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The thermodynamic properties of very dilute concentrations of magnetic impurities in a nonmagnetic
system and in the presence of an externally applied magnetic field are examined, using a mean-random-
field approximation. The 1mpur1t1es are assumed to interact via a long-range potential which alternates in
sign as a function of the position between the magnetic ions. A modified form of Margenau’s statistical
model is used to obtain the probability distribution P(H) of the random internal exchange fields Hin
an Ising model. The magnetization and the specific heat are obtained as integrals over the distribution of
internal fields. The variation of the magnetization and the low-temperature specific heat as a function of
the external magnetic field is obtained for all temperatures. The model, when applied to a dilute alloy system,
shows that the excess very-low-temperature specific heat is strongly decreased by the applied magnetic
field Hexs. The very-low-temperature magnetization per impurity is predicted to be proportional to tan™
(Hext/A), where A is a temperature- and external-field-dependent width of the probability distribution.

I. INTRODUCTION

HE concept of a random molecular field was
introduced by Marshall! to obtain the low-
temperature specific heat of dilute copper-manganese.
The idea behind this random-molecular-field method is
as follows: Consider a set of magnetic impurities which
are randomly distributed in a nonmagnetic host and
which interact via a long-range interaction potential.
Each impurity is surrounded by different environment
and, therefore, experiences a different effective Weiss
molecular field. Since the positions of the impurities
are random variables, so is the Weiss molecular field.
The objective of the method is to obtain the prob-
ability distribution of this random molecular field P (f),
and then to obtain the thermodynamic variables of the
system by integrating the expression for the thermo-
dynamic variable of a single spin in a fixed molecular
field H over the distribution of all fields. Other in-
vestigators>™* have used the random-molecular-field
method to treat various magnetic impurity problems.
Most of these approaches have used an Ising model or
some other classical model to treat the spin system.
They have the deficiency that it is difficult to obtain the
probability distribution of the field at all temperatures
in a closed form. For this reason, even though the be-
havior of the random system could be relatively well
approximated near T=0, it was difficult to obtain even
qualitative predictions of the specific heat, the mag-
netization, and magnetic susceptibility for higher
temperatures. To study the temperature dependence
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of a random Ising system interacting via a Ruderman-
Kittel-Yosida®=7 potential, the author has recently®
(this paper shall henceforth be referred to as I) used a
modified form of Margenau’s statistical model to obtain
P(H) for all temperatures in the limit as the impurity
concentration approaches zero. In order to obtain
analytical expressions for P(H), the Ruderman-Kittel
potential has been replaced by one in which each im-
purity experiences a random potential of value £v(r;;),
each with probability %, where v(r;;)=a/r;;*, where a is
the strength of the interaction and 7;; is the distance be-
tween the impurities at site 7 and j. An approximation
was also used in which when calculating the field dis-
tribution at a particular impurity site, functions of the
random fields at other impurity sites are replaced by
their mean values. This approximation was called the
mean-random-field (MRF) approximation. Using a
self-consistency condition with the MRF approximation
gave the temperature-dependent probability distribu-
tion in a closed form, where the width of the probability
distribution was given by an integral equation which
was relatively simple to evaluate for some tempera-
tures. The P(H) derived there gave a low-temperature
magnetic susceptibility which is independent of the
impurity concentration, and a maximum in the sus-
ceptibility as a function of temperature where the tem-
perature of the maximum is proportional to the impurity
concentration. Similarly, the very-low-temperature
specific heat from the model was independent of the
impurity concentration and was approximately linear
in temperature for very low temperatures. Even though
the results are consistent with the behavior of magnetic
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impurities in nonmagnetic metals®'? in the intermediate
concentration range, it is not clear whether the theoret-
ical predictions obtained from an Ising model are
applicable to a dilute alloy system. Thus, we have
reviewed the random Ising model in the absence of
externally applied fields.

As far as the author knows, no treatment of the
random Ising model in the presence of an externally
applied field has been made. The purpose of this paper
is to consider the variation of the probability distribu-
tion of the internal field, the magnetization, and the
specific heat with an externally applied field in the MRF
approximation. The results obtained here will hope-
fully motivate experimentalists to measure the thermo-
dynamic quantities and compare them with the Ising-
model predictions.

The method used follows closely that of I and may be
considered an extension thereof. In Sec. II, it is shown
in the MRF approximation that the application of the
externally applied field shifts the probability distribu-
tion from being symmetric about a field H=0 to
H:Hext, where H . is the externally applied field. The
width of the probability distribution also becomes ex-
ternal-field-dependent. In Secs. II to V the variation of
the probability distribution of the field, the specific
heat, and the magnetization as a function of the tem-
perature and the external field are examined for all
temperatures. It is found that the very-low-temperature
specific heat is strongly affected by H.xt and is approxi-
mately proportional to A/(A%+Hex?), where A is the
width of the probability distribution. For very low
temperatures, A is found to be proportional to impurity
concentration. The predicted low-temperature mag-
netization per impurity is approximately proportional
to tan!(H ext/A). It is proposed that useful information
on the internal-field distribution in dilute alloys could
possibly be obtained from a Mdossbauer experiment at
relatively high temperatures.

II. MATHEMATICAL DEVELOPMENTS

Consider N Ising-model spins randomly and uni-
formly distributed over N, sites in a nonmagnetic
system. Let N —o, Ny—oo such that N/Ny=c, the
fractional impurity concentration. Let u; and u; be the
Ising-model spin variables at sites 7; and 7;, respectively,
and let v;; be the interaction potential between two
impurities at sites r; and r;, respectively. Let H.y be
the externally applied magnetic field. Then the inter-
action Hamiltonian 3C of the system in an Ising model,

®J. E. Zimmerman and F. E. Hoare, J. Phys. Chem. Solids 17,
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i.c., a model in which u; may take values of &1 only, is

ac =Z vijﬂi“j'*_z Hextﬂi y (21)
1, 1

where the potential ;; is assumed to have the form

v=a/r:7, with probability of %

v;=—a/r;?, with probability of % (2.2)

just like in I. This potential is chosen as an approxima-
tion to the Ruderman-Kittel potential for very dilute
concentration of impurities.

Let the total field at an arbitrary impurity site ¢
be 4;. Then /; is made up of two parts, the externally
applied field Hox¢ and the internal exchange field H.

Thus,
hi=z ’Ugjﬂj‘{‘Hext (23)
i

=H+H e, 2.4)

where H, is the Weiss molecular field experienced by
an impurity at site /. The horizontal bars over &; and f;
indicate that these are thermally averaged quantities
consistent with the usual definition of the molecular-
field approximation. 4; is the thermal average value of
the Ising spin operator y; in an effective field H,, where
Hj is also a random variable. The probability distribu-
tion of H; still remains to be determined, and this will
be done later on. For the moment, it is assumed that
such a field H; exists and the specification of its form is
left for later. Then,

Bi= 2 weflwi/ 30 efluki=tanhgh;.
M=%l pij=%1

2.3)

The first objective of this paper is to obtain the
probability distribution of the random internal field 4,
at an arbitrary origin 0. In the remaining part of this
section we closely follow Sec. 1T of Paper I.

The formal expression for the probability distribution
is obtained using a modified form of Margenau’s
statistical model,®i.e.,

) (hO - HexL - Z 7*'01'121')

™
X P (7’01,?’02, .

P(ho) = Z
Y (2.6)

. ,7’01\’)d37’0N s

where 3, is the sum over each of the potentials
vo;==£a/r, given in Eq. (2.2) and S+, indicates an
integral over a 3.\ dimensional volume and P(roi- - roy)
X is the joint probability for particle 1 to be in the
volume d%,; at 7y, particle 2 to be in @%,, at 75, and
particle IV to be in d%y at ry. Rather than summing
over discrete sites in the lattice, integration is used.
This approximation is reasonable for very dilute con-
centrations of impurities where the average distance
between the impurities is much greater than the lattice

13 H. Margenau, Phys. Rev. 48, 755 (1935).
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constant. Upon assuming that the positions of the
particles are independent random variables uniformly
distributed over the volume V with probability 1/V
and using Eq. (2.2) in Eq. (2.6) gives

Phe)= (2r)~! / dp gioho—Hext) f &*n

N=1 cos (paj;/7o;)
X/(lsrg.../darN 11 —_I—“
=1 !

Q.7

Equation (2.7) gives the probability distribution of the
field o at site O in terms of functions of the total field
at site j. The right-hand side of Eq. (2.7) involves
;= tanh@hk;, where in principle #; is a random variable.
h; itself may be written as

hi=3" vipprt+Hext, (2.8)
k

where g is a function of the total field at site 2. Thus,
the arguments of the spin variables f; are position-
dependent, which makes the evaluation of the integral
in Eq. (2.7) difficult, and using Eq. (2.8) in Eq. (2.7)
brings one no closer towards the solution of Eq. (2.7).
Equation (2.8) is only exhibited to show the structure
of the equations obtained. In order to solve Eq. (2.7),
a so-called mean random field (MRF) approximation is
used, in which when solving for the field distribution at
site 0, functions of the fields at all other sites than 0 are
replaced by their average values, i.e.,

MRF [* paia(h;)
— f P (k;) cos : dh;,

7o;

pai(h;)

COS

(2.9)

Yo;"

where the arrow with MRT indicates that in the MRF
approximation cos[pafi(k;)/ro/*] is replaced by its aver-
age value over a probability distribution of the fields
h;. Thus, Eq. (2.7) becomes

20 Arvl x*©
P(ho)= (2#)‘1/ dp etrtho—Hexe) TT P (hj)dh;

=1 ) _,

: cos[ pai(hj)/ro?]
X / dro— Y (9.10)
V

Next, as a self-consistency condition, the requirement is
imposed that P(;) be independent of the site j under
consideration. Then, Eq. (2.10) becomes

o0 o0 1
P(h)=(2n)! / dpefﬂw—ﬂem( / —P(h)dh / d%
—% — V v

paji (RN
Xcos——~3~—> . (2ay

r
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t
o a(h
- / Pr / p(h)dh[l—cospa“( )], (2.12)
JV —x ,3

then Eq. (2.11) becomes?®
P(h) = (27,-)—1] dp gip(h—Hext)—noV’ (p)c , (2.13)

where 7, is the number of sites per unit cell, no=4 for
an fcc lattice, V' is defined by Eq. (2.12), and ¢ is the
fractional impurity concentration. For a 1/7? potential,
V' becomes

V'=3x|pa| X|lal, (2.14)
where

w©

lall = / P(B)|tanhgh| d, (2.15)

where the single vertical bar in Egs. (2.14) and (2.15)
indicate absolute values. Substituting Eq. (2.15) into
Eq. (2.13) gives

1 A(,B,ngt,l:)
P(h)=— ,
™ [A (B7H0x176)]2+[h_Hext]2

(2.16)

where

ABH exe,0) =37 | a| noc|| 2 (8, H ext,c)l| =nvella] . (2.17)
Equation (2.16) shows that in the MRF approximation
the effect of the external field is (a) to shift the center of
the probability distribution from 2=0 to A= H . and

(b) to modify the width A of the distribution function.
From Eq. (2.4), one finds that

H=h—H ., (2.18)

where in Eq. (2.18) the index 7 is again suppressed be-
cause of the self-consistency requirement. Using Eq.
(2.18) in Eq. (2.16) gives

1 A (ﬁ;Hext;C)
P(h)=- -
™ [A(B,H ext,0) P+H?

Equation (2.19) coupled with Egs. (2.15) and (2.17)
gives an integral equation for the width of the prob-
ability distribution A. Using Eq. (2.19), one finds that

=pPH). (2.19)

/ P(h)F (h)dh= / PFHA+Ho)AH, (2.20)

where P(H) is given in Eq. (2.19). Equation (2.20)
allows one to evaluate all thermodynamic functions
for the system by integrating over the random variable
H and the probability distribution P(H) defined in
Eq. (2.19). In particular, the width of the distribution
function A may be obtained by solving the integral
equation

R B
iiﬁix=—]
TJ A

2+Hz

[tanh8(H+He) |dH,  (2.21)
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where the relationship between A and ||| is given in
Eq. (2.17).

III. WIDTH OF THE DISTRIBUTION FUNCTION
A. Evaluation of A for Low Temperatures

The width of the probability distribution in Eq.
(2.21) depends upon the temperature, the impurity
concentration, and a parameter a, given in Eq. (2.2),
which characterises the strength of the impurity-
impurity interaction. Let y¢ in Eq. (2.17) be A(«). It
will be shown later on that A(e«) is the width of the
probability distribution as 3 —. Let

H/A(0)=y, Hext/A(®)=y3, BA(x)=a,
and let

Yo, (31)

P( )—1 “
Al Gty

where the variables H ¢ and ¢ have been suppressed in
the expression for A, i.e., A=A (¢,8,Hexs) in Eq. (3.1).
Using Egs. (3.1) and (3.2) in Eq. (2.21) gives

(3.2)

lall = [ |tanhay| [P+ ()P () My, (3.3)

Writing
2 —2ay

tanhay=1—1 =142 3 (—1)ke2kay
k=1

+e—2ay

in Eq. (3.3) gives
el =142 £ (-t [ e

k=1
XL +P () y.  (34)

For very low temperatures P*(y) and P~(y) in Eq.
(3.4) may be expanded in the form

Il
Pi(p)m———
o w[|all*+y0*]
y(y=£2y0) [y(y£2y0) ]
x(1— f . (35
( a0t [nm:?w]z) )

Using Eq. (3.5) in Eq. (3.4) gives
21n2lal]l 4] Gyo—|uf)
e

lall~1

X5 (=1 / yeetakuly  (3.6)
k=1 0

2w [l Gyl
ral gl +30] 20y T

» 1 1
2 (=1 +(:<—¢>. (3.7
k=0 (k+1)2 \ab
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In the limit asa=BA(») —x, Eq. (3.7) gives

lim ||| =1. 3.8)
Combining Eq. (2.17) with Eq. (3.8) gives
gim A=A(x)=xc. (3.9)

Using the relation A=~c||a||=A(x)|g] given in Eq.
(2.17) and solving Eq. (3.7) for ||g| at very low tem-
peratures gives

2 In2 2 In2 2
llal=1—— —( ) (3.10)
mBA(< ) (14y0®)  \mBA(=)(1+4y,?)
=1—¢/B—¢*/8, (3.11)
where
¢=21n2/mA()(1+ye). (3.12)

It is interesting to compare Eq. (3.12) with the cor-
responding Eq. (3.9) of I. It is found that up to order 73
the very low-temperature expression for [|g| in the
presence of an external field may be obtained by replac-
ing [rA()]in Eq. (3.9) of I by [wA() 1 (14y2)

B. Evaluation of A for High Temperatures
Equation (2.21) may be rewritten

lall = / P ()] tanha(y-+yo)|dy

1 <

T J— (BA)2Fx2
where x=8H, x9=8H . For very high temperatures
aYyo= ﬂHex'.<<1, and

tanh (x+x) = tanhx, sech®

+ tanhx sech’04O(tanh’x) (3.14)

dv, (3.13)

and
1 A

lim — —— — 6(x) (3.15)

BA—0 T (ﬁA)2+T2
Using Egs. (3.14) and (3.15) in Eq. (3.13) gives
glAlllo ||ﬁ|]ztanhxo/;w (x) sech?xdx

~+sech2x, / 8(x) | tanhx| dx
~tanhBH ;. (3.16)

Thus, for very high temperatures when BH .x<<1 and
:BA - O) ”ﬁ“ i tanhﬂHext-

The physical meaning of Eq. (3.16) is as follows. At
very high temperatures the width of the distribution
function goes to zero when no external field is applied
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to the system as is found in Eq. (3.12) of Ref. 8. The
reason for this is that the width of the distribution
function is proportional to the thermal average value of
the (average) magnetic moment ||a|| which goes to zero
because of thermal fluctuation at high temperatures.

As an external field is applied the width of the dis-
tribution function increases approximately proportion-
ally to tanhBH ex. Thus, the broadening increases with
increasing fields. This broadened distribution of fields
should reflect itself in the conduction electron polariza-
tion of a metal as well as in the broadening of the
paramagnetic resonance line and the Maossbauer ex-
periment on the hyperfine field at the nucleus of the
magnetic ion. See further discussion of the Mgssbauer
effect in Sec. V.

It should be remarked that the approximation that
BA— 0 has made it relatively easy to evaluate Eq.
(3.13) and resulted in Eq. (3.16). However, at inter-
mediate temperatures where more detailed calculations
for ||a| are needed, these can in principle be obtained
from Egs. (2.16) and (3.3). The integral equation for
llall, Eq. (3.3), was solved using a computer for several
values of the external magnetic field. The results are
shown in Fig. 1, which gives |[a|| as a function of
A()/kgT=a for several values of y,.

IV. APPLICATIONS

A. Expression for Specific Heat

Before the expression for the low-temperature specific
heat C, is obtained it will be argued that the specific
heat should be obtained as a derivative of the entropy;,
rather than the energy, for the system.

The idea of the probability distribution of the field
conceptually considers the whole system made up of a

o7s]

F16. 1. Graph for |u(x)| as a

function of x=BA(x) for several ';5' 5
values of yo=Hext/A(®), where ’
Hexy is the externally applied field
B=(kBT)™, and A() is the width
of the probability distribution as
B— » and Hext— 0.
0.26¢
o]
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large number of independent subsystems, with the spin
of an impurity at an arbitrary center of each of the sub-
systems, say ¢, having a well-defined internal field
H,. Then the energy associated with a spin at the center
of subsystem i, U; is

[]i_—_ —H,‘ tanh,BI?;, (41)
where the field is given in units of energy. The total
energy for the whole system is then

U= —Z I?—I,' ta.nhBFI;, (4.2)

where in Eq. (4.1) the following implicit assumptions
are present: (a) It is assumed that surface interactions
between subsystems are negligible. (b) It is assumed
that the internal fields of the different impurities are
independent of each other. (c) It is assumed that the
energy of the impurities is the additive sum of N terms.
This results in an overcounting of the number of terms
in Eq. (4.2) by a factor of 2. The latter is usually cor-
rected for by introducing a factor of 3 multiplying
Eq. (4.2). The normalization of the probability distribu-
tion introduces a constraint between the internal fields
of the various subsystems, thus the energy of the
individual impurities (subsystems) is not in general an
additive quantity. In order to evaluate the specific
heat C, the physical requirement is imposed that the
entropy of the individual subsystems (impurities) shall
be additive (i.e., an extensive quantity) and C, will be
obtained as a derivative of the entropy. However, to
make the specific heat of the system be the same as
that obtained from the molecular-field approximation
when the impurities are independent a factor of %
is introduced in the expression for the specific heat
arising from the entropy.

Yo =10

Yo =18
4 Q

4 See, for example, Ref. 1,

=
=



938 MICHAEL

It is shown in Appendix B, Eq. (B10) that the ex-
pression for the specific heat C, is

A\()Ck/f
¢, = / (@) [P )+ ()]
AI

] BA’ B
Xsech 1ay<1 +—»~4>d (y)+——(ayo)
A A
X/ (ey)[P*(y)—P~(y)]sech?ayd(ay), (+.3)
0

where a, y, yo, and P*(y) are defined in Egs. (3.1) and
(3.2) and BA’/A is given by Eq. (A3) of Appendix A,
where A’= (dA/dB).

B. Evaluation of Very Low-Temperature
Specific Heat

For very low temperatures, the expression for P%(y)
in Eq. (3.5) coupled with the expression for ||a|| given
in Eq. (3.10) is used in Eq. (4.3) to give

NockprT kuT (2 Ind (1 —1yp2)
_ [1+ )
124(2)(1+y2) L A=)\ 714y

< kT )2<71r2 (1—-3y0?)
A(%)/ \20 (14y)?
(5—"7y0?) (In4)?
—_ T Yo |. (44
S ) ]

The fact that the coefficient of 7% term in Eq. (4.4) is
positive shows that for zero applied field C,/T has a

A2 Cy
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slight maximum as a function of 7. This has been
discussed previously.® Equation (4.4) also shows that

lim (C/T) = 1/ (1406"). (+.5)

Thus, for very low temperatures, the specific heat de-
creases with increasing applied field according to
Eq. (4.5). The Lorentzian shape is not expected to be
valid for very large applied fields, i.e., Hexe>>A. In fact,
the probability distribution should be a truncated
Lorentzian when one considers the physical restriction
imposed on the integral Eq. (2.10), that the distance
of closest approach between the impurities shall be a
near-neighbor distance. One can now solve Eq. (4.4)
to find the temperature at which the specific heat
is a maximum. Let T...x(0) be the temperature of
the maximum when He,=0, and let T...x(yo) be
the temperature of the maximum as a function of
Vo=Hext/A(®). Thnax(0) was found previously® to be
approximately given by % ;7 ax(0) = A( ) (2172/20)71/
=~ A()/m. In the presence of small external fields such

that yo= Hexi/A(®)<K1, the temperature of the maxi-
mum is found from Eq. (4+.4) to be approximately
given by

klﬁ7 ma\(}'O) [A /7r:| 1+2 Dyu )
~ kT (0) (14-2.5y2).

Equation (4.6) gives that the temperature of the
maximum increases with increasing external fields.
Equation (4.6) is only valid when H.<&KA(®) and
should therefore be used with caution in interpreting
experiments at low concentrations. Using a computer,
the variation of the specific heat as a function of tem-

(4+.6)

=== ESTIMATED

F1c. 2. Calculated results for
the low-temperature specific heat
N as a function of [BA(w)]?

N =kgT/A(x) for several values
~ of yo=Hext/A(®), where Hext is
~ the externally applied field and

~ A(®) is the width of distribution
~. function as f—= and y,— 0.

e A2=(N¢)Ck37r/12)_1, where N, is

the number of sites per unit volume
and ¢ is the fractional impurity
concentration.

T | |
o 1 2 3

kBT/A(O)
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perature for several applied fields has been calculated by
solving Eq. (4.3) as a function of A(), ¢, T. The results
are shown in Fig. 2. Figure 3 shows the calculated
values of the specific heat divided by T as a function
of temperature for several values of the magnetic fields.
Figure 4 shows the values of C, as a function of applied
fields for several temperatures. It is interesting to note
that the maximum in C,/T increases with magnetic
field. The reason for this is that the maximum height
of P(H) is shifted from zero field to the field H ex,
causing the probability of finding an average spin in
very small fields (small energies) to decrease.

C. Magnetization

Next, we obtain the expression for the magnetization
Mi(h,8) for a single impurity in an effective field

———— Estimated

A, (Cv/T)

° T T T T

3 4
[ ke T/a (]2

o
-
~
@

I16. 3. Calculated results for C,/T, where C, is the specific
heat at a constant field as a function of k3T /A(x) for several
values of yo=Hxt/A(), where .y is the external field and
A() is the width of the probabilities distribution as 8 — =,
vo— 0. Ay=[Nockptr/12A(0) T

/Z=]_{+Hext:

M1(h,8)=pp tanhB(H exi+ H)

4.6’
=up tanha(y+yo). (46

The total magnetization is obtained by averaging over
the internal fields of the impurities using the probability
distribution of the fields given in Eq. (2.19). Thus,

M =Nocug / P (y) tanha(y+yo)dy

2 Hex:
= Noc;m(* tan“( )
T A

k2 ¢ 2ay
—l/ -1'+’e_‘2'ay[1)' n=rt (}’)]‘[,\’) , (&7)
0

where P*(y) is given by Eq. (3.5) and P(y) is P(y)
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“ T=01
/

T=.01

A (Cy/T)

T T T T 1
o .2 .4 .6 .8 1.0 .3 1€

Hext/a(e)

I'16. 4. Calculated values for C,./T, where C, is the specific heat
as a function of the external field Hexs for several values of T,
where T'=kzT/A() and A(w) is the width of the distribution
function at g —» and yo— 0. A, is defined in the caption
for Fig. 2.

with yo=0. Equation (4.7) is easily evaluated for low
temperatures; one obtains

2 Hext
M =NgcyB|:— tan"( >
T A

Hext/A ™ 1 4
- “o(2)]- as
(ﬂA)2[1 + (H(:xt/A)2]2 6 A

Using the relation A=A(«)|g|, where [la]| for low
temperatures is given by Eq. (3.10), one finds that

2 2yo In2 ( kT
M =—Ncup ‘tan*’yg% )
T 1r(1+y02)2\A(30)
YA ES(ELS
A(=)/ \+ye*/L\r(1+y0%)
4+3y,> w

——]+0(T3)]. (4.9)
14y 12

Equation (4.9) shows that the magnetization per im-
purity near T'— 0 is given by tan™'[ H ext/A(0 ) ]. Thus,
it is predicted that the magnetic susceptibility per im-
purity near zero temperatures should have a slope of
1/A(). Physically, this result shows that the very low
T magnetic susceptibility is independent of the im-
purity concentration for very low temperatures and
concentrations.®

D. Possible Application to a Mgssbauer Experiment

1t was discussed in Sec. I11 that the high-temperature
width of the distribution function in the absence of an
external field becomes very small and the expression
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for the width A(T) is approximately given by?®
A(T)% (kBT) (erkBT/A(eo)-—73/45_1>~1/2_ (4‘10)

However, in the presence of an external field, the
approximate width A(B) is given by

A(B)=A(x)|a(B)|~A(x) tanhfH exs, (4.11)
where Eq. (3.16) has been used in Eq. (4.11). Thus,
at high temperatures

1 A() tanhBH ext
r (h'sﬁ) ~=

. (#12)
™ [A() tanhBH exi J*+ (h—H ext)?

In the limit as Hew— 0, P(4,8) becomes a § function
about £=0. Therefore, if one assumes that the hyperfine
field /s is given by the phenomenological equation

Ine="b tanhB(H+H exi)+ H ext, (4.13)

at high temperatures with H.=0 the Maossbauer
pattern of the alloy, say Au-Fe, is predicted to be
characteristic of a paramagnetic spectrum. However,
upon the application of a sufficiently large external
field it is predicted that the Mossbauer hyperfine
pattern should reappear and should have a distribution
of fields given by Eq. (4.12). Since A(«) is proportional
to impurity concentration one should hope, at least in
principle, to be able to obtain A( % ) from the Méssbauer
spectrum at relatively high temperatures in the presence
of an applied field. Should this turn out to be the case,
it would present an interesting comparison with the
low-temperature value of A(w) predicted by this
theory.

V. DISCUSSIONS AND CONCLUSIONS

An effective field theory has been presented to discuss
the properties of random dilute Ising-model systems in
the presence of an externally applied magnetic field.
The Ising spins were assumed to interact via a long-
range interaction of the Ruderman-Kittel-Yosida type.
It has been shown previously?® that the molecular-field
theory is the zeroth-order term in an expansion of the
inverse of the effective number of neighbors z. In the
limit as z-—»w one rigorously recovers the Weiss
molecular-field approximation. If one may argue that
even though the impurity concentration is low, because
of the long interaction range of the interaction poten-
tional the effective number of neighbors z is large
enough, the molecular-field theory used in this paper
may become a good approximation to the rigorous
statistical-mechanical solutions desired.

One may, therefore, ask whether the results derived
here are applicable to dilute alloys in general. This
question was discussed previously® and the comments
of Ref. 8 on the use of the Ising model as well as the
Kondo temperature also apply here. The fact that the

18 R. Brout, Phys. Rev. 118, 1009 (1960).
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validity of the Ising model to magnetic alloys is
questionable makes the Ising-model predictions of the
magnetic field dependence of the thermodynamic prop-
erties even more interesting. For, if the measured field
dependence of the specific heat and magnetization
should be in qualitative agreement with the results
predicted here, it would give further motivation to
examine the predictions of the Heisenberg model and
find how they differ from the Ising model.

APPENDIX A: EVALUATION OF dA/d}

In this Appendix, the derivative of the width of the
distribution function A(B,c,Hex:) with respect to 3 is
evaluated. The arguments of A will be suppressed in
what follows:

A" dA  d||u]|
A() - da_ dp

where « is defined in Eq. (3.1). Using Eq. (3.3) gives

, (A1)

B8 ey P )+ P~ ()W
— == anha .
B de a8 ), 'y y y)lay

(A2)

Differentiating the right-hand side of Eq. (A2) and
transposing the terms d||u||/dB arising from dP=(y)/dB
and combining it with the left-hand side gives

d||all/dg=A(=)|al

= ysech®y[ Pr(y)+F~(y)Jdy N
x/ y YL PH(y y]yE*, (A3)
0 D D

where D in Eq. (A3) is

0 e--2ay

X{[Pr*(y) P+~ ()]} ay.

The very low temperatures, the expansion for P+(y)
given in Eq. (3.5) is used to evaluate Eq. (A4):

4f[all* 2 1
D=1—— 2 40(™).
T([lull*+y0%)? @

(A4)

(A5)

Evaluating the numerator N of Eq. (A3) using Eq. (3.7)
gives for very low temperatures

2 |l 1 3y0—|al?
Ao &l (1n2 1 3% I I
ma [|a]|2+y0* o |lall*+y
X/ x’ sech“’xdx). (A5
)

Using Egs. (A4) and (AS5) and the power-series ex-
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pansion for ||a|| as given in Eq. (3.10) in Eq. (A1) gives
d)a| 2 In2
B mBA(=)(1+yd)

2 In2 2 2
+( )G) @
TBA(%)(14y0%)/ \1+y¢

Equation (A5) will be used to evaluate the low-tempera-
ture specific heat.

APPENDIX B: DERIVATION OF LOW-
TEMPERATURE SPECIFIC HEAT

Let C, be the specific heat and S the entropy for
the system. Then
dQ  aS aS
v=—_"=T—‘="‘B-_7 (Bl)
ar 9T B

where Q is the heat applied and S the entropy associated
with N randomly distributed impurities; each impurity
experiences an effective field which is a random variable.
Let S; be the entropy of a single impurity in a fixed
field H, let U, and Z; be the corresponding internal
energy and partition function, respectively. Then,
S1=kp[BU+InZ;], where in an Ising model with the
Bohr magneton up set to unity, Zi=3,—.1expul
=2 coshgH, and U;=H tanhgH. Thus,!®

S1=—kp[BH tanh8H —In(2 coshgH)]
=k {BH (1— tanhgH)+In[1+exp(—28H) 7} .

The total contribution to the entropy of a random
system with NV impurities is

(B2)

Zvockg ® - - _
s=—= / PAYB(H+Hox)[1—tanhg (H-+He) ]

+In[1+exp(—28(H+Hey))J}dH, (B3)

where P (H) is given in Eq. (2.19) and H .y is the applied
magnetic field. A factor of 2 is introduced in the
denominator of Eq. (B3) in order not to count each
interaction twice. Using Egs. (3.1) and (3.2) in Eq.
(B3) gives

Nockp

s=— / PO){aly-+yo[1—tanha(y+y0)]
- + In(14-e2elvtul)}dy,

16 Alternatively, the entropy may be obtained by using
>i P;InP;, where the summation is over the possible spin
orientations.

(B4)
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where P(y) is the value of P+(y) with y,=0. Let
F(x)=x(1—tanhx)+In(1+4+€72%%); (B35)

then Eq. (B4) becomes

NoCkB ®
S= 5 / Flay)[P*(y)+P~(y)1dy, (B6)

where P=(y) and « are defined in Egs. (3.1) and (3.2).
Using Eq. (B1) gives

Nockp * oF (01 )
Cm—g ( / P+ (y) P (3) Ty
2 0 aB

il a3
+ / F(ay)—[P*(3)+P-()1dy. (BT)
0 a8

Using the identity

® IP=(y)
I£= F(a
fo () %

dy%( [ " Flay) POy

o / F(ay)[f)i(y)]wy), (B8)

where A’=dA/dB, and A is given in Eq. (2.17). Integrat-
ing the second term on the right-hand side of Eq. (B8)
by parts gives

ATy In2 * oF\ 7
1 i=~[:b~— + f (yi;vo)Pi(y)< )dyJ- (B9Y)
A ™ 1+y02 0 6y

Using Eq. (B9) in Eq. (B7) gives

Nockp BA\ r®
C,= ~[<1 +——> / (ay)? sech?(ay)
2 A/

BA’
X[PH(y)+P~(y) Jdy+ (ayo)j

X[ @ sech?(ay)[my)—Hy)]dy]. (B10)

Equation (B10) gives the final expression for the specific
heat, with

A(=)  dB

given in Eq. (A6).



