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Some thermodynamic principles useful for understanding the heat capacity of a ferromagnet in an external
Beld near its critical (Curie) point are discussed, with special emphasis on the inHuence of demagnetizing
effects. Two simple examples show the variety of behavior which may be expected, depending on the mag-
nitude of the external Beld. The utility of considering low-Beld and high-field limits is pointed out, with
particular reference to Xi and EuS.

I. INTRODUCTION

EAT—CAPACITY measurements play an im-
portant role in the investigation of phase transi-

tions in magnetic materials. ' While these measurements
are commonly carried out in zero external field, heat
capacities in a finite field can provide additional infor-
mation. However, the analysis of finite-field data is
quite complicated if demagnetizing effects are signifi-
cant. ' In this paper, we shall discuss some thermo-
dynamic principles which are useful in understanding
the heat capacity of a ferroniagnet in a constant
external magnetic field near its critical or Curie tem-
perature, a situation in which (due to the large suscep-
tibility) demagnetizing effects are generally quite
significant.

General thermodynamic principles and the influence
of demagnetizing fields are discussed in Sec. II. Section
Ill contains results of calculations on two hypothetical
model systems and a discussion of why similar features
would be expected in real ferromagnets. The singular
(nonsmooth) behavior of the heat capacity in a finite
field is treated in Sec. IV. The utility of considering
low- and high-field regions is shown in Sec. V, a,nd
estiniates are given of where these regions lie for Xi and
EuS.

TdS =d U, —H,dM (2.1)
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' ('. 1)omb and A, R. Miedema, in Progressin I.mt Terrr pf r.atrrrc
Physi@xi edited by C. J. (~orter (Forth-Holland Publishing Co.,
Amsterdam, 1964), Vol. IV, p. 296. See also Ref. 19.

' P. M. Levy and D. P. Landau, J. Appl. Phys. 39, 1128 (1968).' A. B. Pippard, Lle~nents of Classical Tlrernrodynarrrics (Cam-
bridge t niversity Press, New York, 1951),pp. 23 A.

II. GENERAL THERMODYNAMICS
CONSIDERATIONS

A. Heat Capacity and Magnetization

Let M be the total magnetization of a sample (we
use Gaussian units) with component M parallel to a,

uniform external applied field H, (the field that is present
if the sample is removed while external currents pro-
ducing the field remain constant) of magnitude H,
The thermodynamic relation'

(with a suitable definition of magnetic energy U, )
leads to the Maxwell relation4

(aM/aT)„. = (as/aH, ),.

lf (2.2) is combined with the definition

(2.2)

C.= T(aS'/aT) rr, (2 5)

of heat capacity in an external field, we obtain the
important result

(aC./H, )r =T(a'M/aT' )ir„ (2.4)

which upon integration allows us to relate the heat
capacity at two different fields:

He2

C,(H,„T)=C, (H. ,i, T. )+T dH, (2.5).
FIel C ~ Ve

Equations (2.4) and (2.5) show the intimate connec-
tion between measurements of heat capacity and
magnetization. Thus if C, for H, =O, which we denote
by Co, is known, together with M(T,H, ), C, for any
nonzero H, can be calculated, in principle, from (2.5).
Even if Co is not known, its singular behavior, if any,
near the critical point, in principle, can be calculated
from M(T,H,). Thus if H, i is a reasonably large field,
one expects that C,(H, i, T) will be a smooth function of
temperature for T near T,. By setting II,~

——0, we see
that any singular (nonsmooth) behavior of Co is
entirely determined by the integral in (2.5), i.e., by
M(T,H.).

This does not mean that the availability of magnetiza-
tion data makes all heat-capacity measurements super-
fluous. Numerical evaluation of (a'M/aT )H, from
experimental data is necessarily of limited precision.
However, the intercomparison of heat-capacity and
magnetization data when both are available should be
a valuable check on experimental procedures. We also
expect that certain thermodynamic quantities are more
accurately determined bp heat capacity than by niag-
11etlzat. 1011 m casurelll eYl t s.

4 Procedures for deriving elementary thermodynamic relatiolls
are found in the standard textbooks, e.g., H. B. Callen, Thernso-
dynarnics (John Wiley R Sons, Inc. , New York, 1960), Chaps. 7
and 14.
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H =H, DM/V—, (2.6)

where V is the sample volume, and D is the demag-
netizing factor, which is —,'m for a sphere, 0 for a long,
thin needle, etc. Ke shall assume below that changes
in D and V due to thermal and magnetostrictive
effects have a negligible effect in (2.6) near the critical
point.

In a, sense, (2.6) amounts to choosing the long, thin
needle (D=O) as a "standard" shape. Khile this
choice is to a large degree arbitrary, it is very conven-
ient in discussing ferromagnetism. For certain niagnetic
materials7 it is found that below the critical temperature,

(2.i)

where M, is the spontaneous magnetization and depends
on the temperature. A plot of M versus H made with
the help of (2.6) (see Fig. 1) then shows a discontinuity
at H=O. This is the behavior commonly assumed in
theoretical analysis' of phenomena near critical points,
and thus the "field" appearing in such analyses, and in
the Ising and Heisenberg models, ' is to be associated
with H rather than H, in real materials.

One obtains (2.i) upon setting H =0 in (2.6). But for
~M~ (M„domains or other more complicated non-
uniformities' should be present in the sample's mag-
netization. Thus one may doubt the validity of (2.6),
as its derivation requires uniform magnetization. How-
ever, we expect that in suKciently large samples the
nonuniformity, while large on a microscopic scale, will
still be sufficiently fine so that (2.6) holds approxi-
mately and is strictly satisfied in the "bulk" limit,
where extensive quantities are proportional to sample
size. (There is some evidence for this at H, =O.")

B. Spheroidal Samples

The relations (2.1)—(2.S) are very general and hold
for a sample of arbitrary (possibly irregular) shape. But
it is well known that when H, /0, M and S depend on
the shape (as well as the mass) of the sample, making it
diQicult to compare data for diferent samples. A major
simplification occurs with a uniformly magnetized
sphere or spheroid when M and H, are parallel to each
other and to the symmetry axis of the spheroid. '
Elementary magnetostatic arguments' then imply that
5 and M for a sample of given mass are unique functions
of T and an internal field

FIG. 1. Comparison (schematic) between M as a function of
internal field II and external field H, .

Obtaining the bulk limit and finding samples with
suKciently small hysteresis so that equilibrium thermo-
dynamics applies may in practice be rather dificult.

IG. TWO EXAMPLES

(3.1)

Note that this susceptibility refers to D=O (a needle-
shaped sample), whereas in II,

M —M, H'" (3.2)

as H —+0. LNote that (3.2) is the prediction of ele-

I 4

Two purel~ hypothetical examples will help to
elucidate the expected behavior of C, near the critical
point. Details of these examples, which we label I and
II, will be found in the Appendix. They correspond to a
"homogeneous" or "scaling" equation of state"" with
classical critical point indices n=n'=0, P =-', y=y'=1,
6=3, but with a logarithmic singularity in Co at T„
the critical or Curie temperature. For T& T„example I
has a finite initial susceptibility (compare Fig. 1)

6 The more general ellipsoidal shape appears to be mainly of
interest as an exercise in mathematics. (Our considerations do
apply to the infinite cylinder with M and Ii, perpendicular to the
axis. ) The case where M and H, are not parallel is of greater
interest and the thermodynamic analysis offers no difIiculty in
principle.' See, e.g. , K. l'. Brown, Jr., Magnetostatic Principles in
I'erromagneti sos (North-Holland Publishing Co., Amsterdam,
1.962).' Ref. 1, p. 310 and Ref. 19, p. 765.' See, e.g. , M. E. Fisher, Rept. Progr. Phys. 30, 615 (1967).

'These models omit the long-range magnetic dipole-dipole
interactions responsible for demagnetizing efI'ects.

'0 R. B. GrifIiths, Phys. Rev. 176, 655 {1968).

I.O

I

—0.5 0
T —TC

h0

"B.Widom, J. Chem. Phys. 43, 3898 (1965)."R.B. Gri%ths, Phys. Rev. 158, 176 (1967).

FIG. 2. Heat capacities C&, Ce, and C2II for example I. Curves
of C~ are shown as dashed lines. Horizontal and vertical scales
are to some degree arbitrary.
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peratures and increase with
~

H
~

at high temperatures,
with a changeover near T, when

~
H~ is small. On the

other hand, for M) 0,4

(BCpi/BM) r ——T(8—'H/BT') pi (3.5)

will be negative provided H is a convex function of the
temperature at fixed M)0. This is found to be the
case empirically' for several magnetic materials near
their critical points, and thus one would expect C~
to decrease as ~Ml increases.

IV. SINGULAR BEHAVIOR OF C, AT T= Tg

I.Q

l I » I l

0 0.5 l.Q

FIG. 3. Heat capacities Co, CH, and C.& for example II. Curves
of C~ are shown as dashed lines. Horizontal and vertical scales
are to some degree arbitrary.

mentary spin-wave theory for a completely isotropic
ferromagnet. "]

Curves of heat capacity at constant magnetization
and internal field,

Cir =T(8$/BT),ir, CH =T(BS/AT)H, (3.3)

respectively, are plotted in Figs. 2 and 3 for examples
I and II. Note that CH and C, coincide for H =0. Both
C~ and C~ "scale" in the sense that curves for dif-
ferent M (or H) can be superimposed by a suitable
stretching of the horizontal and adjustment of the
vertical scale; this is a consequence of assuming a
"homogeneous" equation of state. By contrast C„shown
in Figs. 4 and 5 for the two examples with D/V = I, does
not scale, and the curves for small and large H, are
qualitatively different (further comments in Sec. U).

From Figs. 2 and 3, we see that CH and C~ are
qualitatively quite di6erent. The former is less than
Cp for all temperatures below T„but has a maximum
near T, and crosses Cp a short distance above T,. On
the other hand, C~ is equal to Cp for temperatures
below the temperature where M=M, (T), and then
decreases rapidly (for I, discontinuously) and lies
below Cp at all higher temperatures.

Elementary thermodynamic considerations indicate
that similar behavior should occur in real ferromagnets
if curves of M (T) at fixed H are qualitatively similar to
those shown in Fig. 6 for example II. At low tempera-
tures, M(T) resembles M, (T) with negative curvature,
but at high temperatures the curvature is positive.
Since4

(BCrr/re) i T(d'M/AT )ir, —— (3.4)

we expect that Cir will decrease with
~
H~ at low tem-

'3F. KeGer, in IIandbuch der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1966), Vol. 18/2, pp. 27 ff.

M, (Ti) = VH, /D. (4.1)

If M, (T) is a monotone decreasing function (as we
shall assume), then for fixed H, (2.7) is satisfied and the
right-hand side of (2.4) vanishes for T(Ti. Conse-
quently, C, and Cp are identical in this temperature
range. At temperatures just above T&, C, falls below
Cp (which we assume is a smooth function of tempera-

l 4

Ce
T

He 2

I Q—

0
T-T

C

2 4

FIG. 4. Heat capacity C, (constant external field) for example
I with various choices of H . Note the discontinuity indicated by
a dashed line.

"M. Vicentini-Missoni, J. M. H. Levelt Sengers, M. S. Green,
and R. I. Joseph, Bull. Am. Phys. Soc. 14, 593 (1969).»B. J. C. Van der Hoeven, Jr., D. T. Teaney, and V. L.
Moruzzi, Phys. Rev. Letters 20, 719 (1968); 20, 722 (1968).
Note that these authors use the symbol C~ for heat capacity in
a constant external field, that is, C, in our notation.

~6 J. L. Lebowitz and O. Penrose, Commun. Math Phys. 11,
99 (1968)."A slightly abbreviated version of material presented here will
be found in R. B.GrifBths, J. Appl. Phys. 40, 1542 (1969).

The question of whether the heat capacity in a field
should exhibit any singular (i.e., nonsmooth) behavior
as a function of temperature was raised by Van der
Hoeven, Teaney, and Moruzzi in connection with their
experimental measurements on EuS.' In the case of

Crr, one expects a completely smooth (in the case of
an Ising ferromagnet, analytic" ) curve for HWO. On
the other hand, C, may be expected to show some
singular behavior'~ at the temperature T~ determined

by



188 F ERROMAGXET I C H EAT CAPACI TY 5 EAR CR I TI C AL POI NT

ture at T=Ti), and its behavior can be analyzed as
follows:

Assume the free energy F has the form

F=F0(T)—HM (T) H'+—'«A(T)+ . . . (4.2)

for small values of H&O and temperatures near to but
less than T,. In writing (4.2) we make the relatively
mild assumption (as compared to scaling, " which is
much stronger) that the magnetization curves for
T& T. bear a "family resemblance" to one another in

the limit of small JJ. The constant p is not less than one.
The following analysis is not appreciably altered if P
is a slowly varying function of temperature. Magnetiza-
tion and entropy are given by

l.5

I.Q

0.5

0-2
T —Tc

For fixed H„consider the region where H and

AT= T—Ti (4.5)

are small and positive. To lowest order, we may
approximate (4.3) by

M =M, (Ti)+ATM, '(Ti)+ (1+y ')H"~h (Ti-) . (4.6)

When inserted in (2.6) and combined with (4.1), this
yields

H+D(1+& ')H"~A(T ) = DATM, '(T )—, (4.7)

where D stands for D/V. Next solve (4.7) for H and
insert the result in (4.4). Two cases should be
distinguished.

(a) p=1. This means that X, Eq. (3.1), is finite (as
in example I of Sec. III). To lowest order in T,

AS =S—So(T) D/3f, '(Ti)]'DT/—
L1+2DA(Ti)], (4.8)

Ce
T

ce
T

l.2

I.2 I.Q

I.Q Q.S-0.5 0 0.5 I -5 0
T- Tc T-Tc
(o) (b)

Fro. 5. Heat capacity C, (constant external 6eld} for example
II with various choices of H, . For convenience, the temperature
scale in (b) has been compressed.

M = —(BF/BH) r M, (T)——
+(1+@ ')H"4'A(T)+, (4.3)

S= —(BE/BT)H So(T)+H——M, '(T)
+H'+"4'A'(T)+ (4 4)

Fio. 6. Magnetization versus temperature for constant H
(solid curves) and H, (dashed curves} for example I. The curve
H =0 is the spontaneous magnetization. Example II yields
qualitatively similar results except that curves of constant H,
have zero slope where they intersect the curve H =0.

and
H f ATM, '(Ti)]&(1+—Q ') ~ (4.10)

(hT)& 'IM, '(Ti) ~'+~Ti(1—+P ') &, (4.11)

which goes to zero with AT. In example II, its=2 Lsee
(3.2)j and AC is initially linear in BT. Figure 5 shows
that the region of linear behavior can be quite small.
It is interesting that (4.11) is formally shape-independ-
ent, though higher-order terms will depend on D.

Note that in both cases (a) and (b) the singular
behavior at T=Tj has no necessary connection with
that at T= T, when B,=O. In particular, for our two
examples Co has a logarithmic divergence, while C, has
a quite diGerent behavior at T= Tj.

V. LOW- AND HIGH-FIELD LIMITS

At temperatures very near the critical temperature
and in a sufhciently small magnetic field, the suscep-
tibility of a ferromagnet becomes quite large and we
can expect to find M/V»H. Under these conditions
it should be a good approximation to set H =0 in (2.6),
which means that C Cir, with M given by (2.7).
Figures 4 and 5 show that C, for our examples does

' P. J. Wojtowicz and M. Rayl, Phys. Rev. Letters 20, 1489
(1968}.

and thus

AC=C, —Co= Td(BS)/dT
—DTi/M, '(Ti) j'/(1+Dx) (4.9)

is finite as AT —+ 0, indicating a jump discontinuity at
T=Ti. This behavior is exhibited in example I (Fig. 4)
and in a case considered by Wojtowicz and Rayl."
It should characterize any ferromagnet which has finite
initial susceptibility. Note that the magnitude of the
discontinuity depends on the sample shape.

(b) @)1.For this case X is infinite, and to lowest

order (4.7) yields
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M= VHo/D. (5.1)

The corresponding external field Lsee (2.6)] is 2Ho Then.
it is reasonable to suppose that the low- and high-field
limits, for which C, resembles C~~ or C~, correspond to
H,&&HI, or H, )&HI, . In examples I and II, Figs. 4 and 5,
HA, is 1.22 and 1.41, respectively.

For real materials it is convenient, following Heller, "'"

to relate M and H on the critical isotherm by

resemble C„~~ when H, is small. As H, increases, however,
C, develops a maximum near T, and the singular
behavior near Ti, while still present, is less pronounced.
In sufficiently high fields, we expect M/V«H, so M =0
should be a good approximation in (2.6) and C CH.
LCompare Figs. 3 and 5(b).]

Let us define the "characteristic" internal field
H~ by the requirement that at T = T, it induces a
magnetization

inhomogeneitp of some kind in the sample, in which
case it is not implausible that C, for an ideal sample
would resemble Fig. 5(a).
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where
H =M'h(rM —')

T Tc o

(A1)

(A2)

For examples I and II, we choose

APPENDIX: DETAILS OF EXAMPLES I AND II
4't'e use the procedure and (with minor modifie, tions)

the notation of Ref. 12 for constructing "homogeneous
functions. "Let the equation of state have the form"

H/H r =F(M/Mo)', (5.2)
h(x) = (x+1)(x+2) (x+3)-', (A3a)

where Mo is the saturation magnetization at zero tem-
perature for a sample containing n moles, and h(x) = (x+1)'-'(x+2) ', (A3b)

H, = rrRT, /M„.
with R the gas constant. The index 8 generally falls be-
tween four and five, while E is a dimensionless constant.
on the order of 1. Upon combining (5.1), (5.2), and
(5.3) we obtain

In the case of a Ni sphere, the data in Ref. 19 yield
H&,~250 G. Thus for an external field on the order of
100 G, C, should resemble C.~. However, in this situa-
tion (T, Tr)/T, is on —the order of 10 o, and since heat-
capacity data generally show "rounding" e6ects this
close to the critical temperature, it is doubtful whether
one can observe the characteristic features of C yr

in Ni. In fairly moderate fields, H, &1000 G, C, should
resemble Ci~.

The situation is quite different for EuS. Though
magnetization data near the critical point have not
(so far as we know) been published, Mo is known, '"
and if we assume 8—4.5, F~l, (5.4) &.ields Hr~2500 ('
for a sphere. Thus we expect that the measurements of
Van der Hoeven et al. , with H, from 0 to 1350 G, should
be classified as low field. Indeed, C, for H, =915 G,
shown in Fig. 3 of Ref. 15, exhibits the features one
would expect qualitat. ively on the basis of the foregoing
discussion, with one exception. The data of Heller and
Benedek" indicate that Ti~16.35'K for this situation,
but C, is less than Co down to T~16.25'K. . This indi-
cates that (2.7) breaks down a.t some M&M„a result
which is confirmed bz direct magnetization measure-
ments. " Such "rounding" could be due to material

"P.Belier, Rept. Progr. Phys. 30, 731 (1967)."S.H. Charap and E. L. Boyd, Phys. Rev. 133, A811 (1964)."P. Belier and G. Benedek, Phys. Rev. Letters 14, 71 (1965).
2' B. J. C. Van der Hoeven, Jr. (private communication).

1 6(x+3)+9
-»»('+3)),

27 (x+3)'
(A6a)

1 2(x+2)+2 -i ~+W)
8 (x+2)'

corresponding to (A3a) and (A3b). In Figs. 2—5, we
have set the smooth function Co(T) in (A4) equal to 1.

Curves of C, at constant H, can be computed using

f(aH/8T) ,r]'.
T 'C =T 'C/lg+

(dH BM)r+D
(A7)

provided that at some temperature the right-hand side
is evaluated for an appropriate M determined by
eliminating H between (A1) and (2.6). To derive (A7),
use the relation

to obtain

dS = (BS/8 T) g (1T+(BS/BM) r dM, (A8)

(A9)

~ %'e shall not be concerned with any normalization for H and
3f which, for present purposes, may be treated as dimensionless.
Similarly, replacing t = (T—T,)/T, of Ref. 12 by r represents an
inconsequential (for our purposes) change of scale.

respectively. , for x& —xo ———1. Using Ref. 12, C» has
the form

T 'C ~r =Co(T)+.c(rM '
) —h" (0) ln-~ M ~, (A4)

where c(x) L = —ao" (x) in Ref. 12]satisfies the equation

2xc'(x) =h" (x) —h" (0),
with solutions
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However,

e

/BM ((7H.j &2 T) &( . ((7H( (7 T) &I

(A10)
(7T ((, ((IH./(7M) r (BH/(7M) r+D

where the second equality utilizes (2.6). Finally, the
Maxwell relation'

In computing C, it is convenient, given H„ to first

choose M, then evaluate x=rM ' by combining (2.6)
and (A1), and express the right-hand side of (A7) in

terms of x and M. If D=D/V is set equal to zero in

(A7), C, is identical to C(r.
It is clear from (A4) that T 'C ~ satisfies a "scaling"

relation. The same is true of T 'C~. It can, in fact,
easily be shown that

((7S/(7M) r ——((7H—/BT) &(

completes the derivation.

(A11) T 'C(( —Co(T——)+f(r~H~ "')—X ln(H( (A12)

for an appropriate function f(x) and constant X.
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Numerical Study of the t Matrix in the Kondo Problem*

R. K. M. CHOW[ AND H. U. EVKRTS)

Department of Physics, University of Toronto, Toronto, Canada

(Received 7 July 1969}

A numerical study of the Kondo problem is presented. The calculations are based on the Suhl-Abrikosov-
Wagaoka integral equation for the scattering amplitude t(~,T) of the s-d exchange Hamiltonian. Use is
made of the exact analytic solution first given in detail by Zittartz and Muller-Hartmann. It is shown
that, because of the resonance in Imt{~,T) which occurs at the Fermi energy (m=0) at low temperatures,
the tunneling density of states of a dilute paramagnetic alloy is very slightly reduced at zero bias voltage.
There is, however, a possibility of detecting this change by studying the derivative of the conductance.
The details of the Zittartz —Mu*ller-Hartmann expression are found to be unimportant for the low-tem-
perature behavior of the transport coe%cients with the exception of the thermoelectric power. A rein-
vestigation of the thermoelectric power shows that some care is necessary in the evaluation of the integrals
E =J dc' c4 np(cd)7'(m, T)8f/Bco, because of the strong co dependence of the electronic lifetime v {(st,T}
~

I Imt {co,T)j ' at low temperatures. While the transport coeflicients reflect the behavior of the scattering
amplitude in a small energy interval about the Fermi energy, the specific-heat anomaly is found to be
related to the temperature derivative of t(co, T} at large values of the energy variable co comparable to the
bandwidth. We also point out that the quasiparticle approximation is not valid for electrons interacting
with impurity spins due to the rapid variation of t {~,T) near the Fermi energy.

I. INTRODUCTION
' 'N this paper, we study numerically the low-temper-

ature anomalies of dilute magnetic alloys. The s-d
exchange model (or Kondo Hamiltonian) is widely ac-
cepted as a reasonable description of the interaction
between conduction electrons and the localized mag-
netic moments of the impurity ions. This model
Hamiltonian consists of a simple contact interaction
between the impurity spin S,'"'I' and the electron spin
density at the position of the impurity:

J
H, .=H„„—P S, .'s ((R,).

X 2

Here EIj„.„ is the kinetic energy of the noninteracting

~ Research sponsored by research grants from the National
Research Council of Canada.

f Present address: Department of Physics, Simon Fraser Uni-
versity, Burnaby, B. C., Canada.

f Present address: Institut Max von Laue-Paul Langevin,
Aussenste]le Garching, 8046 Garching, Germany.

electron system, .V is the number of atomic cells, and
J is the coupling constant. Ke shall consider only the
case of antiferromagnetic coupling (J)0).

In the course of explaining the resistance minimum
of dilute magnetic alloys on the basis of the s-d exchange
Hamiltonian, Kondo' discovered that in perturbation
theory the one-electron scat tering amplitude has a
logarithmic singularity at small temperatures and ener-
gies. V'arious nonperturbational methods' ' have since
been developed to explain quantitatively the anomalous
behavior of the physical properties of dilute magnetic
alloys. Of particular interest to us are the methods of

' J. Kondo, Progr. Theoret. Phys. (Kyoto} 32, 37 (1964).
'H. Suhl, Phys. Rev. 138, A515 (1965}; 141, 483 (1966};

Physics 2, 39 (1965).' A. A. Abrikosov, Physics 2, 5 (1965}.
4 Y. Nagaoka, Phys. Rev. 138, A1112 (1965); Progr. Theoret.

Phys. (Kyoto) 36, 875 (1966).' J. Appelbaum and J. Kondo, Phys. Rev. Letters 19, 906
(1967); Phys. Rev. 170, 542 (1968}.' K. Yosida, Phys. Rev. 14?, 223 (1966};Progr. Theoret. Phys.
(kyoto) 36, 875 (1966).' A. Okiji, Progr, Theoret. Phys. (Kyoto) 36, 712 (1966}.


