. (4.11)

The expression (4.9) was derived from a more general
expression for f;.y developed by Schotte?® under the
assumption that w<<D so that the band structure of the
host metal is unimportant. For the computation of the
integrals K; and Ko, one needs the electronic lifetime

7i(w,T) = 2n) [ Imt sy v(w,T) ]!
= —[2n, 1 '[(277ie) " (cos26y — 1)+ cos2éy

XImt5(w,T)42 sin28y Ret7(w, 7).  (4.12)

For the range of energy |w| SkpT for which we need
7i(w), the phase shift of the electrostatic potential can be
treated as a constant. Then {7(w,7") has the same sym-
metry properties as fre(w,7). 7,(w) can be written as
the sum of an even and an odd function

7i(@0,T) = 74 even(,T) + 74 0aa(w, T) ,

where
1 (27710) " (c0s26y — 1) +cos26y ImiF
Ti.even(w) = _‘-’:_ N L ; 5 (413)
27 [(2wi0) ! (cos26y —1)4c0s26y Imt7 ]2 —[sin25y Rei7 |2
1 —sin26y Rety(w,T)
Tioda(w) = —— (4.14)

213 [(2m10) 7} (cos26y — 1) +-cos26y Imt7 ] —[sin24y Rgij;

2 See, e.g., J. M. Ziman, Electrons and Phonons (Oxford University Press, London, 1960), p. 384.

% It should be emphasized that, while the approximation (4.6) for K, is inaccurate becau
the usual expressions for the transport coefficients involving the integrals K, (see Ref. 23

dependence of Imtret(w,T).

25 K. K. Murata and J. W. Wilkins, in Proceedings of the Eleventh
1968, edited by J. F. Allan, G. M. Finlayson and D. M. McCall.

Scotland, 1969), p. 1242.
26 J, Kondo, Progr. Theoret. Phys. (Kyoto) 34, 372 (1965).
27 K. Fischer, Phys. Rev. 158, 613 (1967).

se of th.e rapid variation of Im/ ey(w,T),
) are still exact in spite of the strong w

I niernational Conference on Low Temperature Phvsics, St. Andrews,
(University of St. Andrews Printing Department, St. Andrews,

»D. K. C. MacDonald, W. B. Pearson, and I. M. Templeton, Proc. Roy. Soc. (London) A266, 161 (1962).

29 K. D. Schotte, Z. Physik 212, 467 (1968).
%Y, Nagaoka, Progr. Theoret. Phys. (Kyoto) 39, 533 (1968).
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We note that 7.... enters in Ko, while 7,4 determines K;. We also recall that the integral K, gives the con-

ductivity. In the approximation (4.6), we obtain

e 1 —1
Ky~— (——(cosZév— 1)+cos26y ImiF(w=0) } . (4.15)
2n; 27,
Using (3.12), we can write this as
TR F? Int —1
]\'(,__—~~~—<1 —C0s24y ) . (4.16)
i [Infr472S(S+1)]'2
In the same approximation, K; can be reduced to
T2 inr 2 dw w
Ki~———— sin26v<l — 0826y > [lngr—{-rQS(‘S'—I—l)]—”“’/ ) cosh‘2(
"y [In?r472S(S+1)]'/2 4kpT 2ksT
X1/ lvD[ReX (w,T)sinb(w,T)+ImX (w,T)cosb(w,T)]. (4.17)
The integral still can not be evaluated exactly and so, by Fischer?” and Kondo.* By expanding
as a further approximation, we set
v
. (Inp) o~ m oo
8(w,7)=0, (4.18) 1y In(T/D)
which means that we adopt the approximation (3.24)  in powers of v, we find, in this limit,
for the real part of f;et(w,7). We are aware of the fact .
that this might not be a good approximation for very Opert(7) = (mvk/2€) sin26, [14+v In(T/D)]. (4.23)

low temperature, where, as shown in Fig. 5, 6(w,7)
becomes important in determining Ret;e(w,7’). As we
shall see, the approximation (4.18) becomes also invalid
at high temperatures, where perturbation theory is ap-
plicable. For temperatures of the order of the Kondo
temperature, however, the approximation should not
be too bad. Using (4.18), we find from (4.17) that

13 sin2éy

K~ kT (4.19)
2o%r® [An?r+w2S(S+1)7]12
and hence
Q(1)= —(mkp/2€)sin2éy q(7), (4.20)
where
¢(r)={[In*r+x2S(S+1)]'/2—cos2éy In7} 1. (4.21)

g(r) is plotted in Fig. 7 as a function of 7. From (4.19),
one can see that the sign and the magnitude of the
thermoelectric power depend on the sign and the mag-
nitude of the phase shift v through the factor sin26y.
The same dependence of Q(r) on 8y was found by
Fischer,?” who calculated the thermoelectric power in
perturbation theory. In the high- and low-temperature
limits (|In7|>>1), O(7) reduces to

Q(r)~ —(wky/2e) sin26y (In7)!. (4.22)
In the high-temperature limit, (4.22) should agree
with the perturbative expression for ((7) obtained

In contrast to this, Fischer and Kondo found
Qpert(T) .

This failure of (4.22) to reproduce the correct perturba-
tive result for Q(r) is due to the approximation (4.19).

Fic. 7. Thermoelectric power ratio Q(r)/Q, [where Qo
= — (wkp/2e) sin26y] is shown as a function of . Curves (a) and
(b) corresponds to the approximation in Eq. (4.20) and Maki’s
result given by Eq. (4.26), respectively. Curves (c) and (d) are
obtained by computing Ky and K, numerically.

1 J. Kondo, Progr. Theoret. Phys. (Kyoto) 40, 695 (1968).
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In the limits In7 — 2=, the integrals K, and K; can
be evaluated exactly. The results are given in Appendix
A [(A14) and (A15)]. Using these expressions, one ob-
tains the following exact asymptotic expressions for
the thermoelectric power :

wkp sin2éy w2S(S+1)
="
2e 14+cos2éy |In7|3
cos2éy wAS(S+1) 1
X[l% 0(———)], 7—0
14-cos26y 2 ln?r Inr
(4.24)
and
wkg sin2éy  wAS(S+1)
Qr)="— ,
2¢ 1—cos2éy |In7|3
cos2dy wS5(S+1) 1
e e
1—cos26y 2In2r In3r
T— x. (4.25)
Since

In7[~*=[y[*{(1+O0Ly In(T/D) ]} ,

the high-temperature expansion of Q(7) clearly agrees
with perturbation theory. We note that the asymptotic
expansion (4.25) is meaningful only if

cos2éy wiS(S+1)
<1.

2 In27

1—cos2éy

For small values of the phase shift 4y, this requires
very large values of 7.

In a very recent publication, using the solution of
Hamann and Bloomfield for the scattering amplitude
and making the same approximation that led us to
(4.20), Maki®? obtained the following expression for
the thermoelectric power?®:

7l'kB sin26y
Omaki(7) =—
2¢ [In2r+#x26(S+1)]'/2—cos2dy In7z
S(S+1)
X——————. (4.26)
In27+#2S(S+1)

In the two limits In7— 2=, this expression agrees
with the exact expansions (4.24) and (4.25). For
temperatures such that

In2r SaS(S+1),
the factor
m2S(S+1)/[In2r4+m2S(S+1)]

by which Maki’s expression differs from our approxi-
mate result (4.20) is nearly unity. In particular, at the

32 K, Maki, Progr. Theoret. Phys. (Kyoto) 41, 586 (1969).
33 The negative sign in Maki’s expression is erroneous (private
communication).
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Kondo temperature the expressions (4.20) and (4.26)
are identical. We have plotted the functions (4.20)
and (4.26) in Fig. 7. Experimentally, a fairly sharp
extremum of the thermoelectric power is observed near
the Kondo temperature.?®* It is evident that the func-
tions (4.20) and (4.26) do not exhibit this extremum.
In order to avoid the approximation (4.6), we have
evaluated numerically the integrals Ko and K in (4.7),
using the complete expressions {7 for two values of the
phase shift due to normal potential scattering, sinéy
=0.08 and 0.45. These results are included in Fig. 7.
It can be seen that Q(7) is very sensitive to the phase
shift considered. |Q(7)| attains a maximum near Tk
and decreases at higher temperatures. These features
are in agreement with experiment and with earlier
numerical calculations by Suhl and Wong.%

We should note that the thermoelectric power we
have computed is independent of the impurity con-
centration. The impurity concentration is a multiplica-
tive factor in both Ky and K, and consequently cancels
out. However, at temperatures higher than the Kondo
temperature, the scattering of electrons from phonons
becomes comparable to, and possibly more important
than scattering from impurities. Consequently, the
integrals K, and K, in (4.7) have to be computed with
the total electronic lifetime

1/th= 1/Ti+ 1/Tph (4.27)

rather than 7; from (4.12) alone. Since 7,u(7;) is in-
dependent (dependent) on the impurity concentration,
the resultant thermoelectric power will depend on the
impurity concentration in general. In the limits,
however,

1/7>1/70n (4.28a)
and

1/ ro>1/75. (4.28b)

Q(r) will become concentration independent. The
former situation is realized at temperatures 7S 1. The
latter condition holds true already for temperatures
much less than the Debye temperature and, in this case,
the thermoelectric power approaches that of a pure
metal, Qmetal. Ometar is usually at least an order of
magnitude smaller than that of the alloy near the
Kondo temperature.

In summarizing the discussion of the transport
coefficients, one can say that they do not provide in-
formation about the detailed structure of the Kondo
resonance as it was worked out in Sec. III. Just as in
the case of the density of states, the best one can hope
for is some information about the width of the reso-
nance. In addition, we have seen that measurements of
the thermoelectric power allow one to indirectly draw
some conclusions about the electrostatic potential
associated with a paramagnetic impurity in a metal.

(1;“6;\;[. D. Daybell and W. A. Steyert, Rev. Mod. Phys. 40, 380
% H. Suhl and D. Wong, Physics 3, 17 (1967).
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C. de Haas-van Alphen Effect

Several authors®37 have interpreted the observed
field and temperature dependence of the damping of
the de Haas-van Alphen oscillations in dilute magnetic
alloys in terms of the electronic lifetime 7(w,T) [see
(4.5)]. Their approach was to take Dingle’s® expression
for the periodic part of the free energy of the alloy in an
external magnetic field and to replace the electronic
lifetime 7, which in Dingle’s paper is treated as a
constant, by the energy- and temperature-dependent
lifetime that results from the s-d exchange interaction.
The effect of the magnetic field on the s-d scattering
amplitude is neglected, however.

We feel that such a procedure is not firmly based on
theoretical arguments. A rederivation of Dingle’s ex-
pression for the periodic part of the free energy by
Brailsford® shows that it is not necessary to assume that
the electronic lifetime is a constant. The electronic ex-
citation spectrum however, must have the characteristic
features of a quasiparticle spectrum, i.e., near the Fermi
energy, the electronic self-energy Z (w) must be a slowly
varying function of w. As we have shown in Secs. II
and III of this paper, this is not the case for the Kondo
model. 2 (w) is a rapidly varying function of w near w=0
and the quasiparticle picture does not apply. Further-
more, it is questionable whether it is a good approxima-
tion to neglect the influence of the magnetic field on
the s-d scattering mechanism. The magnetic fields
applied in the experiments which are reported in Refs.
36 and 37 range 2-5 kOe and the temperatures at which
the measurements were carried out range 1-5°K, so
that for the extreme values T=1°K and H=35 kQOe we
have

ﬂBHﬁ%kBT.

Thus, in this case, the magnetic energy is of the same
order of magnitude as the thermal energy and certainly
not negligible.

It appears that a more careful theoretical considera-
tion of these points is necessary before conclusions about
the scattering mechanism can be drawn from the ob-
served field- and temperature-dependent damping of
the de Haas-van Alphen oscillations in dilute magnetic
alloys.

D. Specific Heat

It has been shown by several authors!234 that the
anomaly in the electronic specific heat which is ob-
served in dilute magnetic alloys can be attributed to
the resonant scattering of the electrons from magnetic
impurities. In terms of the change in the density of
states An(w) discussed in Sec. II, the incremental

( 36 E; B. Paton and W. B. Muir, Phys. Rev. Letters 20, 732
1968).

% H. Nagasawa, Solid State Commun. 7, 259 (1969).

3 R. B. Dingle, Proc. Roy. Soc. (London) A211, 517 (1952).

3 A. D. Brailsford, Phys. Rev. 149, 456 (1966).

4 W. Brenig and W. Gotze, Z. Physik. 217, 188 (1968).
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specific heat can be expressed by the well-known exact
formula

0

a
AC(T)=— / An(w,T)wf(w)dw, (4.29)
oT J -

where the integral represents the incremental internal
energy of the system due to the interaction with im-
purities. It is suggestive to split AC(T) in the following
two contributions:

(4.30)

(0]

0 af
AC,(T) =/ dw An(w, T)w—,
w 9

* d
AC(T) =/ dw<—~An (w,T)>wf(w) . (4.31)
o oT

Henceforth we shall call AC, and AC, the normal and
the anomalous contribution to the specific heat. We
recall that for an electron gas interacting with normal
nonmagnetic impurities the change in the density of
states An(w,T’) is temperature-independent, so that
there is no contribution to the specific heat from the
derivative of An(w,T) with respect to the temperature.

In what follows we shall examine AC,(T) and AC,(T),
given by (4.30) and (4.31), using the expression (2.8)
for An(w,T). ZMH and Brenig and Gotze* developed
an elegant way of singling out the important contribu-
tion to the specific heat. They were able to relate the
internal energy of the system to the coefficients of the
asymptotic expansion of tet(w,T) for large w. Neverthe-
less, we find it worthwhile to discuss the integrals (4.30)
and (4.31) directly. We will show that, in contrast to
all other quantities which we have discussed so far in
this section, the specific heat depends crucially on the
presence of the unimodular factor e and on the tem-
perature dependence of the function 4(7) in the ZMH
expression for the scattering amplitude freq(w,T).

Let us first consider the normal contribution to the
specific heat. Because of the factor df/9T in the in-
tegrand of (4.30), An(w,T) is only needed in the energy
interval |w|SkpT. Thus it is sufficient to work with
the approximate expression (2.9) for An(w,T), with the
result

a3
AC(T) =n,~ﬁg2/dw w Iml,e,(w)—f—. (4.32)
oT

Introducing the dimensionless variables € and r again,
we can write this as

9f(e7)
AC,.(T)=71,~7'102/23TK/(15 € Imlree(e,7)———, (4.33)
a

.
where

Jle;r,=[exp(e/r)+1]".
With (2.10), we then can give the following estimate for
AC, (1)

AC,. (T) S %n,—ﬁgk [;QTKT

Snnckp’T. (4.34)
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Thus AC,(7) goes to zero at least as fast as T'. Compared
to the specific heat of the free-electron gas

—1
Cfree el™ inOkB2T .

AC, is small because of the concentration factor #;.
It is possible to separate AC, from the measured total
specific heat of the alloy but this is not very interesting.

At this point, it is necessary to define more precisely
what type of contribution to the specfic heat we con-
sider to be typical for the Kondo effect. Looking at the
first line of (4.34), we see that, for fixed r, AC, vanishes
in the limit ¥ — 0. In contrast to this, there are quanti-
ties which, in the same limiting process, remain finite.
An example of this is the thermoelectric power as given
by Eq. (4.18). As was pointed out by MH, the latter
type of behavior is typical for physical quantities which
show Kondo anomalies. It may, in fact, be used to
characterize a Kondo anomaly in any physical quantity.

Following ZMH, we shall now search for a contribu-
tion to AC, which remains finite in the limiting process
described above and disregard all contributions which
vanish like AC,, in the limit v — 0. Using the expression
(2.8) for An(w,T), we have

* 2w/ 9
Ac‘a(T) =}’1,‘ﬁ02/ dw wp2(w)[__<___ Re/ret(wy T))
—o D\oT

w? 0
+<1 ——><-— 1M/ et (w,T))]f(w) ,
D?/\oT

=n([Re+1"). (4.35)

As we show in Appendix B, the contribution from the
second term in the integrand vanishes as v goes to
zero. The important anomalous contribution comes from
the first term. Since the first term contains a factor
(w/D), this means that the anomalous contribution
arises from the behavior of Refret(w,7) at energies of
the order of D and is not directly related to the reso-
nance structure in e (w,7°). The latter is confined to the
energy region |w| SKpTk. As the calculations in
Appendix B show, the part of AC, which remains finite
(in the limit ¥ — 0) is proportional to the derivative of
A (T) with respect to T’
ACL(T)=nay?D(34/3T). (4.36)
This clearly indicates the importance of the function
A(T) in the ZMH forward-scattering amplitude. The
fact that we did not find any temperature variation in
A(T) in our numerical calculation of 4(7T") does not
mean that AC,(T) as given by (4.36) is small. The large
factor D makes up for the smallness of 34/dT which, as
Eq. (B20) shows, is of the order D~1. The derivation of
(4.36) in Appendix B also shows clearly that, as was
first pointed out by Hamann and Bloomfield, the
presence of the unimodular factor in the exact solution
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is closely related to the occurrence of an anomalous
contribution to the specific heat.

From the expression (B20) for (my):D3A/dT, Eq.
(4.36) may be written in the form

nikp [ (8/07)| ¥ (¢,7)|?
ACa(T) = / (1: .
2r? ) | V(er)|24725(S+1)

(4.37)

This agrees with the results found by ZMH as well as
by Brenig and Gotze. AC,(7) is evidently independent
of the coupling constant.

Integrating AC,(r) with respect to temperature, we
can find that portion of the total internal energy the
temperature variation of which is responsible for the
occurrence of the anomalous contribution to the specific
heat

Eo(To)= / " ACA()IT

7o

=Tk / AC()dr. (4.38)
0

The integral in (4.30) is a dimensionless quantity of the
order of unity. Thus the magnitude of Eanom(7) is
governed by k3T k= De'/7. On the other hand, there are
certainly perturbative contributions to the total inter-
nal energy which are of the order ¥2D. For small v,
these are much larger than Eanom (7). Any attempt to
first compute the total internal energy of the system
and to obtain the specific heat by differentiating the
result with respect to temperature appears to be
hopeless.
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APPENDIX A

Introducing the variable x=18w, we can write the
integrals K, in the form

2 n 0
K,,=%z‘p2ﬁg([—3)/ dx xnri(x,7) cosh™2x. (A1)

Here we have assumed that v(w) and #¢(w) can be
treated as constants and have replaced them by their
values at the Fermi energy. Because of the factor
cosh™2x in the integrand of (A1), the electron lifetime r;
is important in the interval [x| <1 only. To obtain the
asymptotic behavior of K, and K; in the limits
Int— 4, it is therefore sufficient to derive an
asymptotic expansion for 7; which holds for all x such
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that |x|<1. The most convenient starting point for
such an expansion is the following expression for the
scattering amplitude which can be derived from (3.1)

by a mathematical transformation (see MH)

tret(x,7) = (2imiio) [ 1—s(x,7)]. (A2)

where

(o))
s(x,7)=

[ V(en) 2428 (S+1) ]2 x+tixy

© dx V()

XCXP[;'P/ f /1n< Vi ) 2batS S+1)>],
T Jow X—X I (,7) 24w ( (A3)

in which

X— i.\7(|

V(x,7)=Int+g(x),
g)=y(G—iv/m)—y¢(3)

is the dimensionless function defined in (3.12). Here
ixg is the solution of the equation

(A4)

F(x,r)=0, r<1 (AS5)

and it is zero otherwise. It is easy to verify that in the
limit of 7 going to zero

xo(r)=1/740(7).

The following two asymptotic expressions are im-
mediate consequences of (A4) and (A6)

(A6)

KONDO PROBLEM 9359

x—1Xo

V(x,7)
[V (x,7) | 2Hw2S(S+1) ]2 x+ixo

w25 (4 1
=—|:1 (S+D ()(*-)][1-!-21'3‘7—()(96212)],

In3r

2 In?r

r—0 (A7)

1 (x,7)
L1V () 24w S(S+1) ]2 ad-ix
w25(S+1) 1

=l +O<~——>, r—=%. (A8)

2 In27 Inr

x—1x

The principal-value integral in the argument of the
exponential in (A3) can be expanded as follows:

- Y\
P/ ln(
J_w N\ I"(x',r)!2—}—1r2S(S+1)/x—x’

1
tanhx+0 <~f> s
In*r

Int— 4.

72S(S+1)

= —1r2
In37

(A9)

To obtain this expansion, we have made use of the
analyticity of g(x) in the upper half of the complex x
plane. Combining the results (A7)-(A9), we find the
following asymptotic expansions for Retrer and Imtyes:

L wSES+r 125(5+1)+

1
Retrer(x,7) =—- 1— ()<——):|§1r tanhx, Inr— £« (A10)
2w Hn‘r] 3 L 2 In2r In3r
i S(S+1) 1
[2————- o(-_)], r—0
1 2 1In27 In3r
Imf e (x,7) = — . (A11)

2w I:WZS(S-F 1)

2 In?r

1
.
In3r

Inserting these expansions into (4.13) and (4.14), we obtain asymptotic expansions for the even and odd parts

of the electronic lifetime

1
W.[H
who| 14cos2éy

cos2éy wS(S+1)
1+cos26y

1
0 (*ﬁ)] , 7—0
In3r

2 In27

Ti,even ™ 4 (Alz)

n; 1 |’ cos2éy w2S(S+1) 1

1— ¢O<—>:|, T—©
1-—-c0525yl_ 1—cos2éy 2In27 Inér

n; w2S(S+1)
Ti0dd =——SIN26y — 37 tanh® 75 cven, InT o> (A13)

who iIn7;?

In (A13) the appropriate asymptotic expressions for 74 even given in (A12) have to be inserted. Finally, we obtain
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for K, and Kl,
1 r cos2éy w2S(S+1) 1
14 +0 (———)] , 7—0
7ig?| 14cos26yl 14cos2éy 2 In?r Inér
Ko=mvp? , (A14)
n; 1 B cos2éy w2S(S+1) 1
- D (], e
1—cos2yL  1—cos2éy 2In?r Inr
n; w25(S+1) 1725(S+1) )
Ki=3nkpT sin28y ———— /1—-~ )K(?, Int— F=. (A15)
v 26l | lnﬂ 3 \ 2 In27
IX B and
APPENDIX o [~ w\ Im(Xe)
To evaluate the anomalous part of the specific heat Ijim=—— dw wp(w)(l ——2)—1—/2
given by (4.35), we must compute two integrals. To 2r ) D K
begin with, we consider the integral 96 94 96 i
X<— +— -——)f(w). (BS)
0T 4 9T 94

0 w2
Il’“zﬁo2/ dw wpz(w)<1——>
e D?

a
X— Imlrei(w,T) f(w). (B1)
oT

Taking the temperature derivative of Imfre(w,T) as
given by (3.4), one gets a variety of terms. It is con-
venient to regroup them in the following way:

IIm=I]Im+Iglm+131m’ (BZ)
where

I . "_lo ®
m_—
Jm=—

T J—

(ReX)? ReX ImX X
X “:(1 - > cosf+ sinG]-‘
K K oT

ImX ReX (ImX)%
—I:———-— cos@+(1 — ) sm0:|
K K

w?
PR —1/2
dw wp(w)(l D2>K

A

ax
XIm—-—} f@). (B3)
aT

The symbol dX/3T| 4 means that A is considered as a
constant in the differentiation,

Mo oA *

Iim = — )i / doo ap*(@) K12
2w T J o

(ReX)? ReX ImX
X[(l — > cosf+ sinl):lf(w) (B4)
K K

We shall show that these integrals vanish in the limit
v — 0 at any fixed value of 7, which is less than a cer-
tain upper limit (see B7). Starting with I;'™, we first
notice that

9 ImX (w,T)/0T=~37(8/3T) tanh3Bw (B6)

decays exponentially for |w|>>kpT. Using this, one can
easily show that the third term in the integrand of
I,"™ behaves like AC, as a function of temperature (see
main text). It is therefore negligible. To estimate the
other two terms, we need upper bounds for the func-
tions |(ReX)?/K—1| and |(ReX)(ImX)/K|. We
adopt the procedure of ZMH and limit the temperature
by

keT<D*(kpTr) > (0<a<}). (B7)

Then we consider these functions in two intervals,
namely, || <w. and |w|>w., where
wc=D(1_")(k3TK)°‘. (B8)

Omitting the details, we merely state the upper bounds
that we have found.

i) fo|<oc:
| (ReX)/K—1]|<1, (B9a)
[ReX ImX/K|<c. (B9b)
(i) |eo|>w.:
|(ReX)K—1| <ey?p*(w), (B10a)
[ReX ImX/K| <c|v|p. (B10b)

In these estimates, ¢ is a constant of order unity which
is independent of v. Using these bounds, we have

fol [ (ReX)? ReX ImX ax
| [m]| =— dw wp(w)(1 —w2/D2)[(1 - > cosf+ sinﬁ] Re—| f(w)
TlJ - oT A
| we 0X *© X
<c~[ / dww K2 Re—| |+ / do | K12 Re—| (yp(w)+v2*()) :' (B11)
2al /o 0T\ 4 we A
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Now
K12w)<1/]v], w<w. (B12a)
K1%(w)<c, w>oc. (B12b)

Furthermore, using the asymptotic expansion for
Y(3+2) and d[y(3+2)]/dz, one finds the following
bounds for Re(0X/d8T|4) (see Ref. 13, Appendix C).

(1) w<w,:

(9 ReX |
‘3 oT lA!

1 Bw d Bw\'@ 1/2m\?
= =€)
T 27 d(Bw 2m) 2r/|  12\8D

(B13a)
(1) w>w.:
dReX| ; 1 wp(w){Zr 2 \
: < —) : (B13b)
CoT 6 T \gD

Using (B12a), we obtain

W
/ dw w
0

D kT g\*
X[}ln‘ri—}—ln( )+< > +Cz:|, (B14a)
kpTk D

and from (B12b) and (B13b),

a RCX! |
K-
oT 4

S cks?tTk

/ dw wiK“”2 Re-—'
we | 6T&‘4
<Ckli2TTK:'Y:2(1+;'YE)'

Since ny=m/D, it follows that

[vp(w)+v202(w) |

(B14b)

- kpTk
| 11T =61k31-——<[ In7| +In
D ksTk

+c~z+ﬁvi2+fvl3>- (B15)

In the limit [y| — 0, 7 fixed, this vanishes obviously.
I,I™ differs from ;'™ by their term in the integrand of
I,™ which we have already shown to be negligible.
Thus (B15) completes the proof that I;'™ does not con-
tain a Kondo-type anomalous term.

To estimate the integral I,'™, we make use of the
bounds (B9a)-(B10b), (B12a) and (B12b). We obtain

[ L1 <c(fio/ 2m) (wy)2 (84 /9T)
XLw/ [v|+ v D*(1+|v])].

To obtain 94/8T, we differentiate the condition
(3.5b) and solve for 4/9T. This yields

(B16)

IN THE KONDO PROBLEM

961

a4 ® 1 X X
(my)2—= /- dw [Re(X—)-I—Im(X—-—)] /
of .. KwT) aT oT

/’“ ReX(w,T)

(B17)

dw p(w)——

(o,

The integrals involved in this expression have been

estimated in Ref. 13, Appendix C. Neglecting terms
which vanish in the limit ¥ — 0, one finds

04 kp * (6 67)1 Y(E,T)}Z

€ I
Y (e7) 2 +m2S(S+1)

where y(e,7) is the dimensionless function defined in

(3.12). Evidently (7y)? d4/0T remains finite in the

limit y— 0 at fixed 7. From (B17) and (B18), it
follows that its magnitude is of order 1/D. Therefore

(
oT 2xD J_,

(B18)

(my)?

lim Z,'»< lim c(7r'y)2< —Hﬂ-Hy}Q):().
lyl-=>0 [yl -0
(B19)

Using the definition (3.4) for 6, the integral I;™
can be written

|v|(BxD)**

<

Mo @A\ Im(Xe) P
Iim=— dw wp(w)(l—-—)——_ w)—
21 J D2/ K2 2r
© do' /6 InK (', T) 94 4 InK(u',T)
X J )
/_w w—w'\  oT |4 oT

(B20)
With the help of the condition (3.5b), we have

o0 (.02
Im =ﬁo/ dw p2(w)<1 —-B—Z)Ret,et(w,T)F(w,T) , (B21)

P = o /6 InK (o', T)|
Flw,T)=— / do’ |
21 J w'—w\ oT 4
04 0 InK(u',T)
oT 04

We obtain the estimate for 73I™

i ISI " ; S ﬁ()l"max/

0

). (B22)

dw p(w) | Rel o (w,T)!, (B23)
where Fi.x is the maximum value of F(w,T) for all w
and for ksT<D*(kgTk/D)%=. Without going into
the details, we state that

©

/ dwp(w)|Ret(w,T)| < ciksTx+c:Div|, (B24)
0

where the first term arises from the resonance in
tret(w,T") near w=0 and the second term is the contribu-
tion to the integral from large values of w. Since Frax
remains finite as vy approaches zero, it follows that

(B23)

lim |[I;'m] =0.
lyl—=0
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Thus we have shown that the integrals I;'™, I,'™ and JoRee Mo [ . © ©)
I3'™, and hence /'™, vanish in the limit |y| — 0, with {27= T “"“’DP @
7 fixed. e
We now turn to the evaluation of the other integral , Y @, (B29)
in (4.35 ><lm|:e1 (— —):Ij w),
in ( ) a(ry21) VK
* w 9 A and
[Re= 27’102/ dw w—p*(w){ — Retret(0,T) )f(w). (B26)
— D oT o [® ©
. . Ife= —— dw w—p(w)
We again regroup the various terms that arise from T Jw D
performing the differentiation in the integrand in three ]
; ; : Im Re(Xe®) s 90 91 96
integrals just as in the case of I % (_ N ——->f(w). (B30)
JRe=] Ref J Ret [ Re (B27) VK oTl4 0T o4
where The integrals I;®¢ and I,®¢ can be shown to vanish in
e [ w the limit |y| — 0 with 7 fixed by the same methods that
[ te= —— / dw w—p(w) were used to show that 7;'™ and 7,"™ vanish in this
T)w D limit.
£)¢ 0 X Using (3.1), we can write 73R as
le[_ <—— —)e“’j’f(w) , (B28)
T 4\dX VK I3Re= [y RefTyplte (B31)
where .
Mo [ w td o Re[X (o, T)(3,0T7)X (o', T)]
I3 Re= ———/ dw—p(w)[l+27rno(w)lmlm(w,T)]f(w)]’/ dw’ (B32)
) _w D e W —w K(',T)
and
o [ w P W a.1 ReX (o', T)
132“"5—/ dw—-p(w)[l+21rp(w)1m/m(w,T)]f(w)—/ do’ (my)*—p (0 )——. (B33)
mJw D T)w o—w T K(w'T)

The integral /3% can again be shown to vanish in the limit y — 0 with r fixed. The important contribution to
IR, and hence to IRe, comes from I3,R¢ which can be written

’

o a4 * w P o w © w P = W ReX (', T)
Iaz“"=~(1r7)2—[ / derf()— / do/—— () + / derp(e) )~ / (lw'—mp(w')(—-— —1)
6T — D T J—« —x% D —% !

T W —w T W' —w K(',T)

7

* w P o ReX(w',T)7
+21r/ (lw—p2(w)Imlret(w,T)f(w)-——/ dow' ————~—-—J (B34)
Jow D TJ)ow o—w K,T)

The first integral in the square brackets can be calculated by elementary methods

* w P = o T*
/ (lwgp(w)f(w)— / (I'w-—,—p(w')=1rD2|:l+(7( 0):| (B33)

J —x w —w

The second and third integral can again be shown to vanish in the limit |y|— 0 so that for |v|<1 and T<D
TRe~ [y Renvii D (my )24 /0T (B36)

The significance of this expression is discussed in the main text.



