
PHYSICAL RE VIEW VOLUME 188, NUMBER 1

Zp~]s Pionic Transition*

5 DEC EM BER 1969

D. K. Anderson, D. A. Jenkins, and R. J. Powers
Virginia Polytechnic Institute, Blacksburg, Virginia 24061

(Received 25 April 1969)

In an attempt to get better agreement between the theoretical predictions and the ob-
served energies and widths of 2P - 1s pion-atomic transitions, we have numerically in-
tegrated the Klein-Gordon equation assuming the optical model for the strong interaction
potential. We have characterized the interaction by six s-wave and four P-wave param-
eters. Using the available data from B to Mg, we have performed a least-squares fit
of the s-wave parameters. We find agreement between the observed shifts and our pre-
dictions, and the real parts of the s-wave parameters agree well with those predicted by
Ericson and Ericson. However, our predicted widths vary as much as 50% from the ob-
served widths and we find very poor agreement between the imaginary s-wave parameters
and Ericson and Ericson's predictions.

I. INTRODUCTION

Pionic 2p- is transitions in comparatively high
Z nuclei such as Na have made it clear that pres-
ent techniques in predicting the strong interaction
widths are not adequate. Originally, the standard
yrocedure was to use first-order perturbation
theory' on some assumed nuclear potential. Un-
fortunately, such a method predicts' a strong in-
teraction width for the is level in Na2~ which is
off by a factor of 5. Indeed, whereas Brueckner'
predicted that the widths should vary roughly as
Z4, there is strong evidence4 ' that the widths
level off in the region of fluorine.

The usefulness of studying the bound pion-nucle-
ar system lies in the fact that the pion interacts
strongly with both neutrons and protons. If the
pion-nuclear interactions ean be understood, one
has a valuable tool in probing the matter distribu-
tion inside a nucleus, not just the charge distribu-
tion as in the case of muons. In addition, since
the absorption of a pion occurs mainly on two
closely correlated nucleons, in principle, pionic
atoms provide a means of studying such short-
range correlations.

Two years ago, Seki and Cromer' and Fulcher,
Eisenberg, and I e Tourneux' contested the use
of first-order perturbation theory. They showed
that one cannot assume that the strong interaction
leaves the pion wave function unchanged inside the
nucleus. In fact, Fulcher et al. proceeded to show
that in the is level in Na" one might expect a
fourfold reduction of the pion overlap with the
nucleus.

In addition, Trueman" pointed out that the inter-
ference between the real and imaginary parts of
the nuclear potential might appreciably alter the
theoretical predictions. Depending upon the rel-
ative size of the real and imaginary parts of the

potential, the widths might be strongly inQuenced

by the real part of the potential and, to a much
lesser degree, the shifts might be affected by the
imaginary parts.

Prompted by these theoretical considerations
and by the recent experimental activity in pionic
x rays, we have modified a computer code to
solve the Klein-Gordon equation assuming an opti-
cal model for the nucleus. %e have numerically
integrated the wave equation assuming a functional
form for the strong interaction potential discussed
by Ericson and Ericson. " Their model is based
on the premise that one can predict the pion-nu-
clear interaction from a knowledge of pion-nu-
cleon behavior. It relates the pion-nuclear po-
tential to appropriate pion-nucleon scattering
amplitudes and pion absorption rates.

As a result —if the model is correct in concept
—one can predict yionic atom binding energies in
terms of other experimental quantities, which are
reasonably well known. The most optimistic ap-
proach to the problem would be to claim that
pionic-atom energy levels are completely deter-
mined by a sufficiently good knowledge and under-
standing of pion-nucleon scattering processes.
On the other hand, a more conservative approach
would be to admit that the model predicts a func-
tional form for the interaction, which can then be
parametrized in terms of a few unknown constants.
Our approach was the latter. We have assumed
that the Ericson model for the nuclear potential
can be expressed in terms of ten constants —six
for the s-wave and four for the P-wave scattering
amplitudes. %'e have performed a least-squares
fit of the six s-wave constants to the experimental
2P - is transition energies and widths assuming
"reasonable" values for the four p-wave constants,
which for the most part have little effect on the
is strong interaction shifts and widths.
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In Sec. II, we summarize the relevant theory
and define the nuclear scattering parameters.
In Sec. III, we summarize the experimental situa-
tion. We discuss the sensitivity of our results to
the assumed charge distribution in Sec. IV. Then
we discuss the predicted widths and shifts. Final-
ly, in Sec. VI, we examine the best fitted s-wave
nuclear parameters obtained from the pionic x-ray
data and compare these to those predicted by
Ericson and Ericson.

II. THEORY

For nonrelativistic pionic atoms one can use
the Schrodinger equation

where p, is the reduced mass of the pion-nuclear
system. In Eq. (4) we can clearly see the rela-
tivistic correction (e —Vc)'/2m due to the elec-
tromagnetic interaction.

According to Ericson and Ericson one can de-
scribe the pion-nuclear interaction using the fol-
lowing nonrelativistic potential V~:

V = V —(2p, ) 'VaV,
n

(5)

V =[-m, (r) —m, (r)]/2p,

where the local potential VL, which corresponds
to s-wave pion-nucleon interactions, can be writ-
ten

(p'/2m+ V) g=eg,

where V is the sum of the electromagnetic poten-
tial V~ and the nuclear potential V~, & is the
binding energy of the pion, and m and p are the
pion mass and momentum, respectively. How-

ever, anticipating the relativistic corrections
yielded by the Klein-Gordon equation relative to
the Schrodinger equation, one finds in Na~ the
relativistic shifts are nearly 3 keV, much larger
than the experimental error. Clearly, a relativ-
istic generalization of the above is necessary.

One procedure as discussed in Goldberger and
Watson" is to replace the nonrelativistic kinetic-
energy operator by its relativistic generalization
[(p'+ m')'+ —m]. One can then obtain a relativ-
istic wave equation involving a commutator

(p'+m') g+ [(p'+ m')'~, V] g= (E —V)' $, (2)

where E is the total pion energy including its rest
mass. With the exception of the commutator, this
equation is identical to the Klein-Gordon equation,
assuming, of course, that some suitable relativ-
istic potential can be found. To first order in p',
the expectation value of the commutator vanishes
for a real potential. We chose to treat the
Coulomb part of the problem relativistically, and
to first order the commutator will not contribute
to this part of the interaction. Since we intended
to use an optical potential for the strong inter-
action and this potential is nonrelativistic, we
kept only those terms in the wave equation which
are linear in V~ and dropped the commutator
term because it is a relativistic correction. When
we took into consideration the finite mass of the
nucleus, our wave equation became

(1+m/AM)V'y=[m' —(Z- V )'+2mV ]g, (2)
C n

where M is the nucleon mass and A. is the atomic-
mass number. Letting E=m+c, we find

(V'/2p) g+[e —V+(e- V )'/2m]q=O,

and the nonlocal potential, which corresponds to
p-wave pion-nucleon interaction, is given in terms
of & which, in turn, can be written

a = —L(r) [n, (r)+ n, (r)] .

m, (r) = (4v/m) (1+m/M) [b, + b, (N-Z)/A] p(r)

+ d ming(r)+ &mC(r),

m, (r) = (4r/m4} (1+m/2M)

x [B +B /(A —1)]p2(r)+Am (r), (9)

L(r) = {I+—,'[n, (r)+ n, (r)D-' (io)

n, (r ) = (4v/m')(1+ m/M) [c,+ c,(N Z)/A] p-(r),

(ii)

n, (r) = (4v/m') (1+m/2M) C, p (r), (12)

where p(r) is the nucleon density distribution nor-
malized to A (we are assuming here that the pro-
ton and neutron distributions are identical).

The finite correlation-length correction nm~(r)
is given by

hm (r) = (- 9s /m ) (1+m/M) '
e

x p'(r)(b, '+ b,')pF ',
where pF is the Fermi momentum of a nucleon
in the nucleus and is of the order of 250 MeV/ . c

Here m, (r) and n, (r) correspond to single-nucleon
processes; m, (r) and n, (r) are two-nucleon con-
tributions. The function L(r ) takes into account
short-range correlations between scatterers and
is analogous to the Lorentz-Lorenz effect which
arises from the scattering of light in dense classi-
cal media. " A potential of this form is often re-
ferred to as a Kisslinger'4 potential. These func-
tions are given by
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The corrections ~m1y and ~m2y due to the
Fermi motion of the nucleons inside the nucleus
are given by

eters.

III. EXPERIMENTAL DATA

4m = (m/M) n (r)L(r) (P },
hm = (m/2M) n2(r) L(r)(p2&')

(14)

where (pN') is the mean-square momentum of a
single nucleon and is of the order of —', p&", (p2~')
is the mean-square momentum of a pair of nucle-
ons and is of the order of twice (p&'}.

The single-nucleon parameters b„b„c„and
c, are real; whereas, the two-nucleon parameters
Bp By and C, are complex.

In solving Eq. (4) numerically, we found it use-
ful to rewrite the equation in the following form:

v [(I+a)/2p]~g+((e- V )
C

x [1+(e —V )/2m] —VL] g = 0 .
C

The code used to solve the Klein-Gordon equa-
tion with complex potential was based on methods
used in a program by McKee, "which solves the
Dirac equation for muonic atoms. The Klein-
Gordon equation is solved exactly using a Runge-
Kutte method for developing the wave functions.
A general discussion of the principles of such
techniques is given by Blatt. " We perform a
perturbation calculation to evaluate the vacuum
polarization and Lamb shift corrections.

To check the validity of the integration proce-
dure we calculated the binding energy of a
3d pion in 0' on which the finite size has negligi-
ble influence and compared this with the Klein-
Gordon point value. The agreement was within
0. 1 eV, which is consistent with our convergence
criterion.

In this work, we have assumed that the e's —the
nonlocal parameters —are fairly well known and
used essentially Ericson and Ericson's estimates.
We then used all available 1s shift and width data
from B"to Mg to determine the six parameters
50 5y ReB„ ImB„ReB„and ImB, . The values
so obtained can then be compared to the values
predicted by Ericson and Ericson. Experimental
data is available for He', Li', Li', and Be' but we
hesitate to apply the optical model to systems with
so few nucleons where surface effects and A '
terms may become important. We have, however,
made predictions for these elements although they
have not been used in obtaining best values for the
s-wave parameters. We have also determined the
s-wave parameters assuming that the corrections
&mIF(r), nm2F(r), and n mG are all zero. This
was done to avoid compounding the inherent un-
certainties of these corrections with the uncer-
tainties in our determination of the s-wave param-

The transition energies and widths for the
2p -1s transitions have been measured by many
groups. The first measurements using NaI scin-
tillation counters and proportional counters have
been summarized by West. " These measurements
disagree with each other. More recently solid-
state detectors have been used and these data are
in good agreement with the later measurements
of West except for the width of the Be' line which
was not analyzed properly. 4

In our analysis, we have taken only the solid-
state detector measurements because of their
higher resolution in this energy range. The higher
resolution not only allows more accurate measure-
ment but it also helps to separate out the muonic
and nuclear y transitions in the spectra which are
close in energy to the pionic lines and which com-
plicate the analysis of these lines.

Table I summarizes the present data on pionic
widths and shifts for the 2p -18 transitions as
measured by solid-state detectors. An average
value for each isotope has been derived by weight-
ing each measurement with the inverse square of
its quoted error. The error on the average value
is the reciprocal of the summed inverse squares
of the error for each measurement. The satura-
tion effect, mentioned in Sec. I, is clearly seen
by inspecting the averaged widths as a function
of Z.

IV. CHARGE PARAMETERS

In general, for the nuclei examined (Z & 12), it is
sufficient —to a good approximation —to describe
the charge density in terms of a single length
parameter. This is indeed fortunate, since the
available charge-distribution inf ormation generally
yields very accurately only a single length param-
eter, which can be related to the rms radius. The
rms radii have been taken from electron scattering
and muonic x-ray data. "y" Whenever data were
available from both sources, the results of the
more accurate determination was used. A sum-
mary of the relevant charge parameters is found
in Table II.

In general, we found that the shifts and widths
were insensitive to the detailed charge distribution
as long as the mean-square radius was held con-
stant. For the lower Z nuclei both shell-model
distributions and Fermi distributions (labeled G
and E, respectively, in Table II) were considered.
For nuclei with Z ~ 8 the shell-model distribution
is a Gaussian with a central depression and is
given by

r' c'-
p = p, (1+zvr'/c') e
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where c is the characteristic length parameter;
u is the central depression parameter given by

(u = (Z —2)/2;

and the root mean-square radius rrms is given

by

r ' = c'(6+ 15m)/(4+ Gnat);
rms

p, is a normalization constant.
The Fermi distribution can be written in the

following convenient form:

p = po (I + exp[n(r/c —I)]) (IS)

where the dimensionless parameter n is related
to the half-density radius c and the skin thickness
(90-10%) t through the expression

n= c/(0. 226f} .

TABLE III. Effects of changes in charge distribution
in Na

Comparisons of the energies and widths for
Z «8 nuclei for shell-model and Fermi distribu-
tions with the same rrms were made. The sensi-
tivity to the change of distribution is negligible.
For example, for 0"we assumed a Gaussian dis-
tribution with c/A'" =0.70 F and ur = 2, giving the
same value of Req/A'~ shown in Table II for a
Fermi distribution, and found that the transition
energy and the width differed by 0. 06 keV from
the results obtained from a Fermi distribution.
In our final calculations, we assumed a shell-mod-
el distribution for Z & 4 and a Fermi distribution
for the other cases.

In a two-parameter distribution like a Fermi
distribution, ~rms does not determine the half-
density radius and skin thickness uniquely. There-
fore, we had to check the sensitivity of the bind-
ing energies and widths to the particular combina-
tion of c and n used. As an example, a compari-
son of the results of two pairs of c and n is given
in Table III. Again the results are insensitive to
the change in charge distribution. Here we have
assumed a change in c of 2. 5%. The effect is no
more than a 0. 23-keV changeinthe width of the 1s
level and an even smaller change in the transition

energy. For the most part, we have chosen the
values of c given by Elton, " which are generally
known to within 2%, and determined n from the
observed xrms.

It should be noted that muonic x rays and elec-
tron scattering yield information concerning the
nuclear-charge distribution with the finite size
of the proton folded into the distribution. To get
the density of nucleon centers, we subtracted out

the proton radius from the mean-square nuclear
radius, that is,

(i9)

V. RESULTS

%'e shall now discuss our solutions using the
nuclear parameters obtained from the least-
squares fit of the predicted widths and shifts to the
data. In Sec. VI, we shall examine the values of
the nuclear parameters so obtained.

In Fig. 1, we display the relative strengths of
the local strong potential in comparison with the
electromagnetic potential for a point, as well as
a finite charge distribution, for a pion in Na~. It

20

LEAR POTENTIALS

W NG"

—LOCAL STRONG (REAL)

—- LOCAL STRONG (IMAGINARY)
'

-- FINITE COULOMB

—POINT COULOM B

where (xM') is the mean-square radius of the den-
sity of nucleon centers; (rg') is the nuclear mean-
square charge radius determined by muonic x rays
or electron scattering; (rs')'~ is the rms proton-
charge radius, observed fo be 0. 776 F."It should
be stressed that the predictions were quite sensi-
tive, whether we included this last correction or
not, as the finite size of the proton constitutes an
appreciable portion of the nuclear volume even in
Na". In this element, (rC') 'r' is 2. 945 F, where-
as (rM')'I' is 2. 840 F. As a result, the width
would be 1 keV less, and the transition energy
would be 0.4 keV more, if the proton size were
not removed.

Throughout our discussion, we have assumed
that the neutrons are described by the same dis-
tribution as the protons. The effect of letting the
neutron distribution vary relative to the proton
distribution bears future investigation.

C

1.03
1.005

5.8
5.47

R
eq

g i/3

1.337
1.336

Transition
energy

OI:eV)

278.36
278.43

Width

10.70
10.93

RCQ
"IO

O 2 4 6 6 6 l2

r(F)

FIG. 1. Pionic-nuclear potentials in Na . The real
and imaginary parts of the local strong potential are
compared to the electromagnetic potentials due to point
and finite charge distributions.
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is interesting to note that at the center of the nu-
cleus the repulsion due to the real part of the lo-
cal potential is four times stronger than the
Coulomb interaction. Of course, the total strong
potential is not 26 MeV, since the nonlocal term
is not included in Fig. 1. However, the net strong
potential is repulsive, and it is this strong repul-
sion which reduces the overlap of the pion wave
function with the nucleus, illustrated in Fig. 2.
%e have found that the probability that the pion is
inside the Na" nucleus has been reduced to 24 jo of
the point nucleus value, in excellent agreement
with Fulcher et a/. " For convenience, we have
also included in Fig. 2 a plot of the pion probability
density for a point Coulomb interaction and a finite
Coulomb interaction.

In Table IV, we compare our predictions in-
cluding all corrections listed in the theoretical
discussion with the experimentally observed
widths and energies of 2P -1s pionic transitions.
If we exclude the corrections ~m1y, ~en~, and
4mC, we obtain different "effective" nuclear
parameters but our predicted transition energies
and widths are not appreciably changed. Quantita-
tively, there is excellent agreement between pre-
diction and experiment, as far as the transition
energies are concerned, but we have not been able
to duplicate the strange behavior of the widths in
the region of Na". The least-squares-fit program
has produced better agreement in Na" at the ex-
pense of O' and O' . In order to get a zeasonably
small width in Na", we have had to accept fairly
large underestimations in oxygen. Even the sign
of the isotope shift in oxygen is not correctly pre-
dicted, suggesting some weakness in the formal-
ism in handling the isospin dependence. However,
in general, there has been a significant improve-
ment in the predictions through the use of an ex-
act solution of the Klein-Gordon equation com-

I.O
I
\
\

\

Q5

Is PlON PROBABILITY DENSITY
IN Na~~

--- POINT COULOMB

——FINITE COULOMB ONLY—FINITE COULOMB ANO
STRONG INTERACT ION

IO 40

FIG. 2. The 1s pion probability density in Na as-
suming (a) a point Coulomb charge distribution, (b) a
finite Coulomb charge distribution (both with no strong
interaction), and (c) a finite Coulomb and strong inter-
action. The curves are normalized so that the total
probability of the pion (the probability density integrated
over all space) is the same for the three cases shown.

pared to those obtained with first-order perturba-
tion theory. '

VI. OPTICAL POTENTIAL PARAMETERS

In our present analysis, we concentrate on the
parameters that characterize the local part of the
pion-nuclear optical potential. This is a reason-
able simplification in our case, since we are pres-
ently concerned with an analysis of the available
experimental data on 2p-1s transitions in nuclei
with Z & 13. For such nuclei, the local interaction
dominates.

For the nonlocal potential, we used the theoretical
parameters estimated by Ericson and Ericson. "
However, since these parameters are subject to
uncertainties, we have studied the effects of varia-

TABLE IV. Comparison of experimental and predicted pionic 2P-1s transitions.

Isotope
2p-1s Transition energies

Experiment Prediction Exp erin. ent
Is Vfidths

Predictiona

He

Ll
Ll
B s

Bi0
Bii

C

N
ai6
Qi8

FiS

Na"
Mg

10.69 + 0.06
24.157 +0.057
24.038 +0.057
42.311+ 0.047
65.663 + 0.085
64.905 +0.085
93.099 + 0.092

124.671 ~ 0.144
160.022 +0.235
155.01 +0.25
196.20 +0.35
277.37 +0.41
330.3 + 1.0

10.63
24.15
23.93
42.14
65.73
64.90
93.15

124.53
159.87
155.09
195.01
278.36
329.84

0.000 + 0.086
0.155 + 0.050
0.200 + 0.049
0.601 + 0.049
1.594 + 0.106
1.793 + 0.125
3.138 + 0.125
4.343 + 0.240
7.645 + 0.485
8,67 + 0.70
7.67 +1.20
6.29 + 1.07

0.23
0.32
0.31
0.70
1.79
1.73
3.08
4.75
5.88
4.67
6.49

10.70
13.83

Using best-fitted nuclear parameters in Table V.
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TABLE V. Optical potential parameters.

Best fit
from pionic x rays

Ericson and Ericson
predictions

s-wave nuclear parameters

bo

bg

ReBp
ImBo
ReB~
1mB'

—0.023 +0.006
-0.117 +0.010
—0.016 +0.021

0.0005 +0.0047
—0.090 +0.060

0.466 +0.058

—0.012 + 0.004
—0.097 + 0.007
—0.01

0.012 + 0.001
—0.10

0.099 + 0.022

Effective s-wave nuclear parameters
6vithout corrections)

bp

bf
ReBp
ImBp
ReBg
1mB~

—0.016
—0.111
-0.051

0.0021
—0.090

0.466

+0.006
+0.010
+0.021
+0.0047
+0.060
+0.058

—0.008 + 0.004
-0.097 + 0.007
—0.034 + 0.004

0.012 + 0.001
—0.10

0.099+ 0.022

co

Cg

ReCp

ImCp

Assumed p-wave parameters

0.21
0.18

—0.1
0.1

All the parameters except B~, which is discussed in

Sec. VI, are taken from Ref. 12.

tions of these parameters on our results. The in-
fluence of the nonlocal potential is expected to be
most pronounced in the heavier nuclei; therefore,
we consider Na". Varying c, within a range of
twice its uncertainty produced a change in our
calculated transition energy of about 2% and a
change in our calculated width of about 3%. The
influence of cy was more than an order of magni-
tude down from that of c,. Since the complex
parameter C, is not known to the same precision
as c„we allowed this parameter to vary within a
range of 50% of the values given by Ericson and

Ericson. Typical changes in the calculated en-
ergy were again about, 'Pp whereas changes in the
calculated widths were about 15%. The nonlocal
parameters were also varied in the case of C".
The effect on the transition energy was negligible.
In the case of the width we found variations up to
about 5%. Thus the effects due to the nonlocal
potential, which certainly are not insignificant,
are small enough that they will not seriously af-
fect our present results.

With the nonlocal parameters given in Table V
we have performed a least-squares analysis based
on the available experimental data in order to
determine a set of best-fit parameters that char-
acterize the local potential. In Table V, we give

those s-wave parameters obtained by including
all the corrections mentioned in Sec. II. We
have also calculated effective s-wave parameters,
which would be obtained if the corrections in Eqs.
(9)—(11)were set to zero. In both cases we in-
clude the predictions made by Ericson and Eric-
son. The prediction for By was estimated follow-
ing arguments given in Ref. 12, Appendix B. The
origin of this term is due to spin- and isospin-de-
pendent parts of the two-nucleon optical potential.
To estimate its magnitude we averaged over the
spin and isospin variables, according to methods
discussed in Goldberger and Watson. "

It is seen from Table V that the values of bp by,

ReB„and ReBy obtained with and without correc-
tions agree reasonably well with those predicted
by Ericson and Ericson. Furthermore, the calcu-
lated transition energies are in agreement with
those observed experimentally. This supports
the point of view of Ref. 12 that the pion-nuclear
interaction can be understood in terms of the
basic pion-nucleon interactions, at least in the
case of an elastic process (energy shift).

The calculated widths are still in fairly poor
agreement with those measured experimentally.
This lack of agreement is reflected in the deter-
mination of the imaginary parts of our best-fit
optical potential parameters. These parameters
disagree strongly with the corresponding theoret-
ical predictions. It should be stressed, however,
that if one were to leave out F" and Na" in the
determination of the local parameters there would
be much better agreement in the widths of the re-
maining nuclei. Whether our lack of agreement is
a reflection of a weakness in the optical potential
formalism or is related to some specific effect
in Na" and F" is not clear at this time.

This problem has also been examined by
Backenstoss et al."where the optical potential
has been characterized by fewer parameters.
They reach similar conclusions to ours. After
submission of this paper for publication, we re-
ceived apreprint of a paper by Krell and Ericson"
which elaborates the work in Ref. 21.

VII. CONCLUSIONS

We have found that most of the discrepancy be-
tween earlier predictions of pion-atomic transi-
tion energies and widths was due to not consider-
ing the distortion of the pionic wave function by
the strong interaction and the interference of the
real and imaginary parts of the nuclear potential.
We have found quite good agreement between pre-
dicted and observed transition energies and ac-
ceptable agreement between the real part of the
nuclear potential inferred from the pionic-atomic
data with the predictions made by Ericson and
Ericson. However, there is still a residual in-
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consistency between prediction and experiment
with regard to the widths. It is not clear whether
this latter disagreement is due to a weakness in

the imaginary part of the optical potential formal-
ism or is related to some effect in the higher Z
nuclei which has not been taken into consideration.

*Work supported in part by the National Aeronautics
and Space Administration, under Grant No. NGL-47-
004-033.
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