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that report suggests that the data itself is not incon-
sistent with the results of the present experiment. The
Auctuation in f, which they interpret as a. maximum
connected with the ferroelectric transition, is of the
same order and shape as several unexplained Auctua-
tions in f at other temperatures. In the published data,
the fluctuation in f near T, is not clearly established as
reproducible. Finally, the fluctuation near T, is of the
same order as the general scatter of the data points and
could actually be interpreted as a minimum rather than
a maximum if a slightly diferent choice is made as to
which of the scattered data points are considered to be
more reliable. In light of all these features of the data
published by Hazony et al. , it is reasonable to say that
the previous data are consistent with a negative result,
and that the present data, with smaller scatter of the

data points and better teniperature resolution, further
establish that negative result.

VI. CONCLUSIONS

The temperature dependence of f for FAS is con-
sistent with the anomalous lattice-mode theory of
ferroelectric transitions and clearly indicates the dis-

placive nature of the FAS transition. The linewidth
variation for FAS indicates a temperature dependence
for the structure of the ferroelectric alums, which de-
serves further study by appropriate experimental and
theoretical techniques. The negative results for KFCT
suggest an order-disorder model for the KFCT transi-
tion but do not exclude one particular displacive
mechanism, as was discussed in Sec. V.
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A hydrodynamic theory of spin waves is developed for certain magnetic systems in analogy v ith the
derivation of two-Quid hydrodynamics for liquid helium. The systems considered are "isotropic" and
"planar" ferromagnets and antiferromagnets. In each system, low-frequency spin waves are predicted to
exist at long wavelengths for any temperature below the transition to the paramagnetic phase. The real
part of the frequency' is given exactly in terms of thermodynamic quantities. The damping rate is propor-
tional to the square of the real part of the frequency in each case, and hence is negligible in the long-wave-
length limit, compared to the real part. These results for the damping rates are new, and disagree with
previous microscopic calculations for the Heisenberg ferromagnet and antiferromagnet. An experiment
using neutron diA'raction is proposed to test the hydrodynamic theory in the almost isotropic antiferromagnet
RbMnl'3. The assumptions necessary to derive the hydrodynamic theory are discussed in detail, as are the
limits of validity of the theory, and the applicability of the results to real systems.

1. INTRODUCTION

A NUMBER of models of magnetic systems are
similar to superAuid helium in that ground states

of their ordered phases exhibit broken symmetry with
respect to a continuous symmetry of the Hamiltonian. ' '
It is therefore reasonable to attempt to deduce dynamic
properties of magnetic systems from macroscopic
hydrodynamic considerations, just as one can derive
the theory of two-Quid hydrodynamics for the properties
of superfluid helium. '4 By hydrodynamic considera, —
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Ref. 4 below. ) See also L. D. Landau and E. M. Lifshitz, Fluid

tions we mean a theory utilizing only the conservation
laws for the Hamiltonian, the synimetry properties of
the ground state, and assumptions that one can expand
certain quantities in powers of the gradients and
magnitudes of the deviations from equilibrium, when
these derivations are sufficiently small and slowly
varying.

The motivation for carrying out a hydrodynamic
investigation of magnetic systems is twofold. In the first
place, we hope to increase our understanding of
magnetic systems; in particular, we may make pre-
dictions about the spectrum of spin fluctuations as
measured by inelastic diffraction of neutrons in certain
real systems. In the second place, one can gain insight
into the foundations of two-Quid hydrodynamics for

3fechanics (Addison-Wesley Publishing Co., Inc. , Reading, Mass. ,
1959), Chap. 16.' I. M. Khalatnikov, Introduction to the Theory of Superguid&y
(W. A. Benjamin, Inc. , iXew York, 1965).
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helium, by careful examination of the underlying
assumptions in the magnetic systems, which are, in

fact, somewhat simpler systems than the superfluid.
The principal results of this paper have been stated
previously by the authors, ' ' and applied to a dis-
cussion of critical phenomena.

The theory of two-fluid hydrodynamics' ' describes
the nonequilibriurn behavior of superfluid helium for
situations in which physical quantities vary slowly in

space and time. This macroscopic theory contains, in

a.ddition to the conserved densities of ordinary fluid

mechanics, a new velocity field pertaining to the super-
fluid, whose variations lead to an additional propagat-
ing normal mode in the system, second sound. Although
this theory was introduced on purely phenomenological
grounds by Landau, it was later realized that its
microscopic basis lay in the phenomenon of Bose
condensation. ' "At low temperatures, the equilibrium
states of a Bose liquid possess a,n additional thermo-
dynamic variable, the Bose field density Q (r)), whose
nonzero value corresponds to the breaking of gauge
symmetry. For uniform systems in equilibrium, the
magnitude of the complex function (P(r)) is determined

by the temperature and pressure of the system, but
the phase p is an arbitrary constant. For a nonuniform
state, spatial variations of the phase of Q(r)) lead to
superfluid Row, with a velocity field v, = (h/m)Vy. In
order to obtain two-fluid hydrodynamics, one assumes
that the magnitude of Q (r)) is entirely determined by
the local temperature and pressure.

The ideal magnetic systems considered in this paper
are the planar ferromagnet, the planar antiferromagnet,
the isotropic antiferromagnet, and the isotropic
ferromagnet. The first two of these are systems with an
easy plane of spin alignment, with Hamiltonians that
are invariant under any uniform rotation of the spins
in this plane. "The isotropic systems have Hamiltonians
which are invariant under an arbitrary uniform rota-
tion of the spins. An equivalence of the planar ferro-
magnet to a lattice-gas model for Bose condensation
in liquid helium has been noted by other authors, ' '-who
have been primarily interested in static phenomena, .

For the magnetic systems, the hydrodynamic
variables analogous to v, are the gradients of the direc-

' B. I. Halperin and P. C. Hohenberg, Phys. Rev. Letters 19,
700 (1967};19, 940K (1967).

6 B. I. Halperin and P. C. Hohenberg, Phis. Rev. 177, 952
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291 (1965).
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"We do not mean by planar that the lattice is two dimensional,

or that the axial components of the spins are forced to lie in a
plane for nonequilibrium states of the system. Both the lattice
and the spins are three dimensional.

where the spin-wave velocity c is exactly related to a
stiffness constant p, and a susceptibility X bx

Both p, and X are temperature-dependent thermo-
dynamic quantities that can be obtained from static
measurements: p„can, in principle, be obtained from
the quasielastic scattering of neutrons, while X is the
ordinary magnetic susceptibility in a direction per-
pendicular to the direction of sublattice magnetization
for the isotropic antiferromagnet, and parallel to the
spmunetry axis for the planar systems. In these systems,
the damping rate for spin waves is proportional to k',
which is indeed negligible compared to the real part
of the frequency for small k.

In the isotropic ferromagnet, the real part of the
spin-wave frequency is found to be proportional to k',
for small k. The constant of proportionality is again
related to thermodynamic quantities,

co/k' =p./Mo, (1.3)

where Mo is the equilibrium magnetization. This is
just the well-known formula of Landau and Lifshitz'4
with the use of temperature-dependent values of p,
and Mo. The spin-wave damping rate is predicted to

"L. D. Landau and E. M. Lifshitz, Physik Z. Sowjetunion 8,
153 (1935).

tion of orientation of the order parameter. The other
variables which enter the hydrodynamics are the energy
density, and the densities of the conserved components
of the total magnetization. The magnitude of the order
parameter is a conserved quantity only for the isotropic
ferromagnet.

A central assumption of our analysis is the existence
of a microscopic relaxation time 7., characterizing the
approach to local equilibrium. Specifically, we assume
that if a system initially disturbed from equilibrium
is left to evolve undisturbed for a time long compared
to r, then it will reach a state of local equilibrium
entirely determined by the local values of the conserved
densities and their gradients. Moreover, for the
antiferromagnets and the planar ferromagnet, just as
for helium, ""the magnitude of the order parameter
is not treated as a separate variable but is assumed to
relax in a time r to a value determined by the local
values of the other conserved densities.

Given these assumptions, the main result of this
paper is, in each case, the prediction of propagating
spin-wave modes, whose damping rate is much smaller
than the frequency, in the limit of long wavelengths,
at any temperature below the transition to the para-
magnetic phase. For the isotropic antiferrornagnet, as
well as for the planar ferromagnet and antiferromagnet,
we predict a spin-wave frequency linear in the wave
vector k,
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be proportional to k', for small k, which is again small

compared to the real part.
The spin waves derived in this work bear the same

relation to the spin wave elementary excitations found
at low temperatures by Bloch,"Dyson" and others, "
as hydrodynamic first sound bears to the phonons in
helium" or a crystal. "A sufficiently accurate calcula-
tion of renormalized spin waves in terms of elementary
excitations should at long wavelengths reproduce the
hydrodynamic results. In addition, a microscopic
calculation can give approximate numerical values for
the parameters of the hydrodynamic theory.

Equation (1.2) for the spin-wave frequency was de-

rived microscopically for the isotropic Heisenberg
antiferromagnet at low temperatures by Tani."
Published microscopic calculations of the damping in
this system, '~" on the other hand, have not found a
damping proportional to k' for small k, so that this result
represents a new prediction of hydrodynamics, which
we believe to be correct. A more recent perturbation
theory calculation at low temperatures by Harris,
Kumar, and the authors" has in fact succeeded in
reproducing microscopically the k' damping at long
wavelengths.

For the isotropic ferromagnet, the spin-wave fre-
quency Eq. (1.3) has also been derived by various
authors. '7 Microscopic calculations have predicted a
spin-wave damping proportional to k4 ink, "for small k
and low temperatures, rather than the k4 predicted by
hydrodynamics.

For both normal fluids'4 and superfluids, '" it is
possible to deduce the form of the correlation functions
of the conserved densities for small k and co, once the
hydrodynamic equations are known. Similarly, for the
magnetic systems considered here, we may find the
long-wavelength low-frequency form of certain correla-
tion functions which are directly related to inelastic
neutron scattering experiments.

In Sec. 2 we discuss in detail the derivation of the

"F.Bloch, Z. Physik 61, 206 {1930).
'6 F. J. Dyson, Phys. Rev. 102, 1217 (1956); 102, 1230 (1956).
"For a comprehensive review see F. Keffer, in Irawdbuch der
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(1967} LEnglish transl. : Soviet Phys. —JETP 26, 674 (1968)j.' L. P. Kadano8 and P. C. Martin, Ann. Phys. (N. Y.) 24,
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hydrodynamic equations for the planar ferromagnet.
In Sec. 3 we use these results to obtain dynamic
linear response functions and correlation functions for
the system. In Sec. 4 we interpret the planar ferro-
magnet as a lattice gas model for superfluid helium,
and we discuss the similarities and differences between
the hydrodynamics of the magnetic and helium systems.
The planar antiferromagnet, the isotropic antiferro-
magnet and the isotropic ferromagnet are considered
in Sec. 5, 6, and 7, respectively.

In Sec. 8, we discuss the probable limits of validity
of the long-wavelength hydrodynamic theory in the
ideal magnetic models under consideration. The
applicability of the hydrodynamic theory to a real
antiferromagnet or ferromagnet with small anisotropy
is discussed in Sec. 9.

In Sec. j.o, we reexamine one of the assumptions used
in this paper and, implicitly, in derivations of two-
Quid hydrodynamics, 3 4 '0" namely, the assumption
that the magnitude of the order parameter relaxes to
local equilibrium at a nonzero "microscopic" rate.
Although this assumption is indeed questionable, we
argue that it is almost certainly not necessary for the
validity of hydrodynamics in all of the magnetic
models in the absence of an external magnetic field.
However, a possible breakdown of this assumption
could affect the hydrodyanmic predictions for the
intrinsic linewidth of Brillouin scattering in superfluid
helium and in ordinary crystalline solids.

In Sec. 11 we discuss the breakdown of linear hydro-
dynamics in the ideal magnetic systems, for Pnite
deviations from equilibrium. Since the only direct
measurements of the spin-wave spectrum, via inelastic
diffraction of neutrons, yield the response of the
system to infinitesimal perturbing fields, this section is
not of direct experimental relevance. It is useful,
however, in revealing differences between the dynamic
properties of the various magnetic systems and of
helium. In the Appendix we derive the relation be-
tween the stiffness constant p, and the linear response to
a static inhomogeneous magnetic field.

The possibility of testing the hydrodynamic theory
of spin waves by neutron experiments on a nearly
isotropic antiferromagnet is discussed in Sec. 9.

BC=Xp—H. Q S;*, (2 1)

Kp= —Q LJ"*S;*S'+J,,'(S, S,*+S;"SP)], (2.2)

2. PLANAR FERROMAGNET

A. Equilibrium States

%e shall 6rst consider an anisotropic ferromagnet
with an easy plane of magnetization, which we call
the planar ferromagnet. "I.et us consider a lattice of
spins whose Hamiltonian is
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(S )=0, (2.4)

where X is the number of lattice sites in the system,
M& is positive, and the angle y is arbitrary. (For a model
with nearest-neighbor interactions only, this planar
alignment will occur if J' is positive and greater than

~
J'~.) If a Geld H, is applied which is less than some

critical-Geld strength, the ground state will still have a
ferromagnetic alignment in which M&&0, but it will
now also have

(S,*)=X 'M, WO. (2.5)

If the temperature is raised, one will eventually
reach a critical temperature T„above which M& will
vanish. We shall refer to the system in the paramagnetic
phase above T, as a planar paramagnet.

The equilibrium states of the planar paramagnet are
determined by the values of the two conserved quanti-
ties: M, and the internal energy

E= (Kp). (2 6)

The entropy of the equilibrium system is a function of
E and M, :

S=SO(E,M,) . (2 7)

If the paramagnet is in true thermal equilibrium at
some temperature T, then the value of M, is determined.
by the external Geld H, and the entropy S; in particular,
M, must be chosen to minimize E—H,M, for the
given entropy. Thus, in true thermal equilibrium we
have

where S; is the value of the spin angular momentum on
the ith lattice site, Xo is the intrinsic Hamiltonian of
the spin system, and H, is an applied magnetic Geld in
the z direction. (We have chosen our units of magnetic
Geld strength so that the gyromagnetic ratio is unity).
The coupling constants J;,' and J; are assumed to
depend only on the coordinate diRerence between
lattice sites i and j. Note that the Hamiltonian 3C

is invariant if all the spins are rotated simultaneously
about the z axis. The z component M, of the total
magnetization, as well as the internal Hamiltonian
Xa, commute with the total Hamiltonian X, and are
constants of the motion.

With proper choice of the coupling constants J,
the ground state of the system without an external
Geld will have a ferromagnetic alignment of the spins,
with (S;) in an arbitrary direction of the g-y plane,

(S; )+i(S;~)=M,e*~/Ot, (2.3)

B. Hydro~~le Description

Let us deGne a magnetization density m and m
(internal) energy density e according to

rn(r) =(2 S &(r—r')) (2.10a)

for the given 6eld H, . In fact, we expect that any state
of the system in the paramagnetic region will eventually
relax to an eqgihbrilm state completely determined by
the initial values of E and M„and independent of the
field H, .2' Lin particular, the entropy is given by (2.7),
independent of the value of H, .j Only, if the system
is in true thermal equilibrium defined by (2.8), however,
will the state be stable in the presence of any small
perturbation which does not conserve M.. It will be
convenient, throughout this section, to retain the dis-
tinction between equilibrium, where M, is independent
of H„and true thermal equilibrium where M, and H,
are related by Kq. (2.8).

Below the transition temperature, the equilibrium
states of the ferromagnet are not adequately described
by specifying E and M„'one must also specify the
direction y of alignment of the perpendicular component
of the magnetization. Of course, the entropy S will be
independent of q, and Kq. (2.8) will still describe the
condition for the equilibrium state to be the state of
true thermal equilibrium in a Geld H, .

In order to specify an equilibrium state of the ferro-
magnet it is not necessary to give the value of Mj. The
x and y components of the total magnetization do not
commute with the Hamiltonian X and are not con-
stants of the motion. Although the component M,
can be changed from its equilibrium value M&
=Ma(E, M,) by the application of an external perturba-
tion (e.g. , by a magnetic Geld in the a direction), the
value of M& will presumably relax, after the perturba-
tion is turned oR, towards the value of M& determined
by the values of E and M, at the instant the perturba-
tion is turned off. The exact nature of this relaxation
is not known. For the bulk of this paper, we shall
assume that this relaxation is characterized by a non-
zero @microscopic rate, even in the limit where the
deviation from equilibrium is small. As noted in Sec. 1,
a similar assumption about the relaxation of Quctuations
in the magnitude of the order parameter is implicit in
the Landau-Khalatnikov'4 derivation of two-Quid
hydrodynamics for helium. There is some reason for
questioning this assumption, however, and we shall
discuss this point in greater detail in Sec, 10.

h(E,M,) =H„
where h is deGned in terms of Kq. (2.7) by

(2 8) ,(.) = —(E LJ,,*S,*S,*

+ ;J,'( ,S* S+ ,S" pS))b(r —r,)), (2.10b)
h,=&E/8M*i s. —(2 9)

Because M, is a constant of the motion, however, we
may also have an equilibrium state in which M, is not
equal to the thermodynamic value determined by (2.8)

where r; is the position of the ith spin. The expectation
"The total effect of the applied Geld on the time evolution of the

system is equivalent to a transformation to a spin coordinate
system which is rotating about the s axis, as we shall see below.
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values denoted by the angular brackets in (2.10) may
be evaluated if a density matrix for the system is
known. In the equilibrium states, the functions m and ~

a,re uniform and are equal to M and E, respectively.
(We take the volume of the system to be unity. ) We
shall also wish to consider systems in which e(r) and/or
m(r) are not uniform, but exhibit small deviations
from uniformity which are slowly varying in spa, ce.
)We are not concerned with short-wavelength varia-
tions in these quantities, and we may, if we wish, choose
the B functions in (2.10) to be broad and give an average
over some region of space. In any hydrodynamic theory
one is concerned with states in which the long-wave-

length variations in densities such as m(r) and e(r)
are known, but where the short-wavelength variations
are unspecified. ]

If a state in the ferromagnetic region has a magnetiza-
tion m(r) which varies slowly in space, then we may
define a phase function v (r) according to

m, (r)+im„(r)=m, (r)ef«' (2.11)

m, (r) =Mo[e(r), m, (r)]. (2.12)

"Ifm„~,and p are uniform, of course, the system must be in
the equilibrium state for the given M„1;,and p.

If a, state with an initially nonuniform value for
m(r) or «(r) is allowed to evolve undisturbed, it will

eventually relax to an equilibrium state in which m
a,nd ~ are uniform. Because the total M, and I'' a,re
conserved, however, rn, (r) and e(r) cannot relax to
uniform values in a microscopic time 7 if the spatial
scale of variation is very large; energy and/or mag-
netization must be transported from one place to
another, and this transport cannot occur rapidly over
arbitrarily large distances. Similarl~, in the ferro-
magnetic phase, a long-wavelength variation in y(r)
cannot relax rapidly to uniformity; knowledge of a,

perturbation in the phase at one point in space ca.nnot
be transmitted instantaneously to another point a,

large distance away.
If one wishes to describe the state, after some

elapsed time t, of a system which was initially non-
uniform, it is at least necessary to specify the long-
wavelength variation of e(r), m, (r), and v(r). We
assume that after some microscopic time r, the state
of the system is completely determined by the long-
wavelength variation of e, m„and p, and that the
details of its past history are unimportant. For example,
in a system with slowlv varying m, (r) and/or e(r), the
magnitude of the order parameter m, (r) will also be
nonuniform. After a time r, however, the value of
m, (r) will be determined by the functions m„e,and
y. In particular, to lowest order in the variation of
these fields, the value of m, (r) will be related to the
local values of e(r) and of m, (r) in the same way that
3fj is determined by E and 3f, in equilibrium":

If the state of the system is determined by the
functions e, m„and p, then we must be able to express
Be/Bt, Bm./Bt, and Bp/Bt as functionals of e, m. , and y.
We shall assume that it is possible to express the time

derivatives of e, ni„and rp as an expansion in the spatial
derivatives of these quantities It. is convenient to intro-
duce a new variable, the vector function

v (r) =—W v (r) . (2.13)

Bv(r)
—= —VP(r),

Rt
(2.15)

Bm, (r).= —V t-*(r), (2.16)

Bg(r)
= —V j(r),

Bt
(2.17)

where P, j"'* and j' are functionals of m„e, and
The right-hand sides of (2.16) and (2.17) can be written
as the divergences of vector fields because the volume
integrals of the left-hand sides vanish a,s a consequence
of the conservation laws. Microscopic definitions of the
currents j™and j', in terms of the spin operators S;,
may be written down but are unnecessary for our
purposes. In view of (2.15), we may consider that
v(r) is a conserved quantity, whose current is given by
the product of P(r) and the unit tensor. In fact, from
the definition of v(r), it is clear that if we impose
periodic boundary conditions on the ferromagnet, then
J'v(r)dr must be constant in time, as long as v (r) is
continuous. If there are only small deviations from
equilibrium (~ v (r) —

v (r')
~

-.ir), then we must have

v(r)dr=0

The vector field v(r) is completely analogous to the
superHuid velocity v, in liquid helium.

I.et us first evaluate the function P under conditions
of equilibrium in a uniform system. If the system is in
true thermal equilibrium [Eq. (2.8)], we assert that
dp/dt=0. This must be true, physically, because the
true thermal equilibrium state is a state which mini-
mizes the total energy for a given value of the entropy;
this state must be stable in the presence of a small
dissipative term, such as coupling to a radiation field,
which does not conserve M, . If there were a, macro-

Fluctuations in Vp are of the same order as fluctuations
in m, in the long-wavelength limit because physical
properties such as the energy or entropy are indepen-
dent of the over-all magnitude of @.

Let us write
Bp(r) = —P(r),
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scopic Mj rotating at a nonzero rate, the system would
radiate and would lose energy to the radiation field,
which is impossible if the system is already in the lowest
possible energy state for the given entropy. On the
other hand, if the system is initially in equilibrium with
h(M„E) not equal to H„the system could radiate
energy by letting M, relax to its true thermal equili-
brium value, determined by Eq. (2.8); in fact, we shall
see that dp/dt is not zero in this case. Let us write
the Hamiltonian of the system as BC =3CO —H,S„where
5,=+,5;*. Since Xo commutes with H,S„wemay
write

exp( i3Ct—/ii) =exp(iH, 5,i/0) exp( iXo—t/k), (2.18)

where the first factor is equivalent to a rotation of the
spin system about the s axis by an angle ( H, t); "—and-
the second factor is the time-evolution operator in the
absence of the external field H, . The equilibrium state
of the system characterized by a given value of M,
and of E will have d p/dt =0 when it is placed in an
external field H, =h(E,M.), corresponding to true
thermal equilibrium. The same state in the absence of
the field H, will have

dy/dt =H, =h(E,M,),
as can be seen from Eq. (2.18) with H, =H, . More
generally, if the state is placed in an arbitrary field H„
it will precess at a rate

d p/dt, =h(E,M.) H, . —(2.19)

LFor example, if M, =O, we have h(E,M, ) =0 and the
system will precess at the Larmor frequency (—H.).]
Thus, we have

invariant under reflection; it is then clear by symmetry
that there can be no term in P linear in v itself.

Let us now consider j'(r). We require that the energy
current vanish if ~, m„and p are constant. The energy
current may therefore be written

j'(r) =A (r)v(r)+ j"(r), (2.21)

where A is a function of e(r) and m, (r), to be deter-
mined, and j" is proportional to various space deriva-
tives of e, m„and v. We neglect terms in j' of order v'

and higher. In general, the coefFicient 3 will be a
second-rank tensor. We shall assume, however, that
the lattice has cubic symmetry, so that 3 can be treated
as a scalar. " For j ' we may write the following,
corresponding to (2.21):

j *(r)=B(r)v(r)+j" '(r). (2.22)

4/Iuch of the content of the hydrodynamic theory is
obvious at this point. Let us define a column vector

m. (r)
U(r) = e(r).v(r) &

(2.23)

where Ri and R. are real matrices. If we consider only
the first terni on the right-hand side of (2.24), the
equation will have solutions at

We shall write linearized equations of motion expressing
BU/dt as an expansion in gradients of U. If we take
the Fourier transform of these equations of motion, we
find an equation of the form

(2.24)

P(r) =H, —h[e(r), m, (r)j—h'(r), (2.20) —co =r k, i = j., 2, 3, (2.25)
where ii' involves the various space derivatives (hrst
derivatives and higher) of e, m, and v.'s There will also
be terms in rP proportional to i~, etc. , but we may
neglect these for small deviations from equilibrium.
We shall assume for convenience that the lattice is

"Since 5, is the generator for rotations of the spins about the
z axis, the unitary operator expLiB+, t/fQ will change the value
of & by the amount (—EX,t). This may be expressed by the state-
ment that p is canonically conjugate to 3I,.

"For superAuid helium, the equation equivalent to (2.19) is
dv,,/at = —&p, , where y is the chemical potential. In the deriva-
tion of two-fluid hydrodynamics in Ref. 4, Khalatnikov never
introduces the microscopic definitior of v, as the gradient of the
phase of the Bose field, and therefore does not use the fact that
the phase is conjugate to the particle number (see Refs 12 and
27). Khalatnikov claims to derive the equation for Bv,/8t directly
from a differential equation comparable to Eq. (2.32) of this
paper. We believe that his derivation is not complete, however,
and that his differential equations are compatible with the
relation 8v, /R= —&(p+A), where A is an arbitrary function of
temperature, independent of the density. Khalatnikov's equation
for the entropy current would be simultaneously modified to
include the additional term p„(v,—v„)dA/d T. In I.andau's
original phenomenological derivation of two-Quid hydrodynamics
(Ref. 3), he assumed that the superQuid carries no entropy and
hence A is a constant which may be set equal to zero.

where r; are the eigenvalues of Ri. Because Ri is real,
it follows that the complex conjugate of any eigenvalue
is also an eigenvalue. If the equilibrium state of the
system is to be stable against the growth of inhomo-
geneities, then all the eigenvalues of Ri must be real.
The second term on the right-hand side of (2.24) will
lead to a damping of order k'.

In Sec. 2 C we shall find an explicit expression for Ri
in terms of thermodynamic quantities. The three
eigenvalues will have the form r=0 and r=&c, cor-
responding to heat fluctuation and spin-wave modes,
respectively. In Sec. 2 D, we shall find an expression
for the damping rate R2, in terms of transport coe%-
cients for the spin system. These coeScients cannot
be measured directly, however, except for the thermal
conductivity, and the purpose of Sec. 2 D is primarily
to complete the analogy with Khalatnikov's treatment'
of the helium system.

"By cubic symmetry we mean that the constants J; ' and
J;; have cubic symmetry separately..J. v
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S= (sLe(r), m, (r),v(r) j+s'(r) }dr, (2.26)

where s' involves various space derivatives of e, m„
and v, and may not be uniquely determined. If v(r)
is zero, we must have

s(r) =Spam(r) m (r)], (2.27)

where Sa is the equilibrium function defined in (2.7).
More generally, we may write

v' p, (e,m. )
s =So(e,m. ) —— +

2 T(E,m.)
(2.28)

In (2.28) we have neglected terms of order v' and higher;
the temperature T(e,m, ) is

T =—BSp/B t)' (2.29)

and the coefficient p, is defined by (2.28). The coefficient
p„which is analogous to the superQuid density in
helium, 4 may be identified as a stiGness constant for
variations in the direction of spin orientation; p, must
be nonnegative if the ferromagnetic system is stable.
Ke show in the Appendix that p, is related to the linear
response of the system to a static inhomogeneous
magnetic field in the x-y plane by

«(k ate=0) =No'/p k'. (2.30)

C. Expression for Spin-Wave Velocity

In the hydrodynamic theory, we assume that the
functions c(r), m, (r), and v(r) determine the entropy
of the system. In fact, there are many possible density
matrices that one may associate with a given non-

equilibrium state of the system, and the entropy will

be different for the different cases. (The entropy, of
course, is not an observable quantity. ) We assume,
however, that the entropy is at least uniquely deter-
mined to lowest order in the gradients. Thus we may
write

variables, rather than m„e,and v. In order to determine
the function B, we suppose that at a certain instant
of time we have

p,v=ak cosk r

h=ho+b sink. r,
T=const,

(2.33)

where B and p, are evaluated at h=ho. The quantity
(J's'dr) is at least of order k, and its time derivative
will be at least or order k'. Since ah can be positive or
negative, and since the total entropy cannot decrease
with time, we must have

(2.35)

In a similar fashion, consider a system where h is
constant, but where p,v and T have a sinusoidal varia-
tion. Ke find that

A = —p,h. (2.36)

Ke may now use these results to find the linearized
equations of motion, up to terms first-order in the
gradients:

Bv/Bt =Vh,

Bm,/Bt =p,V v,

(2.37a)

(2.37b)

(2.37c)

(2.37d)

where
~ a~, ~

b ), and k are small, and k is a unit vector
in the direction of k. Let us integrate (2.32) over the
volume of the system, and let us keep only terms first-
order in k, and lowest-order (quadratic) in u and b, on
the right-hand side of (2.32). We find (after integration
by parts)

BS 8 1 abk B
s'dr =— 1+—+0(k'), (2.34)

Bt Bt 2 T — p

Using (2.28), (2.29), and (2.9), we find that

Bs Bm. Bv Ba a' B(p,T ')-
T +h +p,v ————= —T— =0. (2.31)

Dt Bt Bt Bt 2 Bt

Because the entropy does not vary in time, Eq. (2.37a,)
may be written

82v 8
— -=—X;~Vm„
BP Bt

(2.38)

The right-hand side of (2.31) is negligible, for our
purposes, because it is cubic in the deviations from
equilibrium.

Let us now substitute Eqs. (2.15)-(2.17) and (2.20)—
(2.22) in the left-hand side of (2.31). After some
rearrangement we find

where X, is the isentropic susceptibility, defined by

X. '= Bh/BM—,
~
a. (2.39)

Equations (2.37b) and (2.38) have a spin-wave solu-
tion at frequency

8$—=T 'fhV (Bv+j"*')
Bt —p,v. V (h+h') —V. (4v+1")j. (2.32)

It is convenient to let h, T, and (p,v) be the independent

with
o) =+ck,

c = (p,/x, )»2.

(2.40)

(2.41)

Equation (2.37c) may be put in a simple form for the
case of small Quctuations about true thermal equj-
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librium (h =H,):
BLe(r) —H,m, (r)j/Bt =0. (2.42)

and v:

(2.4/a)

=pgV v++ KggP2tsg )

co~(k) =&ck —-', tDk',

In the case where the average magnetization M, equals
zero, we need not distinguish between the isentropic
and isothermal susceptibilities.

If the external 6eld H, is zero, then X ' is a measure of
the preference of the spins to line up in the x-y plane. Bv
In the limit J' —+ J', the susceptibility X will tend —=X—Vm. +K~&p,V (V v).
towards inhnity, and the spin-wave velocity c will tend
towards zero. This is consistent with the fact that the ~ I t f E (24))
spin-wave velocity in an t'sotropic ferromagnet is zero

with frequency
in the limit of long wavelengths. %e shall discuss this
system further in Sec. 7.

(2.47c)

(2.48)

D. Dissipative Terms

Let us now return to the full equation (232). Sub-
stituting (2.35) and (2.36) we find

and a heat diffusion mode with frequency

~, (k) = —ixC 'k'= iDrk2—. — (2.49)

In Eq. (2.48), c is given by Eq. (2.41), and Dis given by
8$

T —+V (qT-')
Bt

(2.50)D =x—'Kgg+p, K33,

and we have neglected terms of order k3. Equations
(2.48) and (2.49) with the definitions (2.28) and (2.41),
constitute the central result of this paper. They are
valid at any temperature T&T„for sufficiently long
wavelengths, i.e., for k«k, (T), where the cutoff k.
depends on T but is presumably 6nite for any 6xed
temperature in the range 0 T(T,.

(2.43)—j"* .Vh+h'V (p.v) —T 'q VT, .

where the "heat flow" q is de6ned by

q =j"—hj™/+h'p,v. (2.44)

The right-hand side of (2.43) is called the dissipative
function, and is generally positive. To lowest order in
the deviations from equilibrium and lowest order in
V, we may write

E. Paramagnetic State

In the paramagnetic state, the phase y is not well
defined, and there can be no terms involving v in the
equations of motion for m, and e. The correct expres-
sions for the paramagnetic state may be obtained from
those of the ferromagnetic state simply by setting
p, =0 in the latter. Ke now find two diGusive modes for
the time dependence of m, and ~. For small deviations
from M, =O, the two modes are uncoupled; we then
6nd a thermal diffusion mode whose frequency is
given by Eq. (2.49) and a diffusion mode for M, whose
frequency is given by

(2.45a)

(2.45b)

(2.45c)

q = —K»V T—K»V h,

j ''= —K2iVT —K22Vh,

h'=K33p, V v,

where the transport coefficients K;, depend on E and
M, . By symmetry, the vectors q and j ' cannot have a
term proportional to Vv. Similarly, the scalar h'

cannot have terms proportional to V T or Vh.
We shall now restrict ourselves to the case M, =O,

which is appropriate for fluctuations about true thermal
equilibrium in zero external field. Here one can show
by symmetry that K» =K» =O. The constant K» = ~

has the interpretation of a thermal conductivity,
while K22 is a spin transport coefFicient. The constant
K33 is analogous to the second viscosity coefFicient in
the theory of liquid helium. 4 When M, =O, we ma
write

(2.51)co = —ix-'K2, k'=——i Dk'.

3. LINEAR RESPONSE AND CORRELATION
FUNCTIONS FOR PLANAR FERROMAGNET

A. Linear Response Functions

dT=C 'de)

Let us consider the linear response of the planar

(2 46) ferromagnet to an external perturbation

where C is the specific heat, and we need not distinguish
between the speci6c heats at constant magnetization
and constant held. Similarly, we may drop the sub-
script s from the susceptibility X. We then find the
following linearized equations of motion for m„

aC'(t) = — b(r, t)B(r)dr, (3.1)

where the operator B(r) is an arbitrary linear combina-
tion of the operators a(r) and m(r). Let us assume that



for times t less than an initial time to the coefFicient

b(r, t) is zero, the system is at thermal equilibrium in
zero external field H„and the system is in a ferro-
magnetic state with M aligned in the x-direction.

Let (A (r, t)) denote the expectation value of an oper-
ator A (r) at time t in the perturbed system. The linear
response function xqa(r, t) may be defined by

+ x~(((r —r', t t')b(—r', t')(lr'(lt'+0(b '), ('3-.2)

where (A)0 denotes the expectation value of A in the
unperturbed system. Let us now suppose that b(r, t)
vanishes for t&ti. If the disturbance is of sufIiciently
long wavelength so that hydrodynamics applies, then
for t)ti+r, the quantities (e(r, t)), (m, (r, t)), and

(m„(r,t)) must obey' the hydrodynamic linear equa-
tions of motion derived in the previous sections. (Since
we keep only terms linear in b, we have (m„(r,t))
= (Mo(((,M, )(p(r, t).j It follows that the Fourier-
transformed response function x ~a(k, ca) will have poles
a.t the frequencies co+(k) and (d, (k), given b& (2.48)
and (2.49). Consider first the case where A = c. Here
the residues at co+(k) vanish and we may write

X,s (k,co) = r, a (k)/(ca+ iDrk')+ R,a (k,cu), (3.3)

where the poles of R,a are at least a distance 1/r from
the real axis. (More accurately, since the singularities
in R,~ are probably not a discrete set of poles, we
assert that all variations of R,~ take place over a,

frequency range equal to or larger than 1/r. ) The cor-
rection term R,~ arises from the short time behavior
of x,z where the hydrodynamic equations need not be
valid. Because the energy is a conserved quantity, the
energy density (c(r,t)) can only change very slightly
between times fi and ti+T, if the perturbation II' is
slowly varying in space. Consequently, the correction
term R,~ will be negligible in the long-wavelength
limit. The residue r, ~ can be determined if the static
susceptibility x,a(k, O) is known. For the case 8= e,
we have

relation (for A and 8 Hermitian)

x~(((k,(d) = x~a(k, —cv)* (3.7)

for cv on the real axis. Once again we may argue that the
function R~~ is negligible in the long-wavelength limit,
if 2 is the conserved quantity m, . We may also argue
that R~~ is negligible compared to the first two terms
in X,i~ when A is m„,because the angle &p has no pre-
ferred direction (cf. the Appendix). As a consequence
of Eqs. (2.47), the residues r~(( must obey the relations

( i( ~—+x 'K--k')r. ..(( p——,li(Io 'k '—r „a.-(3-.&)

For the static response functions we have

x„,,„(k,0) = x+0(k'), (3.9a)

x„,„„,„(k,o) = M,'/p, k'+0(k'), (3.9b)

x„...„„(k,O) = x„,„,(k,O) = O. (3.9c)

~ L

(3.11b)

Equation (3.9b) is established in the Appendix, while

(3.9c) is an exact relation tha, t follows from simple
symmetry considerations.

AVe can now determine the residues in the long-
wavelength limit. 3

r,„,= (—p,k/2c)[1 —(il, /c)X 'K2t, +0(k')g, (3.10a)

r „,,= r, „=— 2iMO(1 —(ik/2c)D—+0(k') j, (3.10b)

r „„—(M=o'c/2p, k)

X [1—(ik/c) p„f(.„(+(i(I.')j , (3.10c).
We may readily verify that the approximations to

x.,(a(k,(0) obtained from (3.6) and (3.10), neglecting
R~~, are consistent to lowest order in k, with the exact
sum rules derived from the equal-time commutation
rela, tions

lim x„(k,0) = TC, (3 4)

where C is the specific heat per unit volume. W'e there-
fore have, in the long-wavelength limit,

x„(k,~) =iDrCTk'/(~+iD&k'). (3.5)

Let us now consider the case where ~$ is m, or m„.We
ma~ now write

+R~(((~) . (3.6)

In (3.6) we have suppressed the k dependence on the
right-hand side, and we have made use of the general

Alternatively, we could have derived (3.10) using
(3.11), instead of (3.9). Note however, that the approxi-
mation (3.5) for x„does not satisfy the sum rule
(3.11b), because of contributions to the integral from
the region of large co where the approximation is not

' The assumption that we can neglect the remainder term EAfI
in (3.6) when computing y „„,(k,0), is somewhat more diffIcult
to justify than the other assumptions we have used in this section,
because the contributions from the two poles involve the difference
between two large numbers. If we were to relax this assumption,
v e would have to multiply each residue in (3.10) by the phase
factor (1+iok), where n is an unknown constant. Such a phase
factor v ould have a negligible effect on the quantities which are
observable in practice, i.e., the position, area, and width of the
spin-wave peaks in neutron diffraction,
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valid. A third method of arriving at the leading term
in the three equations (3.10) is to assume initially
response functions of the form (3.6) with the spin-wave

frequency co+ ———or * as an undetermined reaI, quantity.
If we neglect the contributions of R~I~ to the sum rules

(3.9) and (3.11), then these equations suffice to deter-
mine both the positions and residues of the poles. This
method does not take dissipative terms into account,
nor does it show that they may be neglected at long
wavelengths.

Let us now consider the remaining linear response
functions for the variables I and z. By exploiting the
invariance of the ferromagnet under a spin rotation
of 180' about the x axis, we can show that X«s(k, «0)

=
X II~(k,«e) =0, if 4 is m„orm, and 8 is e or m, . On the

other hand, the response function & ., will not vanish.
For times f) tl+r, we know that (m, (r, t)) is related to
(e(r, t)) and (m, (r,f)) by (2.12). It follows that

BMp
x„...(k,eI) = x„(k,ei)+E „(k,eI) . (3.12)

8F»

Using the invariance of the ferromagnetic state under
the combined operations of time reversal and rotation of
the spins by 180' about the s axis, one can show that

X, .(k,«e) =X „(k,ei).

Finally, using ('2.12) again we get

As in the previous equations, the remainder terms E of

(3.12)—(3.14) have no poles closer than 1/r to the

real axis. Unlike the previous cases, however, the term

R .„,.is definitely szot small compared to the first term;
in fact, the remainder term in (3.14) is probably larger

by a factor 1/k in the long-wavelength limit at zero

frequency. 2' " It is not clear how large the remainder

terms will be in (3.12) and (3.13).

B. Correlation Functions

I.et us define the equilibrium correlation function

Cgri(r I)= ', ((;l (r-f), B(00)})ii—(:l)s(8)„

where the curly brackets denote the anticommutator.
As is v ell known, the susceptibilities x are determined

by the correlation functions C and vice versa. 24 In
particular, when .4=8, the Fourier transformed cor-

rel«, tion function C is rel«, ted to X by

Ci «(k el) =k coth(hei/2ksT) Imx~~(kid). (3.15)

In the range where hydrodynamics is valid, v e have

Aid/k «IT((1 alld

C„„(k,«e) =2kI«T ImX„g(k,el) jei.
BMp '

X, .(k,(d) = x„(k,te)+R,„,(k,ei). (3.14)
8E Thus we find

(3.16)

Dgk"-

C„(k,ei) = 2CkII T"-

«et+ (DI k')'

2xk «IT(c'Dk«+X 'Kssk'(Id' —c'k') ]
C ,„,(k,id) =

Dei ck)'+ ( ', Dk—')']Did+-ck)'+ ('Dk')']-
2M ssk «IT [c'Dk«+ p,Kssk'(eis c'k')]-

C.,„„(k,~) =-
p O'L( eci k)'+(-', Dk')'] (L&+ec )k' +(-'Dk')']

(3.17)

(3.18)

(3.19)

The above correlation functions consist of one or two
narrow peaks, with widths of order k2 and Lorentzian
line shapes, in the long-wavelength limit. Corrections
to the above formulas should be smaller by a factor 0',
«s ineasured by the areas under the frequency distribu-
tions at fixed k.

The correlation function C, ,(k,«e) should have a
peak of la.rge area, and width 1/r, arising from the
remainder term in (3.14), in addition to a narrow peak
proportional to C„(k,id).

C. Paramagnetic State

XVe may find the correlation and response functions
in the paramagnetic state by the same methods we have

used for the ferromagnetic state. We again consider the
case where the system is initially in true thermal
equilibrium in zero external field H, . We find

X„(k,co) =iDrTCk'/(Id+iDrk'),

x,(k,ei) =iDxk'/(«a+i Dks),

(3.20)

(3.21)

so that the corresponding correlations functions have
narrow di6usive peaks

C,.(k,«e) = 2CksT'Drk'/(co'+ (Drk')'] (3.22)

C„,,„,,(k,«e) = 2xkIITDk'j[uIs+ (Dk-")']. (3.23)
"K. Kawasaki and H. Mori, Progr. Theoret. Phys. (Kynt&))

25, 1043 (1961); 38, 1052 {'1967); K. Tani and H. Tanaka,
Phys. f.etters 26A, 68 (1967); V. G. Vsks et a/. , Ref. 23.
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On the other hand, the response function X „„(k,co),

which is now equal to X„.„.(k,co), has no poles nearer
the real axis than 1/r, and the corresponding correla-
tion function will have a broad peak with width of
order 1/r Th.e cross-correlation functions and response
functions all vanish for A and 8 equal to e, m„m„,
or m. .

4. EQUIVALENCE OP PLANAR FERROMAGNET
AND BOSE LATTICE GAS

The planar ferromagnet with spin ~~ is equivalent
to a lattice model for a system of interacting bosons, ' '
whose Hamiltonian is

O, =q;S;, (5 1)

q;=+1 on sublattice A,
q;= —1 on sublattice B.

(5.2)

By definition, the ground state of the planar anti-
ferromagnet has

Eq. (2.2). The coupling constants J„'must have
different values, however, so that the ground state of

the antiferromagnetic system will have a magnetiza-
tion in the x-y plane which changes sign from one unit
cell to the next. Let us divide the lattice into two sub-

lattices A and 8, and let us define new variables

X=g .(k)a'(k)a(k)+-', g V(r, —r;.)a,ta,'tu;. a;, (4.1)

where a,t is the creation operator for an electron on
lattice site i, at(k) is the Fourier transform

(Q,.)+'(e, &-=~""/~«.
In finite field H„wemay also have

(S;*)=iV.WO.

(5.3)

(5 4)

(4.2)

and V(r;—r; ) is an interaction potential which is
infinite if ~=i . The equivalence between the spin and
boson systems is established by setting Le;,Q,"j= (i/h)S, , etc-'. (5.5)

The three variables Q,*, Q;", and S,* obey exactly the
same commutation relations as the three variables
S;, S;&, andS

S;+=—,'ha;~,

S,-= ~2&a, ,

S *=A(o a —-')

Furthermore, if the Hamiltonian (2.1) is rewritten in

(4 3)
terms of the variables, Q;*, Q,", and S;*, it retains the
same form as (2.2)

The spin operators defined by (4.3) obey the usual
angular momentum commutation relations within the
manifold of states for which the Hamiltonian BC is
finite, namely the manifold of states with a,~a;&1.
Note that the s component of the spin density is ana-
logous to the Bose particle density.

The Hamiltonian (4.1) does not conserve momentum
because of the presence of umklapp scattering terms
in the Fourier transform of the interaction potential.
In this respect the lattice gas is more closely analogous
to the physical system of helium in fine pores, where
the motion of the normal Quid is damped out by the
viscosity. Below the X point, helium in fine pores has
one propagating mode at long wavelengths which is
known as fourth sound": a mode associated with
fluctuations in the particle density and the superfluid
velocity, but with no entropy transport. Above the X

point, there is no long-wavelength propagating mode.
For pure bulk helium, there is an additional con-

served quantity, the momentum density. Below the
X point there are consequently two propagating modes,
first and second sound, which contribute to the order-
parameter correlation function. ' "

S. PLANAR ANTIFERROMAGNET

The Hamiltonian of the planar antiferromagnet" is
identical in form to that of the planar ferromagnet,

The coupling constants g;q;J; will be ferromagnetic,
if the original coupling constants J;, were antiferro-
magnetic. It is clear, therefore, that the planar anti-
ferromagnet is isomorphic to the ferromagnet, and the
static and dynamic properties of the two systems must
be exactly the same after the appropriate change of
variables. The component of the total magnetization
M, is a constant of the motion for the planar anti-
ferromagnet. The equilibrium states of the system,
below the Keel temperature, are determined by the
values of M„q,and the internal energy E. The value
of .V~ is determined by E and M,

&Yi——iVO(E, M, ) .

Let us define the staggered magnetization density

n(r) =—(2 &'~(r —r')),

(5.7)

(5.8)

while the total magnetization density m(r) is defined
by (2.10a) as before. We shall assume the 6 functions
in (5.8) and (2.10a) to be spread out in space over a
unit cell (including one site from each sublattice), so
that m(r) and n(r) can be slowly varying in space, with

H= z(~„S,S-, +.;,~„[eQ,
.+e;Q, »
—P S 'H . (5.6).

~ See Ref. 4, Chap. 14. m, (r) =vs„(r)=0. (5.9)
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Let us define

ii.(r)+i'„(r)=—e, (r)e'«'&. (5.10)

6. ISOTROPIC ANTIFERROMAGNET

The hydrodynamic states of the planar antiferromagnet
are determined by the functions e(r), m. (r), and v (r).
The equations of motion for these functions are ex-
actly the same as for the case of the planar ferro-
magnet. Similarly, the form of the entropy (2.26)—
(2.28) is the same as before. Equations (2.47) apply
unchanged to the planar antiferromagnet. The hydro-
dynamics therefore predicts spin waves with a velocity
given by (2.41) and damping given by (2.50). Of course,
the spin waves are now associated with oscillations in
the direction of the staggered magnetization n(r),
rather than of the total magnetization m(r), in the
x-y plane.

The linear response functions and correlation func-
tions for the planar antiferromagnet are identical to
those for the planar ferromagnet given in Sec. 3 and
the Appendix, except for the replacement of m by
n, m„byn„,and Mo by sVO.

about true thermal equilibrium in zero magnetic field,
and hence, I.n will always be small. We shall assume
the average n to lie in the x direction, in order to con-
form to the notation of the planar case. Let us define
the variables

q, (r) = n„(r)/X,o
~.(r) = —~*(r)/&'

(6.5)

V =Vga ) CL=p) S ~ (6.6)

The equations of motion for e, m, and v have the form

ap Q —P) Z (6.7R)

We shall describe long-wavelength fluctuations in the
system by specifying the functions y„(r)and p, (r), as
well as the conserved variables e(r) and m(r). If the
system has evolved in the absence of external fields for
a time long compared to r, then we assume that past
history is forgotten and that the state of the system is
uniquely determined by these functions.

Let us define the vector fields

The isotropic or Heisenberg antiferromagnet possesses
a Hamiltonian similar to (2.2), but with J;,'= J;;*:

Bm
= —Vj~ n=xy & (6.7b)

3'.0 ———gJ;8; S. (6 1) 86———Vj)
85

(6.7c)

m(r) =0,
n(r) =Eo(E)i4,

(6.2)

(6 3)

and the state is determined by the energy E and the
arbitrary direction 8 of the staggered magnetization.
As a consequence of the rotational invariance of (6.1),
the total magnetization of the system is a constant of
the motion. It is thus possible to have an infinitely
long-lived (equilibrium) state in which m(r) is nonzero
(and constant in space). In such a case, the orientation
of the staggered magnetization is no longer arbitrary;
the staggered magnetization will always tend to line
up perpendicular to the total magnetization"

m. a=0 (6.4)

Ke shall restrict ourselves to small Auctuatiens

~ L. Neel, Ann. Phys. (Paris) 5, 232 (1936).

We assume that there are two sublattices 3 and 8,
with opposite average magnetizations in the ground
state. We define the total magnetization density
m(r) and the staggered magnetization density n(r) by
(2.10a) and (5.8), as before. In the absence of a magnetic
field, the Hamiltonian (2.2) is invariant under an
arbitrary uniform rotation of all the spins. Thus the
staggered magnetization can point in any direction in
space. A true thermal equilibrium state, in the absence
of an applied magnetic field, will have

where f, j",and j' are to be written as gradient ex-
pansions of v, m, and (e—E). We assume that devia-
tions from equilibrium are suKciently small so that we
need only keep terms linear in v~, m, and (e—E). The
entropy 5 may be expressed in the form (2.26) with

s =So(e)—-', 2' 'L(m„'+m,')/x+m, '/X„
+~ (I v" I'+

I
v*1')j (6.8)

Here, X is the susceptibility for a uniform applied
magnetic 6eld perpendicular to the axis of sublattice
magnetization, X« is the susceptibility for a 6eld parallel
to this axis, and p, is the stiffness constant for changes
in direction of sublattice magnetization. '4

We may now proceed exactly as in the previous
sections, taking advantage of the symmetries of the
system. fThe useful symmetries include, in addition
to the invariance under simultaneous rotations of all
the spins, an invariance with respect to the interchange

3'The quantity p, sometimes denoted by yI., is the thermo-
dynamic susceptibility. The susceptibility X&I is not diiectly de-
fined thermodynamically, since the isotropic antiferromagnet will
not be stable with its axis of sublattice magnetization lined up
parallel to a uniform applied field. The situation can be stabilized,
however, by applying a very weak staggered field along the x
axis, and it seems probable that xi 1 can be correctly defined by
taking the appropriate limit as the uniform and staggered fields
to go to zero. In any case, we show below that the variable m is
completely decoupled from the other variables at long wave-
lengths, so that the value of Xlf does not affect the spin waves.
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of the magnetizations of sublattice A and sublattice 8, m may be writt. en
i.e. , invariance under a change of sign of n(r), with

m(r) held constant. ] We find
(6.10b)

(6.9a)

~HZ~ ~ lr

V'm,
Xll

(6.9b)

l9PE(X

=p,V v +K,X 'V'-'m, (i=y, s (6.9c)

=X—'Vm +ip„V(V v ), (t=y, s (6.9(l)

D=A. IX '+p.g. (6.10a)

The thermal diffusion constant Dz is given by Eq.
(2.49), while the diffusion constant for fluctuations in

where f(, A' ll, A1, and g are transport coefhcients whose
values are not given by the theory. The coe%cient &

is the thermal conductivity, whereas Kll and A j. max
be interpreted as transport coefficients for the corn-
ponents of spin parallel and perpendicular to the axis
of sublattice magnitization. The coefFicient P, like K33
in Sec. 2, is somewhat analogous to a second viscosity
coefficient in liquid helium. The normal modes of the
antiferroma, gnet consist of a diffusive mode for the
energy, a diffusive mode for the x component of the
total magnetization, and two spin-wave modes. The
two polarizations of the spin waves couple oscillations
in n„and n, with oscillations in m, and m„,respectively.
The spin waves have a real frequency ck and a damping
—',Dk', where c is equal to (p, (X)""-, as before [Eq.
(2.41)], and

The existence of a linear spin-wave spectrum in the
antiferromagnet is of course well known, and the low-

temperature spin-wave velocity has been given by manx
authors ' " """ In the present theory, the relation
between c snd the stiffness constant p„Eq.(2.41), is

maintained at arbitrary temperatures. Since X is
believed to remain finite at the Neel point, Eq. (2.41)
implies that c vanishes as p, '" as T —+ T&.'7 Equation
(2.41) for the spin-wave velocity. was essentially found
at arbitrary temperatures by Tani, ' who neglected the
da, mping and assumed that sum rules analogous to
Eqs. (3.9) and (3.11), are exhausted by simple poles
at cv= &co~. A similar derivation by Bar'yakhtar and
Popov, " also led to a linear dispersion rela. tion, but
with an incorrect velocit~ . These last authors have used
the sum rule

dM—(o Inix,„„„,(k,(e)
2~

=Z~ (S "S'+S"S")II—e"""'l'

which is not exhausted by the spin-wave poles at 6nite
temperatures. In fact, the spin-wave velocity found in
this way remains 6nite at T&.

The hydrodynamic prediction of a damping of spin
waves proportional to k~ is a new result, which disagrees
with a number of earlier microscopic calculations, " "
but agrees with more recent work by Harris, Kumar
and the authors. ~'

Proceeding again as in Sec. 3, we may find the long-
wavelength forms of the various susceptibilities and
correlation functions. Among the correlation functions
of interest, we have the following results for k —+ 0:

2.V 'k T[c'Dk'+ p,fk'((e' c'k')]-
C„„„„(k,(o) =C„,„,(k,(o) =

p k'[((d —ck)'+ (-'Dk')'][((e+ck) s+ (-'Dk')']

2XknT[c Dk4+X 'It &ks((es —(;sks)]
C „„(k,(d) =C, ,(k,(e) =

[(~—ck)'+ (sDk' )'][(~+~k)'+ (sDk' )']
2Ck gg T'Dp k'

C„(k,(e) =
(o-'+ (Drk')"-

2X 1 ikg TD 1 lk'C„„,„,(k,(e) =
(e-'+ (D( )k')'

(6.11a)

(6.11b)

(6.11c)

(6.11(l)

'5 L. Hulthen, Proc. Roy. Acad. Sci. Amsterdam 39, 190 (1963); P. W. Anderson, Phys. Rev. 86, 694 (1952); R. Kubo, ibid. 87,
568 (1952); J. Ziman, Proc. Phys. Soc. (London) 65, 540 (1952); 65, 548 {1952);T. Xakamura, Progr. Theoret. Phys. (Kyoto) 7,
539 (1952).

'6 A. B. Harris, Phys. Rev. Letters 21, 602 (1968).
"As remarked in Ref. 6 I Eqs. (2.4), (5.3), (5.4)j, p, ' is proportional to a correlation length for order-parameter fluctuations. {Note

that in Ref. 6, the direction of alignment of the order parameter was chosen as thez direction. ) Thus the relation between the
spin-wave velocity and a correlation length is a purely hydrodynamic result. If, in addition, we employ scaling hypotheses, we can
obtain relations between c and other thermodynamic quantities near T&."P. G. Bar'yakhtar and V. A. Popov, Fiz. Tverd. Tela 10, 773 (1968) /English trans. :Soviet Phys. —Solid State 10, 605 (1968)].
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Corrections to the above formul. as should be smaller

by order k', as measured by the areas under the fre-
quency spectra.

The autocorrelation functions for the energy and for
the total magnetization parallel to the axis of anti-
ferromagnetic alignment are characterized by diffusive
modes, while the autocorrelation functions for the total
magnetization and staggered magnetization perpendic-
ular to the antiferromagnetic alignment have a pair of
Lorentzian-like peaks at the spin-wave frequencies
~= &ck. The dynamic cross correlation functions of
m, with n„,and of m„with n, are also nonzero, and are
dominated by the spin-wave peaks. All the remaining
cross correlation functions among the six varia, bles
(p, m„m„,m„n„,and ri, ) are zero by symmetry. For
fIuctuations in the staggered magnetization parallel
to the axis of sublattice magnetization, we may write

8V -'

C„,„,(k,pi) = C„(k,pp)+R(k, pi), (6.12)
d6

favor ferromagnetic alignment in the ground state.
The steady states of the system both above and below
the Curie point are characterized by the energy E and
the three components of the total spin S. For energies E
below a critical energy E„there exist macroscopically
homogeneous equilibrium states only for values of the
spin equal to or greater than the equilibrium magnetiza-
tion in zero field, Mp(F)WO. This inequality imposes
a constraint on the possible values of I and e. V'e
assume, nonetheless, that for permissible values of the
variables, the entrop~ density in the ferromagnetic
state can be expanded in the simple form

s=5p(p)+ f{m,)
p( jT—M p')[I V~",P+

I
Vm. l']+, (7 1)

where f is a functional of m —Mp. We are considering
small deviations from true thermal equilibrium in zero
field, with the magnetization aligned, once again, in
the x direction. AVe assume also that we may write foi.
the time dependence of m„a.nd m,

where R(k,pi) presumably has a, broad frequency spec-
trum, while the first term on the right-hand side has a
narrow peak of width D~k'. The second term is not
negligible compared to the first, however, and will be
much larger than the first if C„,,(k) diverges as l~ ',
as is predicted by the spin-wave approximation. "

fn the paramagnetic state, the average value of n(r)
is zero. The variables v„and v, are therefore meaning-
less. The correct hydrodynamic equations for m„
m„,m„and p are obtained from Eqs. (6.8) by setting
p,.=o. The x, y, and z directions are now physically
equivalent, and there is a single spin-dift'usion constant,
D. The correlation functions for the total magnetiza-
tion are

C, ,(k,pi) = C„,„„(k,pi) = C„...„,(k,pi)

= 2&lzi&TDk')[pi-'+ (DI ')Pj (6.13)-.
Equation (6.13) was given previously by Kadanoff
and Martin. '4 The energy autocorrelation function is
again given by (6.11c).

The staggered magnetization N is not conserved by
the Hamiltonian, and we expect it to relax to the
equilibrium value N=O, in a finite time w. The corela-
tion functions C„,,(k,pp), C„„„„(k,cp), and C„,„,(k,pi),
which are now equal to each other, will therefore have
a broad spectrum of finite width 1( 7 in the limit k —+ 0.
The exact shape of the frequency distribution cannot
be predicted by the hydrodynamic theor~. .

7'. ISOTROPIC FERROMAGNET

The isotropic ferromagnet diA'ers from the other
cases that we have considered in that the order param-
eter, for the broken symmetry, is itself a constant of
the motion. The Hamiltonian for the ferromagnet has
the same form as that of the isotropic antiferromagnet
Eq. (6.1), with the difference that the coupling constants

(i 2)

j p= 1Vm, +BVm, +O(V'),

j '=CVm, +DVmr+O(V').

(7.3a)

(7.3b)

lt is a consequence of symmetry that j & and j ' have
no terms linear in p or (m, —Mp). Furthermore, sym-
metry requires that in Eq. (7.2), A=C and 8= D. —
En order to determine the quantities 3 and 8, suppose
that we add to the Hamiltonian a magnetic field H(r).
This must change (7.2) to read

(7.4)

Furthermore, if the magnetic field is sufFiciently weak,
the coefficients in (7.3) will not be affected by the
presence of the held. Let us suppose that II has the
form

H(r) =af7 cosk r, (7 3)

[p(r) —H(r) .m(r) jdr, (7.6)

we find that the ferromagnet will come to equilibrium
with magnetization

m„(r)=MpPp, '7p ' a cosk r

m, (r) =0,
m, (r) = Mp+0 (a') .

(7 7)

where k and ak ' are considered small. We assume that
for such a weak field, the modification of Eq. (7.1) is
also negligible to lowest order. (Cf. the Appendix. )
Hy maximizing the entropy for a given value of the
total energy.
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The requirement that Bm/8$ equals zero at equilibrium
gives

A=C=O,
J3 = D=—p,/Mo.

(7.8)

8. DOMAIN OF VALIDITY OF HYDRODYNAMICS:
LONG-WAVELENGTH LIMIT

The hydrodynamic theory is believed to be exact
for the ideal models considered, in the limit of long-
wavelengths, at any fixed temperature in the range
0& T& T,. This means that there are correction terms
to the hydrodynamic expressions of relative order
[k/k, (T)j2, which become important when k reaches
the finite temperature-dependent value k, (T) Un-.
fortunately, the present theory does not tell us the
value of k, .

"Consistent mth a nonvanishing damping of order k4 is the
assumption that the field (7.5) introduces corrections in Eq. (7.1)
of order H„'.

Thus, in the absence of the applied field 8, equations
(7.2) and (7.8) lead to the existence of spin waves with
frequency

(u(k) = (p,/Mo)k' (7.9)

and no damping to order k'. The terms of order (V )
in Eq. (7.3) should lead to frequency corrections and
to damping of order k4. '9

Equation (7.9) for the spin-wave frequency is just
the Landau-Lifshitz formula, '4 which may be obtained
by simple sum-rule arguments, neglecting damping
terms. Similar results have been obtained by many
authors. '~ The present derivation justifies the neglect
of damping at small k, and in addition predicts a damp-
ing proportional to k4. The microscopic calculations of
Ref. 23 find a k4 ink behavior, which, if correct, would
be an indication that the gradient expansion already
breaks down at this order. The hydrodynamic predic-
tion of the damping may be less reliable in the ferro-
magnet than in the antiferromagnet, since it is neces-
sary that the expansion of Bm/R be carried to a higher
order in k than is necessary in the antiferromagnet.

In view of the probable singular dependence of the
entropy on the magnitude of the order parameter
(m, —Mo), si it seems difticult to predict the time
dependence of fluctuations in the x component of m.
If one assumes that the dependence of s and Bm,/dt
on (m —Mo) is nonsingular, however, one is led to a
pair of coupled diQ'usion modes for heat and the x
component of the magnetization.

In the paramagnetic state, of course, the hydro-
dynamics is exactly the same as in Sec. 6. There is an
independent diffusive mode for & and for each of the
three components of m. The only qualitative difference
between the ferromagnetic and antiferromagnet systems
above T, is in the temperature dependence of the
magnetic susceptibility and transport coefricients, as
T, is approached. '

Another upper bound for k, is the point at which finite
wave-vector corrections must be taken into account
in the static susceptibilities, such as X,(k) and X„,(k),
which enter the real part of the frequency via X and

p, . The hydrodynamic theory, however, does not give
us the values of the parameters which enter into Eq.
(8.1) or x„,(k). For these one must turn to some other
theory. %e shall briefly review the available information
for the isotropic antiferromagnet.

For a classical antiferromagnet at zero temperature
we have the exact relation

cg (k) =f0[x„,(k)x„,(k)p"', (82)

with zero damping for the spin waves. (Quantum
mechanically, there are corrections to this formula for
short wavelengths, but these corrections are of the order
of the zero-piont energy which is believed to be small in
all cases. 'i) Since the susceptibilities in Eq. (8.2) are
functions of k/k, where k is the distance to the
Brillouin zone edge, we have for the real part of the
spin-wave frequency, at low temperatures

k, k, =ir/a, (g.3)

where a is the lattice spacing. The range of validity of
hydrodynamics for the damping of spin waves, however,
is much smaller than (8.3) at low temperatures. The
microscopic calculation of Ref. 22 predicts a cuto6

k, k, (ST/T, )', for T«T,/S, (8.4)

in a quantum-mechanical antiferromagnet of spin
quantum number 5.~ As the spin 5 becomes large, i.e. ,
as the system approaches a classical antiferromagnet,
one finds, again at low temperatures,

k,-k .„,for T,/S«T«T, . (8.5)

At finite temperatures, say, T= 4T„oneexpects that
k. should be of order k,„(e.g. , k.& —,'Ok, ).

Near the critical temperature T~, the static correla-
tion functions have corrections of order (k$)', where the
correlation length $ is believed to diverge roughly as
(T~ T) +'. Thus the v—alue of k, obtained from the real
part of the spin-wave frequency [Eq. (8.3)j is of order
( ' near TN. According to the dynamic scaling hypoth-
esis, ' the same k. should be obtained from the damping
via Eq. (8.1), that is, k, (D/c) ~ $ '.

"For wave vectors larger than (8.4) but smaller than
(STjT.), the damping is proportional to k' in&, indicating a

breakdown of hydrodynamics.

One upper bound for k, is the wave vector at which
the damping rate becomes equal to the real part of the
spin-wave frequency. For a linear dispersion relation
this yields

(8.1)
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Q. APPLICATIONS TO REAL SYSTEMS

Unlike superQuid helium for which the Bose liquid
is an exceedingly good model, real magnetic materials
differ in several respects from the simple systems con-
sidered thus far. Nevertheless, we believe that the
hydrodynamic theory does apply to real materials, and
a number of its assertions may be tested by experiment.
By far the most promising systems are the antiferro-
magnets, such as RbMnF3, ""whose Hamiltonians are
almost isotropic with respect to the direction of sub-
lattice magnetization. Ke shall therefore confine our
discussion primarily to these systems.

The spin-correlation function for a crystal can be
measured in principle by experiments on the inelastic
scattering of neutrons. 4' ~ The autocorrelation function
for the total magnetization at long wavelengths is
proportional to the scattering cross section for small
momentum transfers or for momentum transfers close
to a reciprocal lattice vector. The staggered magnetiza-
tion can be determined from the scattering cross section
close to a magnetic lattice vector:

d2r

(q =k+6+-', Go)
dQdo)

~P'
t C„.„.(k,(a)+(2x) '(X )'6(k)5(co)g, (9.1)

where Aq is the momentum transfer, Are is the energy
transfer, 6 is a reciprocal lattice vector, and —,'Go is a
wave vector characterizing the antiferromagnetism. In
an experiment using unpolarized neutrons, the sum on
the right-hand side of (8.1) is taken over the two co-
ordinate directions perpendicular to the momentum
transfer q. In a cubic crystal with many magnetic
domains, the x direction, (i.e. , the direction of sublattice
magnetizs, tion, ) will lie in random directions relative to
q, so that the scattering cross section measures an
average of the autocorrelation function for n„n„
and n, . For small k, the correlation functions for n„,
and n, diverge as k+', whereas the correlation func-
tion for n is much smaller, probably diverging as
k ' "Therefore, for small k we may neglect the scatter-
ing due to fluctuations in the Inagnitude of n, and write

~ (2X)'xo'6 (k) 8 (GO) +2C„„„„(k,id) . (9.2)
dQAo

Further information is obtainable, in principle, if one
can align the magnetic domains, via strain or magnetic
fields, and if one uses polarized neutrons.

"D. T. Teany, M. J. Freiser, and R. W. H. Stevenson, Phys,
Rev. Letters 9, 212 (1962).~ R. Nathans, F. Menzinger, and S. J. Pickart, J. Appl. Phys.
39, 1237 (1968).

4' L. Van Hove„Phys. Rev. 93, 1374 (1954).
44 See, for example, B. Jacrot and T. Riste, in Therma/ Neutron

Scattering, edited by P. A. Egelsta6 (Academic Press Inc., New
York, 1965), Chap. 6.

Several of the hydrodynamic predictions about the
correlation function C„„„„canbe tested by the inelastic
scattering technique, provided measurements can be
made at suKciently long wavelengths. First, we may
test that the energy dependence of the correlation
function can be characterized by spin-wave peaks
centered at an energy ck, linear in k. Second, we may
check that the width of the peak is proportional to k'.
Finally, we may verify that the spin-wave velocity is
given by Eq. (2.41) in terms of p, and X. The magnetic
susceptibility X may be measured by the usual methods,
provided the applied 6eld is sufFiciently strong for all
domains to line up with staggered magnetization
perpendicular to the applied field. In principle, the
stiffness constant p, may itself be measured by another
neutron scattering experiment, a quasielastic scatter-
ing experiment~ in which one integrates over the energy
transfer co. From (9.2) and (6.11a), we 6nd

80—(q =k+6+-', Go)
an

2kgT
Xo' (2s-)'b(k)+ + . . (9.3)

p,k'

Thus p, is obtained by comparing the weight under the
magnetic Bragg peak with the quasielastic cross section
in the vicinity of the peak.

The Hamiltonian (6.1) describes a model in which the
spins are localized on their lattice sites. The only
properties of the Hamiltonian we have used in the
hydrodynamic theory, however, are its symmetries and
the antiferromagnetic nature of its ground state. The
hydrodynamic theory would be unchanged if we use an
itinerant model for the electrons. It is similarly un-
changed if we consider a metal with free electrons and
localized spins present as long as the Hamiltonian is
invariant under uniform rotation of all the spin degrees
of freedom. (ft may also be necessary to require that the
electron mean free path be sufFiciently short compared to
the wavelengths under consideration so that we do not
have to introduce a new degree of freedom correspond-
ing to an almost conserved crystal momentum. In
practice, the effective interaction between spins in a
metal tends to be of rather long range, ""and the
limiting wave vector k, for the validity of hydro-
dynamics will be correspondingly small. )

The models we have considered differ from real
crystals in several other respects. First of all, real
crystals always have anisotropic terms in the energy
which are not invariant under simultaneous rotation
of all the spins. Second, the Hamiltonian of a real
system must include the effects of phonons and of
impurities.

"See, for example, T. Kasyua, in Magnetism, edited by G. T.
Rado and H. Suhl (Academic Press Inc., New York, 1966),
Vol. IIB, p. 215.

4'M. F. Collins, V. J. Minkiewicz, R. Nathans, L. Passell,
and G. Shirane, Phys. Rev. 1?9, 417 (1969).
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If the spin-phonon interaction and the perturbations
due to impurities are invariant under uniform rotation
of the spins, then these terms will have nn effect on the
results of the previous sections. As long as the crystal
is homogeneous on a macroscopic scale (i.e. , on the
scale of the wavelength of the spin wave we are con-
sidering), the existence of short-range disorder due to
impurities will not aA'ect the reasoning we have used to
derive the hydrodynamic theory. (Indeed, we have
already disregarded the short-range disorder of the
spins themselves. ) Of course, the presence of impurities
can aGect the values of the thermodynamic constants
and transport coefficients entering the hydrodynamic
equations. If there are macroscopic inhomogeneities in
the density of impurities, then the coeScients in the
hydrodynamic equations will be spatially var& ing, and
a spin wave propagating through the crystal will be
diffracted by the inhomogeneities. As a test of the self-
consistency of the hydrodynamic point of view, we

may calculate, using the Born approximation, the
scattering of a hydrodynamic spin wave by the long-
wavelength spatial variations of p„arising from a
random distribution of impurities. Let us assume

p, (r) =p, '+pc(r), (9.4)

where y is a constant, and c(r) is the local concentra-
tion of impurities. We shall assume X to be independent
of the impurity concentration. The decay rate I' for a
spin wave, due to the scattering, must be proportional
to the square of the magnitude of the variations in p„
and from dimensional considerations we may write

I &(~&~ (&p )Ip (9.5)

where coI, is the frequency of the spin wave, and bp, is
the difference between the value of p, averaged over a
particular region of volume k ' and the value of p,
averaged over the crystal as a whole. The angular
brackets denote the expectation value over the distribu-
tion of impurities. If the value of p, is given by (9.4),
then (bp, 2) will be proportional to O'. The scattering of
spin waves by inhomogeneities in p, will therefore be
negligible in the long-wavelength limit, compared to
the damping —,'Dk' arising from microscopic processes.

The efI'ects of phonons are similar to the efI'ects of
impurities, if the electron-phonon interaction is in-
variant under uniform rotation of all the spins. We
may disregard the e8ects of short-wavelength phonons,
because the phonons do not change the symmetry of
the Hamiltonian. To take into account long-wavelength
phonons we must introduce new macroscopic variables
into the problem, which we may choose to be the dis-
placement field for the nuclei and the momentum
density of the crystal. We have in addition a new set of
symmetries for the Hamiltonian: invariance with re-
spect to displacements of the crystal as a whole, as
well as the Galilean transformation properties for
motion of the crystal with a finite velocity. Correspond-

ing to the two new vector fields, we have three new

oscillating normal modes: lihonons of three polariza-
tions. Because the Haniiltoni;In i» i»v;variant ull(Icr

uniform rotation of all the spins it is «lc;&I th;&t thcI. (.

can be no linear coupling between the spin-wave nindes

and the phonon displacements. The linearized equations
of motion for the spins will, therefore, have the same
form as before, and all the results of the previous sec-
tions will carry through unchanged.

Every real material has in its Hamiltonian relativistic
terms which are not invariant under uniform rotation
of the spins. In an itinerant-electron antiferromagnet,
such terms will arise from spin-orbit splitting of the band
structure at various parts of the Brillouin zone. In a
localized spin model, anisotropy results from the effects
of the crystal field on the state of the magnetic ion.
(This effect also depends indirectly on the spin-orbit
interaction, which is responsible for the coupling of the
electronic spin to the orbital wave function on the ion. )
In addition, for itinerant or localized models alike,
there will be a magnetic dipole-dipole interaction and
there may be a nuclear hyperfine interaction, 47 neither
of which is invariant under uniform rotation of the
electronic spins.

In some systems, the spin-nonconserving terms are
as large as the spin-conserving terms, and conclusions
derived from considerations of an isotropic model are
not likely to be applicable. On the other hand, there
are many systems in which the spin-nonconserving
terms are much smaller than the spin-conserving terms.
In these systems, approximation by means of an iso-
tropic model should be relevant. Unfortunately, we
know that it is precisely in the limit of long wavelengths
and low frequencies that small spin-nonconserving
terms make themselves felt. We therefore expect that in
a real system with a small anisotropy, the hydro-
dynamics should be applicable only for a window of
wave vectors

(9.6)

The lower limit ko is determined by the anisotropy of
the system and presumably goes to zero with the aniso-
tropy. The upper cutoff k, is independent of the aniso-
tropy for small anisotropy, and is just the cuto6
considered earlier.

In the presence of anisotropy, we expect a dispersion
relation of the formI7

(9.7)

4'The interaction between the electronic and nuclear spin
actually conserves the total spin angular momentum of the
system. Thus, in the true limit of long wavelengths and low
frequencies, the hyperfine interaction would not destroy the
validity of hydrodynamic equations for an antiferromagnet with
no other anisotropic forces. (It would lead to considerable re-
normalization of the spin-wave velocity at very low temperatures,
however. ) At the frequencies appropriate to neutron diGraction,
however, the nuclei would not be expected to follow the motion
of the electronic spins, and deviations from hydrodynamic be-
havior may result from the hyperfine field at low temperatures.
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at low temperatures and long wavelengths, where II~ is
the anisotropy field for the crystal. Thus we estimate
ko=X0' II&~~ p ~2 as the lower bound for the validity
of the hydrodynamic formula for the real part of urf,-.

The microscopic calculations of Ref. 22 suggest that this
value of ko applies to the spin-wave damping as well.

An antiferromagnet which is known to have a very
small anisotropy is RbMnF3. "The anisotropy field for
this material has been found to be 5 Oe at low tempera-
tures, and the average hyperfine field is (9/T) Oe,
where T is the absolute temperature in Kelvins. These
figures shouM be compared with the exchange 6eld of
9)&10' Oe. This gives a value of kp&10 ' k,„,where
k, is the value of k at the edge of the Brillouin zone.
In practice, experiments using neutron diffraction will

easily satisfy k»ko. Thus RbMnF;l seems to be a good
candidate to verify the hydrodynamic predictions, if
the instrumental resolution of the neutron measure-
nients can be made high enough to observe a spin-
wave damping in the region k«k. = pk, „

for (T/Tw)
0.4—0.8, for instance.
The possibility of experimentall& checking the

hydrodynamic damping of spin waves in a ferromagnet
seems much less promising than for the antiferromagnet.
In the 6rst place, since the damping goes as k', the
energy resolution would have to be very much better
for the ferromagnet at a given value of the exchange
constant. Second, the anisotropic dipolar forces are
more important in the ferromagnet at long wavelengths.
These difFiculties might be surmountable in transition
metal ferromagnets which have high transition tem-
peratures, but here another difFiculty arises. The k'
terms in the real part of the spin-wave frequency tend
to be large"" in metallic ferromagnets, due to the
relatively long-range na, ture of the efIective spin-spin
interaction, so it may not be possible to get into the
hydrodynamic region with neutrons, even if the dipolar
forces can be neglected.

there is strong reason for believing that x (k) is not
finite at k=0, but rather"

x„,,(k) k-'. (10.2)

with 0&x&1.4"
skulk (10.4)

If 7 ~ has such a nonanalytic behavior at k =0, it
becomes difFicult to say with any certainty whether or
not the conclusions of hydrodynamics will be affected.
It is not clear how the equations of motion will be
modi6ed by the deviations of mi, from its local equili-
brium value, since these equations may also have a
singular dependence on m~ in the limit k —+0. None-
theless, we may illustrate the types of behavior to be
expected by studying a model with the simplest possible
assumptions for this dependence. For small enough
deviations from equilibrium, at a fixed value of k, it is
sufhcient to consider the linearized equations of motion.
I.et us assume that these can be written as

firn, (k) 1
=—Pm, (k) —mp(k) j, (10.5a)

If we assume that A(k) is nonetheless finite, then we

predict
skulk '. (10.3)

The situation here is very similar to the behavior of
spin fluctuations above the transition temperature as
1—+ T,. Van Hove4' argued that the transport coeffi-
cients should generally remain finite at the critical
point, whereas susceptibilities diverge, and he there-
fore predicted critical slowing down of spin fIuctuations
with r ~ X. It is now believed that Van Hove's arguments
are not quantitatively correct; transport coefFicients
are also usually singular at the critical point, and the
divergence of r is usually slower than the divergence of
x." If the analogous situation holds for &i, as a function
of k a,t a fixed temperature below T„then we would have

10. ASSUMPTION OF MICROSCOPIC RELAXA-
TION TIME FOR MAGNITUDE OF ORDER

PARAMETER REEXAMINED

Bm, (k)
ikp, p(k—)+0(k'), (10.5b)

r,-'= A(k)/X„„„„(k), (10.1)

where A(k) is analogous to a transport coefficient. In
lhe inolccular field approximation, X„,,„,,(k) is hnitc
as k ~ 0. lf we assume that A(k) is also finite and non-
zero, then we find that v-i, is finite as k —+ 0. On the
other hand, on the basis of spin-wa, ve calculations,

In the body of this paper we have assumed that
relaxation to a state of local equilibrium occurs in a
microscopic (wave-vector —independent) time r. We
shall now reexamine this assumption, considering
explictly the case of the planar ferromagnet.

The characteristic relaxation time for a fluctuation
in the magnitude of the order parameter m, (r) when
m, and e are constant may be written in the form4'

Bp(k) = —ik(x-"m. (k) —bLm, (k) —mp(k) ))
Bf

+0(k'), (10.5c)
where b is a constant and

mp(k)=m (k)BMp(p, m )/Bm . (10.6)

(We neglect here the dependence of Mp and of k on
the energy density p.) If rk has the form 10.4 with 0&@
&1, then we find that the velocity of the spin wave is

"The static respoiise function for nf is inhnite at k=0 only
for an inhnitesimal field 1I,. l'or a finite held, the magnetization
is predicted to follow the relation M, —M0(I'', M,) ~ H," . There-
fore it seems almost certain that the relaxation time for a finite
uniform fluctuation in Mi, is finite, but it is possible that the
relaxation rate approacheS zero aS Mq approaches M0.
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unchanged from the hydrodynamic result Eq. (1.2),
but the damping rate of the spin-wave amplitude is

given by
kryo—p,b (BM0/r7m, )

~k' (10.7)

If the exponent in (10.4) is greater than unity, then
we find a renormalized spin-wave frequency

co(k) =p.'"(X—'+b r7MO/Bm, )'i'k, (10.8)

and a nonhydrodynamic damping rate

—', I'i, ———,'rg —'Xb BMO/Bm,

~k. (10.9)

"See J. Milks, The I'roperties of Liquid end Solid IIelium
(Clarendon Press, Oxford, England, 1967).

5 %'. B. Hanson and J. R. Pellam, Phys. Rev. 95, 321 (1954);
J. A. Tyson, Phys. Rev. Letters 21, 1235 (1968), and (private
communication),

In either of the above cases, the damping is of higher
order in k than the real part of the frequency for small
enough k. If x= 1, however, the frequency is renormal-
ized and the damping is the same order in k as the
frequency.

For the case of the planar ferromagnet with small
deviations from true thermal equilibrium in zero
magnetic field Il„symmetry considerations require
that both the coefficient b and the coefficient BMO/r7m,
be zero. Similar considerations require the vanishing
of the corresponding coefFicients for an isotropic anti-
ferromagnet (or ferromagnet) in zero external field.
Thus for these cases there should not be any variation
in the magnitude of the order parameter linear in the
spin-wave amplitudes. Hence, even if the relaxation
time ri, does diverge at k=0, it seems very unlikely
that this will aRect the validity of the hydrodynamic
equations for m„,or the resulting form for the correla-
tion function C„„.On the other hand, superfluid
helium is analogous to the planar ferromagnet in
finite magnetic field H„where the coefFicients b and
BM0/Bm, do not vanish by symmetry.

The equations of two-Quid dydrodynamics have been
verified in many ways in helium. " In particular, the
damping of second sound has been found to vary as k',
in a number of difI'erent experiments over a large range
of temperatures. '0 In terms of the above discussion,
there are three possible reasons why two-Quid hydro-
dynamics is valid for second sound: (i) The relaxation
time rj, for Quctuations in the magnitude of the order
parameter may simply not diverge at k=0. (ii) The
relaxation time may diverge, but the coefFicients
analogous to b or BMO/r7m, in Eqs. (10.5) may not in
fact be independent of k, but may go to zero as k ~ 0
sufficiently fast so that the damping of second sound
still goes as k . )In support of this possibility, we may
note that Eq. (10.2) implies that the term in the entropy
quadratic in m& —Mo(e, m, ) should have a coefficient

proportional to k in the limit k ~ 0.] This possibility
seems to the authors to be the most likely one. (iii) A

third possibility is that two-Quid hydrodynamics is not

valid for infinitesimal second-sound amplitudes at finite

k, but only becomes valid in the limit where k goes to
zero first, and then the amplitude of the second-sound
wave becomes small. (Cf. footnote 48.) For example,
one might hypothesize that two-Quid hydrodynamics
only gives the correct second-sound damping when the
amplitude of the superQuid velocity v, is large compared
to the rms value of v, due to thermal Quctuations in
the second-sound amplitude at all wave vectors smaller
than k. LRoughly this requires r,) (kBTk'/p, )"2.] This
inequality is always satisfied in the conventional at-
tenuation experiment, where one measures the decay of
macroscopic second-sound waves injected into the
sample. It would be of great interest to perform an
experiment which would directly test two-Quid hydro-
dynamics in the other limit, namely, for an infinitesimal
perturbation at finite wave vector k. An example is the
measurement of the width of the Brillouin peak of light
scattered by second sound in a sample of helium at
thermal equilibrium. This experiment would be ex-
ceedingly difficult in pure He' because the coupling of
light to the second-sound mode is very small, but it
should be possible in mixtures of He' and He'. "

Any anomalous damping of second sound due to the
divergence of ri, should also be reQected in a damping
of first sound which does not go as k'. However, the
coefficient of the anomalous term in the damping of
first sound would probably be much smaller than in
the case of second sound. This is because the compressi-
bility of liquid helium is relatively insensitive to the
exact conditions of the compression (e.g. , the adiabatic.
compressibility is almost the same as the isothermal),
and thus the effect on the pressure of a change in the
magnitude of the order parameter is probably small.

The hydrodynamics of an ordinary crystal is in
many ways similar in principle to the hydrodynamics
of a superfiuid or a magnetic system. In a crystal, the
nonzero expectation values of the Fourier components
p& of the density at wave vectors 6 on the reciprocal
lattice break the translational symmetry of the Hamil-
tonian. Corresponding to this broken symmetry, there
are two propagating long-wavelength normal modes of
the system which do not exist above the melting tem-
perature, namely, the transverse acoustic modes. In
equilibrium, the magnitude of the order parameter
(po) is given in the harmonic approximation by

~ (po) ~

=e ~o, where e 'rois the Debye-Wailer factor. "
This expectation value

~ (po)~ depends, of course, on.
the density and temperature of the crystal.

"L. P. Gor'kov and L. P. Pitaevskii, Zh. Eksperim. i Teor
Fiz. 33, 634 (1957) LEnglish transl. : Soviet Phys. —JETP 6
486 (1958)j; B. X. Ganguly and A. Griffin, Can. J. Phys. 46,
1895 (1968).

g' C. Kittel, Quantum Theory of Solids (John Wiley 8z Sons, Inc. ,
New York, 1963), Chap. 19.



If a, long-wavelength longitudinal sound wave prop-
agates through the crystal, the local temperature and
density will vary periodically. One may first ask whether
the local magnitude of the order parameter follows
these changes completely, or whether readjustment
takes place at a rate rl, ' which approaches zero in the
limit where the wave vector k and the amplitude of
the sound wave approach zero. One may then ask
whether a divergence in the equilibration time
would produce a nonhydrodynamic behavior of the
damping of longitudinal or transverse sound waves,
analogous to an anomalous damping of first or second
sound in helium. Such a possibility could be detected,
in principle, if one could compare the intrinsic damping
of sound waves of su{Ficiently long wavelength as
measured by Brillouin scattering techniques and as
measured or extrapolated from conventional ultrasonic
a, t tenuation measurements.

The diAiculty with the Hrillouin measurement is
that the amplitude of thermal vibration in a crystal
is always rather smaH compared to the interatomic
spacing, even near the melting point, so that intrinsic
phonon lifetimes are very long. Furthermore, the upper
limit k, for the hydrodynamic damping of sound may be
smaller than the minimum wave vector practically
measurable with the Brillouin technique. "

Another experiment of interest would be to measure
directly via inelastic scattering of neutrons the relaxa-
tion time 7I, for Quctuations in the magnitude of the
staggered magnetization in a nearly isotropic anti-
ferromagnet such as RbMnF3. Unfortunately, although
it is possible in principle to separate longitudinal from
transverse Quctuations by a properly designed experi-
ment, this is probably exceedingly difFicult in practice
because the transverse Quctuations are much larger
than the magnitude Quctuations as k ~ 0.

11. NONLINEAR INSTABILITIES

Our principal reason for studying the hydrodynamics
of spin systems has been to predict the form of the
frequency-dependent hnear response functions as
measured, for instance, by neutron diffraction. It is
also interesting, however, to inquire how the equations
of linear hydrodynamics would break down for Quctua-
tions of /nike amplitude. In particular, we wish to
examine the possibility of nonlinear instabilities which
can cause a qualitative departure from the predictions
of linear hydrodynamics.

In the usual discussions of two-Quid hydrodynamics
for liquid helium, the equations are assumed to break
down when the difference between the superQuid and
normal velocities exceeds a critical velocity e, ."Above
this velocity, an originally uniform superQow will

decay rapidly through the formation of vortex rings

or other turbulence. More recent theories" " suggest
that, in principle, there should be a decay of uniform

superQow for any nonzero relative velocity. For small

velocities, the decay mechanism requires the thermally
activated creation of a very large vortex ring, and the
decay rate will be proportional to exp( —A (T)/

~

v„—v,
~ ) i.e., it is zero to all orders in )v„—v, ~. Thus

the equations of linear hydrodynamics are quantita-
tively and qualitatively correct in the limit k —+ 0 and

v, —+ 0 for any finite value of the ratio v, /k. (See Sec. 10
above, however, where we discuss the possibility of the
breakdown of two-fiuid hydrodynamics for v,/k ~ 0.)
The condition that the total phase oscillations be small

compared to v (i.e., v,/k((1) is certainly not necessary
for the validity of two-Quid hydrodynamics.

%'e believe that in the PIuvar ferromagnet or anti-
ferromagnet the conditions for nonlinear instabilities
leading to decay of a uniform gradient in the phase of
the order parameter are similar to those in the super-
Quid. Thus a hypothetical state in which there are a
small number of phase loops around a large torus of
magnetic material could persist for astronomically
long times. The set of equilibrium values of the order
parameter is a multiply connected region for these
systems (i.e., a circle in the complex plane), and the
persistent current state could only decay through the
appearance of a discontinuity in the phase, such as a
vortex core. In the isotropic ferromagnet and anti-
ferromagnet, on the other hand, the equilibrium range
of the order parameter is simply connected (i.e., the
surface of a sphere). In that case, decay of a finite
persistent current can occur without the necessity for
a large deviation from local equilibrium, and without
the necessity of passing over a finite free energy barrier.
For example, in an antiferromagnet an order parameter
initially in a, state of uniform phase gradient with N
lined up in the x-y plane can decay continuously to an
equilibrium state of uniform sublattice magnetization
in the s direction, via

n, (r,t)+in„(r,t) = s(t)A'Oe'~', (11.1a)

n, (r, t) = & (1—
~
s

~

')'t2$0 (11.1b)

with
~
s(t)

~

= 1 initially, and s(t) ~ 0 for large t
According to Sec. 6 above, the decay rate of state
(11.1) is proportional to q2 when

~
s

~

is small, and it may
be a reasonable conjecture that it is also proportional
to q2(= v%2) at the initial time, when s=1. The decay
process of (11.1) must be regarded as an instability,
since there is no a priori preference for the + sign or
the —sign in (11.1b).

A necessary condition for the qualitative validity
of hydrodynamics in the isotropic antiferromagnet is

"A. S. Pine in Proceedings of the International Conference o+
Light Scattering in SolnSs, Xm York University, JP68', edited by
G. B. Wright (Springer-Verlag, New York, 2969), and {private
communication).

'4 S. V. Iordanskii, Zh. Eksperim. i Teor. Fiz. 48, 708 (2965)
I English transl. : Soviet Phys. —JETP 21, 467 {2965)j."J.S. Langer and M. E. Fisher, Phys. Rev. Letters 19, 560
(2967).
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probably the condition that. ~,~k be small, i.e., that the
angle of deviation of n(r) from its average value should
everywhere be small compared to x.

In the ferromagnet, a decay of spin current ana-
logous to Eq. (11.1) would be inconsistent with the
conservation of the s component of spin, and the decay
niust occur nonuniformly around the torus. In fact, a.

state initially in the ferromagnetic equivalent of (11.1)
(with ~sj WO and q very small) can never decay into
a state of uniform magnetization, but rather wil[
eventually decay to a state of form (11.1) with

~
s~ &0

and q the minimum possible nonzero value, i.e., q
equal to 2m divided by the circumference of the torus.
Reasoning along these lines suggests that the linear
hydrodynamic description of the decay of a spin wave

may only make sense if s is sufhcientl~ close to zero
so that the difference between (1—

~
s ~')"- and unity is

negligible compared to q'; i.e. , in the limit s;~q —&0.
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calculus. XVe find a solution

~(r) = const+0(h, '), (A3a)

m, (r) = const+ O(h i2), (A3b)

m, (r) = aMO(e, m, )+O(hi-'), (A3c)

~n„(r)= (M(P/p, k2)H„(r)+O(hP), (A3d)

from which Eq. (3.9b) follows. The constants in (A3a)
and (A3b) are simply the values of c and m. for a
state in true thermal equilibrium with the given total
energy F„,&,~ in the field II., but with H„=0. Equations
(A3) will be applicable provided

~
m„(r)~((Mo.

Expression (2.28), which gives the entropy as a,

functional of e, m„and y, is only strictly conect in the
absence of an external field, such as H„.

In fact, in order for the system to be uniquely defined
bi the functions e, y, and m„we required in Sec. 2
that the system have already evolved in the absence
of fields for a time long compared to v. . In the presence
of applied fields, there will generally be corrections to
(2.28) and (2.12) proportional to the square of the
applied field. In the limit of long wavelengths, however,
the field A, i necessary to produce a given magnetization
m„(r) is very small,

APPENDIX: RELATION BETWEEN p, AND
STATIC SUSCEPTIBILITY

A, g ~ &2m„, (A4)

Let us consider the thermal equilibrium state of
the planar ferromagnet v hen we apply a weak spatially
varying magnetic field in the Y direction:

H„(r)=h, cosk r. (A1)

To find this state we must maximize the entropy while
holding hxed the total energy

Let us assume that the entropy density is given by
(2.28) and that mi(r) is given by (2.12); then we can
maximize the entropy by the methods of variational

Lgo&.t = Lc (r) —H,m, (r)

H„(r)m,(r) sin—rp(r)]dr. (A2)

and hence the corrections due to the applied held are
believed to be negligible in this limit.

The above arguments justifying the use of (2.28)
and (2.12) in the presence of the field (A1) can be
restated in various forms. AVe have asserted that the
thermodynamic equilibrium state in the presence of the
weak applied field h& (state 1), and the local equili-
brium state having the same value of m„(r) but ob-
tained after a period of free evolution (state 2), are
essentially the same physical states in the limit k —+ 0.
In particular, we assert that both these states may be
represented by a state (3) in which a position-dependent.
spin rotation has been applied to the uniform held-free
equilibrium state, so that the direction of spin quantiza-
tion oscillates in the x-y plane about the x axis. The
identity of states 1. and 3 may itself be verified in the
molecular-field approximation and in various other
simple approximations.


