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of lower-energy modes caused by the advent of surface
states. The alloy spectrum [Fig. 1(c)j shows interesting
peaks near 60JO, which is the range in which local s
modes are predicted to arise when an S= ~ impurity is
placed in S= 2 host (with a doubhng of J). In fact, the
exact prediction for an isolated impurity' is 5 7Jo.

The specific heat and magnetization can be calculated
readily using the prescriptions given by previous
authors. ""Dramatic specific-heat changes, for example,
would not be expected" in the alloy treated numerically
above, since e(= J'/J —1) had the value 2 or —1; the
low-lying resonance modes which enhance the specific

heat greatly are present for 0(
~

e~ (0.2, the latter in-

equality being approximate. Combining the condition
for low-lying resonances with the ability to calculate
detailed magnetic spectra of alloys allows one to design
materials with substantially altered specific heats and

theoretically predict that property.
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We have studied the effects of an exchange-enhanced substitutional impurity on a host metal by double-
time Green's functions. We have used a simplification of the Wold model to describe this system, i.e., a
one-band model in which Coulomb interactions in the host lattice are neglected, and the impurity is repre-
sented by Un n-+ V(n +n-), ~here n. is the electron occupation number for spin 0 at the impurity site.
A decoupling scheme is used in which operators on the exchange-enhanced site are never separated from
each other in the process of decoupling. This leads to a singular integral equation for the localized Green's
function of the exchange-enhanced site, in terms of which all the one-electron properties of the system are
expressible. The integral equation, assuming essentially a Lorentzian density of states for the host lattice,
is exactly solvable in the L -infinite, V-finite limit, as well as for the special case of electron-hole symmetry,
V+2V=O. Numerical results for the L'-infinite, 1'-zero limit for zero temperature are obtained for no, the
number of electrons on the impurity site, and for the one-electron t matrix as a function of energy. no has
a value of 0.4, which may be compared with the values no=0 predicted by the Hartree-E'ock theory and
no= —,

'- obtained by using a determinantal wave function from which the doubly occupied state is projected
out. The t matrix is found to exhibit a characteristic Kondo-like resonance at zero energy, and indicates a
resistivity which falls rapidly with increasing temperature, as well as a specific-heat anomaly.

I. INTRODUCTION

HE purpose of this paper is to establish the basis
for a new approach to the problem of a magnetic

impurity in a narrow energy band.
Until a few years ago, it was generally believed that

the localized Coulomb interaction associated with
magnetic impurities in metals and heavily doped
semiconductors could be understood within the con-
text of Hartree-Fock theory. " The inadequacy of
this point of view became clear with the now famous
work of Kondo' on the logarithmic divergence in the
host conduction-electron l matrix. In the model studied

* Work supported in part by the Advanced Research Projects
Agency.

' P. %. Anderson, Phys. Rev. 124, 41 (1961).
2 P. A. WolB, Phys. Rev. 124, 1030 (1961).
"J.Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).

by V.ondo, the s-d Hamiltonian, strong localized cor-
relations enter indirectly through the assumption that
a local spin exists in the electron gas. In order to study
the strong Coulomb interactions present on certain im-
purities a model which explicitly exhibits these inter-
actions is obviously needed. The extraorbital model
of a magnetic impurity due to Anderson meets this
requirement, and considerable e6ort has been expended'
during the past few years in studying correlations in
this system. It appears clear that for certain situations,
namely, for transition-metal impurities in transition
metals and particularly for heavily doped semicon-
ductors, ' a one-band model such as was studied within

4 J. R. SchrieRer and D. C. Mattis, Phys. Rev. 140, A1412
(1965); D. R. Hamann, Phys. Rev. Letters 17, 145 (1966); L.
Dworin, Phys. Rev. 164, 818 (1966).' Y. Toyozowa, J. Phys. Soc. Japan 17, 986 (1962); D. C.
Mattis and E. H. Lieb, J. Math. Phys. 7, 2045 (1966).
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the Hartree-Fock approximation by Kolff' is more
appropriate. Because of our interest in the above-
mentioned systems, we have adopted a modification
of the Wolff model to study. The model consists of a.

narrow conduction band in which Coulomb and poten-
tial scattering is effective at only one Kannier site,
the impurity site. The model resembles the one studied
by Hubbard, ' with the crucial difference that in our
case only one site has the Coulomb interaction.

Central to obtaining an adequate understanding of
the behavior of this model is a careful treatment of
electron correlations at the impurity site. To this end
we have found the equation-of-motion technique well
suited. In decoupling the equations of motions, we have
been guided by the requirement of never violating
equal-time electron correlations at the impurity site.
Equations of motion for the electron C'reen's functions
consistent with this requirement have been obtained
and solved for in certain limiting cases.

An alternative approach to localized correlations
within the one-band model has been taken by Suhl and
co-workers. ' ' They employ diagrammatic techniques
and configuration averaging to obtain localization.
Their approach, which attempts to properly renormalize
the low-frequency singularity in the susceptibility
present within the Hartree-Fock approximation, is very
different from ours and we have found it difFicult at
present to draw any parallels between their work and
ours.

This paper represents the first in a series in which
we hope to extend our treatment to finite magnetic
fields, generalize our model to include the possibility
that the impurit& site has a di6erent coupling to its
neighbors from that of the remaining sites, and do a
better job of treating unequal-time correlations at the
impurity site. Considerable progress has already been
made on the first two objectives and we hope to publish
this shortly.

As this paper is a rather long one, we include below
a summary of the material contained in the succeeding
sections. In Sec. II, the model is described in detail and
certain exact results for the C reen's function are
derived. In Sec. III, the approximation scheme is in-
troduced and an integral equation for the impurity
site Green's function is obtained. In Sec. IV, a particular
density of states for the host lattice is chosen and the
integral equation solved for two special cases (a)
infinite Coulomb potential and (b) Coulomb and scat-
tering potential chosen in such a way that electron-hole
symmetry exists. Finally in Sec. VI, the solution to the
integral equation for case (a) is put in a form suitable
for numerical calculations. The average impurity site

' J. Hubbard, Proc. Roy. Soc. {London} A276, 238 (1963);
277, 237 (1964); 281, 401 (1964),

' H. Suhl, Phys. Rev. Letters 19, 442 (1967); M. J. Levine,
T. V. Ramakrishnan, and R. A. Keiner, i'. 20, 1370 (1968);
M. Levine and H. Suhl, Phys. Rev. 171, 567 (1968).

g B. R. Hamann, using the Anderson model, has obtained an
analytic solution within Suhl's scheme (unpublished).

occupation number and the energy dependence of the
imaginary part of the t matrix are calculated.

II. MODEL HAMILTONIAN AND
GREEN'S-FUNCTION METHOD

The Hamiltonian for the model is

H=Q T,,c;,'c, ,+V Q np„+ ,'f' -Q nq, nq;

—h Q on; ., (2.1)
i, a

where c, ~ creates an electron of spin a at lattice site i
and no is the number of electrons of spin cr at the im-

purity site. The difference in one-electron potential
between host and impurity sites is measured by V.
A Coulomb repulsion U is operative only betv een elec-
trons of opposite spin located at the impurity site (the
Pauli principle forbids two electrons of the same spin
being at the same site). A uniform external magnetic
field is described by the last term in (2.1). The kinetic
energ~ may be written as

T&jcir cjo =~ eqcqe cq~ &

q, =(1'X)p e'q ~ * "~'T„,
2j

(2.2)

where eq is the band energy of the host and

t(c t '1 —1i2 P c, tetq Rr)

8(x) =1, x)0

0(x) = 0, x(0.
(2.4a,)

(2.4b)

Differentiation of (2.3) with respect to t yields

f(«)«t)((A (t) ft(t')))'+'= &(t—t')([A (t) ft(t)))
+((L[A (t),&j,ff (t') j))"', (2.3)

where use has been made of the relations

and
(dtdt)e(t t') = b(t t')——

i (d(dt)A = [A,H j.
(2.6)

(2.7)

' D. X. Zubarev, Usp. I'iz. Nauk 71, 71 (1960) { Fnglish transl. :
Soviet Phys. —L'sp. 3, 320 (1960}7.

creates an electron of spin 0. and niomentum q. Through-
out this paper, momenta will be designated by q or q',
lattice site indices by i, j, k, or l.

Our analysis is based on the equation of motion of
the retarded (+) and advanced (—) Green's functions
defined by'

((A (t),8(t'))) '+' = W qe[& (t—t') j([A (t),8(t')]), (2.3)

where A (t), B(t) are operators in the Heisenberg
representation and
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Differentiation of (2.3) with respect to t' gives

t(d/«') &(A (t),B(t')))"'=—&(t—t')(LA (t) B(t)])

The Green's functions defined by (2.3) are functions
of t—t' only, and one can define the Fourier transform

poop, '= ((i«o;co. , c..')). (2.15)

Gq, q '(E) =(I/N)p e'q R'G'i, '(E)a 'q' ""', (2.16)

where Fppp is a higher-order Green's function given by

( (A ( ) B(0)) ) (+i s d (2 9)
and obeys the equation of motion

In the case of the retarded (+) Green's function, the
integral (2.9) converges for ImE) 0, and in the case of
the advanced Green's function (—) it converges for
ImE:&0. The function Go ~= (I/& )'"p Go e 'q''""' (2.18a)

(E+ha —«,)G, ,"=bq, q /2pr+ VGo, '!X'"
+UI'opp q /N ", (2.1i)

where we have used (2.2), (2.14), (2.16), and

(&A,B))s= ((A,B))s'+&, ImE) 0 (2.10a)

= ((A,B))s' ', ImE(0 (2.10b)
I'ooo, q

'= (I/N)'i P I'ooo ~~'c (2.18b)

is analytic except on the real axis. The equations of
motion of ((A,B))E follow from (2.5) and (2.8),
respectively.

E((A,B))g= ([A,B])/2qr+ &((A,H],B))s, (2.11a)

E((A,B))s——(PI,B])/2qr —((A,(B,H]))s. (2.11b)

The equation usually used is (2.11a). The equa-
tion of motion for the desired quantity ((A,B))
is given by (2.11a) and (2.11b).In order to find ((A,B)),
it is necessary to know the higher-order Green's
function ((LA,H],B))z whose equation of motion is
determined by (2.11a) and (2.11b) and involves

&(L)A,H],H],B))s. At some stage, a higher-order
Green's function is approximated by lower-order
Green's functions and the system of equations of motion
becomes a set of simultaneous equations which may be
solved for the lower-order Green's functions. If ((A; B))E
is known then (B(t')A(t)), the expectation value of
B(t')A (t), is given by

It is helpful to dehne some quantities which will be
used in the remainder of the paper:

F;=1/(E+ha «q), —

F =(1/N)Q F,',
(2.19a)

(2.19b)

B = (1/N)Q «,F,' = —1+(8+ho)F'. (2.19c)

Ke now relate Gq q to Gpp . Multiplying both sides of
(2.17) bv (1/N'")Fq' and summing on q yields

~' I 000, q'
Gpq '(1 —F V) F'/2m. X"—

(2.20)

Throughout this paper, the subscript 0 appearing, for
example, in Gp, , ' means the lattice site 0 (the impurity
site) and not q=0. Note that

Gp, , ' ——(I/N'")Q G, , q

where here and later in the paper the quantity 6 is
taken to mean the limit 8~ +0. As a consequence, all
the one-electron properties of the system can be
calculated once

G;,'(E)= ((c;.; c,.))s—(2.13)
is known.

Using Eqs. (2.1) and (2.11a) yields the equation of
motion for G~,

(E+ha)Gi, „(bi, /2')+P Ti,G,„——
%hi, p(VGp, '+UI'ppp, „'), (2.14)

(B(t')A(t)) =t L((A; B)) ' —&(A; ») —.]
e
—s'E(t—f )

X ib, (2.12)
eP(E +)+

This relation is used to eliminate UIopo q" from (2.17)
to obtain

Gq, ,"=Gq,q' (2.23)

Equation (2.23) implies Gpq =Gq p, thus (2.21) and
(2.22) give the important result

G, , q
' ——(8qq /2qr)F;+ (I/iV)F; T F, , (2.24)

G„. =F;L(8qq /2qr)+ (Gpq /F'$'")
—(F, /2qrF )]. (2.21)

Multiplying both sides of (2.17) by F;/X"' and
summing on q' yields

Gq p = (Fq /N )L1/2qr+ VGo, p +UI ppp, p ]. (2.22)

With the aid of the two equations of motion (2.11a)
and (2.11b) it can be shown (Appendix A) that
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(2 25) ~ijk 0 —(ciir 'cj r)iGk, o

at most one of i, j, h equals 0. (3.7)
T'= ( VGoo'+ fi &ooo, o')/F'

The relationship between Gop' and Fppp p is obtained
by summing (2.22) over q, This approximational scheme is based on the notion

that it is the correlations between electrons at the im-

purity site which are of prime importance in this prob-
lem. Making use of (3.7), Eqs. (3.3)—(3.5) are approxi-
mated by (3.8)—(3.10), respectively:

Goo'= (1/2 +Ul'ooo, o')F'/(1 F'V—). (2.26)

T then takes the relatively simple form

T = (Gpo'/F I/2or—) (1/F') . (2.27)
(3 8)(J:+h )I'oo, ,'=Q T, I'oo, o', j40

where the ] matrix is a function of energy, but not Hartree-Fock-type approximation
momentum

Hence we have succeeded in relating Gqq to Gpp For
simplicity, in the remainder of the paper we set %=1.

III. APPROXIMATE SOLUTION OF
EQUATIONS OF MOTION

ln order to determine I'ppp p, we use (2.1) and (2.11a)
to write the equation of motion

where we have used t.he relation (cp;tck;)= (ck;rcp.-l
which follows from (2.23) and (2.12),

(a +ho')r p, pp=, (cp;rc, ;)I I/2~+& TpkGkp

—Goo' Q Tok(ci.'c,;)-
(8+ho —U —V)1'ppp, p = (1/2n')(rrpp)

+g To Ll oo, o'+I o o,o' I oo, o'], (3 1)

where

+P Tiki'oko, o', j&0 (3 9)

(I''+ho —f. —2V)I', '

pp, p'=(c, ;rcp )I I/2-vr+Q TpkGk; j
I ijk, L

= ((Crp~CjrrCI a,' Clrr ))E. (3 2) +Goo' P T,k(c,.'ck.)--
Again making use of (2.1) and (2.11a), we write the
equations of motion for Foo, o', Fojo, o', and Fjoo, o' which
appear on the right-hand side of (3.1}:

(F+ho)I pro' =P T, q kI ooko'',
The quantities

—p TI'kI'koo, o', j/0 (3.10)

2 To I ooi', o';

++ T (&, &,)
.

0 (3 3)
etc. , which appear in (3.1) may be obtained from (3.8)-
(3.10) which all have the general form

(F+ho) I'p, p, p' ——(cp; c,;)/2p- (3.11)

+Q Tpk(POJl', 0 Pk)p, o )
where F, stands for Fpp' o Fp'p p or F 'pp p . It is shown

+p T.kI,k„,. j~0 (3 4) in Appendix 8 that (3.11) implies

(F+ho U —2 V)I',oo, o' = (c,.-'c—o.-)/2p

+P Toke'&ok, o'+I', 'ko, o'j

—Q T&kl'koo. o'
&

We are free to choose the zero of energy at

T;;=+ ok=0,
k

(3.5)

(3.6)

Q Tp,I', =&( b+(pI/J)—

XL&KI'p+Q b, (aW p, ) ')), (3.12}

where

J =Q (aW po) ', K=+ p, (aW p, ) ', (3.13)

and it is understood that

bo
——Q c'p' R'b;.

Approximations are now introduced in such a way as to
treat correlations on the impurity site (where there is a
Coulomb interaction) as accurately as is feasible. We
treat Green's function F;,~ o exactly when two or more
of the indices i, j, k refer to the impurity site. If only
one of the indices refers to the impurity site we make a

With the aid of (3.12), we find from (3.8)

2 To&op, .o'=73'I'ooo, o'i'F',

where F, 8' as well as Fp are defined in (2.19).

(3.14a)
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The approximation (3.14a) for P, T„I'po 0 has a,

Raw. In the limit that U is very large, Fppp p goes to
zero as U '; this is clear from (3.1) and reflects the fact
that the probability of finding two electrons on the
impurity site must be very small if the repulsion be-
tween them is very large. There is no reason based on
equal-time correlations why I'pp, p should be small in
the large U limit. An alternative to (3.14a) consistent
with our decoupling rules is obtained by applying the
Hartree-Fock approximation (3.7) to I'pp, p to obtain

Using (3.15)—(3.17) in (3.1) yields

[L'+ho —U —V —2 (B'/F')+ (C'/A ')]I'000, 0'

= —(1/2«r)(no-) —2(nok) 2 TokGko +(F ) r g Fq'

X{(co-cq,-)L(1/2«r)+P TokGko ]
—Goo'2 Tok(ck c«.-)}

2 To'I oo'0'=(nok) P ToG', o' (3.14b) +(:1 ) ' P.4, '{(C«.tCO. )-Dl-/27r)+P TpkGkp']

Actual computations show that the final result for
Gpp is relatively insensitive to which approximation is
used with (3.14b) leading to about 10'Po increase in the
electron occupation number at the impurity. It is
interesting to note that while (3.14b) does not vanish
as U ~~, it does fail to satisfy the dynamic sum rule

Xoting that
2 TokGku'=B'Gor&'/F'

fc

(3.20)

+Grl p Tok(c«k'ckk)}. (3.19)

Im((co;"cp;c,.; cp,t))„+;sf(ro)drd =0,
and writing I'oorr 0' in (3.9) in terms of Goo' via (2.26)

gives

as (. ~~, (3.15) 2«rGOO'= (L'(1—F'
V) /(

'IF')] +2(n 0)

which clearly is satisfied by approximation (3.14a).
This sum rule follows trivially from the fact that

(Cp~ Cpk Cokcjk) =0, aS

ln the light of the above and the desire to treat all
the correlations at the same stage in the decoupling we
continue with (3.14a).

From (3.9) and (3.12), we find
where

Pa PaPa. +a Plod o
+err

—I

X—— +——
F (F)' F FA A'

Pa /la J o

X —(no;)+ + +, (3.21)
F .4 U

Q To F'o o = —{(no-)$1/2«r+Q TpkG, o']

—Goo P Tok(«co;)}

+(F')-'E F, {(";",.-)L1/2 +Z To.G'. ]

L'=E+hof. —V —2(B'/F'. )—+(C'/A'),

p =Q (co&~cqk)F«

P"=P (c„-tc„-)A,',

(3.22)

(3.23)

(3.24)

Goo 2 Tok(ck- c -)}+B'&000,0'/F (3.16)
v'=Q F,' Q Tok(ck. 'cp.), --

q k
(3.25)

(3.26)y"=+.4q P Tok(c«."Cr.). --
q A:

From (3.10) and (3.12), we find

Q To,'I', 00, 0 = {(no.-)[1/20++ TokGk, o']

+Goo' p Tok(co;"ck;)}

—(A ') r Q A q'{ (cq-tcp;)LI/2«r+P TokGko']

+Goo' 2 Tok(c«e ckk)}+C'I'000, 0'/A '
r

where

The expectation value appearing in say (3.23) may
be related to an integral over energy of Gp, (E) by
(2.12), G, «'(E) is then written in terms of Gp 0 (E) bv
use of (2.24)—(2.26). Hence, Eq. (3.21) represents an
integral equation for the quantity Gpp (E).

We next rewrite (3.21) in such a way as to exhibit
explicitly the fact that it is an integral equation. Define3.17
an operator OE

A q
——(E+hrr U —2 V+ 0 ) ',4 —=Q A

q

C =Q 0« 1,'. (3.18)

OE {.l (E')} i=dl' f(L')

XLA (E'+ib) A(F. ' —ill)]. (3.2—7)
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It follows that"

P'(E) =r. («.-'a,.-)F '(E) =2 F '(E)Oe {G,o'(E') }

=Q F,'(E)Og. {F, (E')Gpo (F.'),!F (1 )}

equation g(E) should be analytic iri the complex plane
with the exception of a few isolated poles. In addition,
as a practical matter, it must be chosen to eRect a
maximum simplification of (3.21). A Lorentzian density
of states

~(E) =—(D/ ) (F-'+D')-' (4.1)

=Os {2 F,'(E)F,'(E')Goo'(E )/F (1 ) }

=OE
[F'(E') —F'(F)) Goo'(1,")

(
F F.'+2h—a F (E')

=Og Q F,'(E) p,
qq'

(
4p Fp'(E') Fp'(E')Fp '(E')

27r 2prF'(F. ')

F P(E')F, P(E~)
+ oo'(1-')

(F'(F-))-

~"(E)=2 (Coir Cop)—[E+ha —l. —2U] —p,

P( [E+—2ha —f.' 2U])—,—

y'(E) =P F, P To,(c„"c,.l--
q 2

=P F,'p, Os {G,p (F.')}

(3.28)

(3.29)

is, as other workers have found, ideally suited for this.
It has, however, one very serious drawback —the one-
electron band energy is infinite for this density of states.
For problems which have electron-hole symmetry, such
as for the s-f/ Hamiltonian and the present model when

U+ 2 V = 0, this drawback never manifests itself. When
electron-hole symmetry is lacking, as it generally is for
the model studied here, logarithmic divergences are
introduced because of the slowness with which the g(E)
goes to zero for large energies. There are two ways one
can attempt to circumvent this problem. One is simply
to use a density of states which falls off nluch more
rapidly; these, however, lead to integral equations which
have so far proved intractable to analytic methods. The
second is to introduce a cutoR into the integrals which
reflects the fact that all physical density of states do go
to zero above a certain energy. It is this second course
we adopt in this paper.

To maintain a certain consistancy, we shall cutoff
all integrals at &na whether they are divergent or not.
I'he value of n will be left unspecified at present so that
the sensitivity of our solution to the size of the cutoR
can be studied.

Specializing now to the Lorentzian density of states
we find

1
=—OE

27r

8 (E,') 8(E)—
E—F'+ 2ho-

F (E,=pp+ir)= (u&+ha+iD sgnr) ', (4.2)

E 1". +2hoF'(F')— .

1 (F'(E') —F (E) 8 (E')
I——Og

27r

8'(E'= cv+i r) = iD sgnr/(co+ha—+iD sgnr) . (4.3)

It is shown in Appendix C that (3.28) and (3.30) take
the form

[F"(E') —F'(E))
+Op

E—I'+2ho.
P'(pp+ib) =F (pp+i8)[(np;)+2Dpg'(pp+i6)], (4.4)

8 (F.')
X '(F'), (3 30) ~here[F (F'))' f(pp') dao'

7

n D (u —u)'+2ho+i8

nD

(4.6)U (pp+i6) =y"(F) = —y (—[F+2h —f. —2U)). (3.31)

y'(pp+i6) =F'(pp+ib)[a. '+ (D/rr) U'(pp+i8)

+2iD' p; (pa+i 8)5, (4.5)

An examination of (3.28)—(3.31) reveals that (3.21)
represents a. singular nonlinear set of simultaneous
integral equations for the four quantities G„, (F+ih),
Goo (Eai&).

"n f(pp')Goo. (u&'+ib)*d~'
(&p+!6) =

M M +2hg'+78

nD

f((o )[Goo (pp +ib)

(4.7)

IV. FINAL FORM OF INTEGRAL EQUATION

To proceed further, we must choose a particular form
for the density of states g(E) of the host lattice. If
one hopes to obtain an analytic solution to the integral

'" D. R. Hamann, Phys. Rev. 158, 570 (1967).

We also note that

and

+Goo (( '+ib)*)d~ (4.8).
(4.9)8'/F'= iD sgnr—

C'/A =iD sgnr. (4.10)
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Finally, from (3.29) and (4.4), we find

l3"(pp+ib) = F'(p& U——2V+i8)
X [(np;) 2—Dy, '(p&+ib)], (4.11)

where

(4.12)
"D f((p')Gpp'(p&'+ib)rl(p'

.i& p&
—U 2—V+cp'+ib

1'rom (3.31) and (4.5), we find

y" (cp+ib) =F (p& l.—' 2—V+ib)[n —(D/ir)Z'(cu+ib)

+ 2iD'happ ((p+ib)], (4.13)

Z(p&+i 8) =
nD

. (4.«)
„D (o —L' —2V+u)'+iB

We now use (4.4)—(4.14) to rewrite the integral equa-
tion (3.21) as

where

(5.1)

(5.2)

Introducing the function

P ((o+i8) = 4wiDGpp'(p&+i 8) 1, —

Eq. (4.15) is transformed into

(4.18)

where

a (cp)+(D, , rr)[p;(p&+ib) p('(p—&+ib)]

of thebe solved by a straightforward generalization
method presented here). Later in the second, we examine

2pra'(p&) = (np, )+ (p&+h(r U —V—+3iD)U ', (4.16)

The integral equations (4.19) for P(cp+ib an
P*( +i8) t k theformX ((p+ha —V+iD) U '. (4.17}

0~(~) = [«(~)+V+(~)]/[g(~)+ c ~+(~)],

tb~(~) = [d(~)+ V-(~)3P[g(~)+ co~ (~)],

(f.(co+i 8) (p&) =P(p&+i 8), Pg(cp) =(fr*(p&+rb), (5.3)

where

a(cp) —b((p) —(D/rr) [V (p&+ib)+Z(p&+ib)]
)

b(~) (D/~)[—&,'(~+ib)+& (~+ib)]
(4.19)

cpp ((p+ib) =

co( ((p+ib) =

"r& f-((p')&f (cp'+ib)*(lcp'

co —co'+2ha+i 8

"D f(cp')(i (p&'+ib)(lp&'
(4.21)

ng) (u —('—2 V+u)'+i5

V. SOLUTION OF INTEGER, EQUATIONS
FOR TWO SPECIAL CASES

I th fi st part of this section, we solve the integral
equations (4.19) under the assumptions ta&

/ V(UI(and (b) h=O (the finite field case, hWO, can

If approximation (3.14b) had been used rather than
(3.14a) the integral equation (4.19) would have the
same form (4.19) but with a(co) and b(cp) changed to

2pra((p) ~ (n )+p ( +choo —U —V+2iD)U ', (4.22)'
b(p&) & iD(np. )+(co+ho U-—l'+2iD)—

X (co+ho —V+iD}U '. (4.23)

This is our Anal form for the integral equation,
actually (4.19) represents four simultaneous integral
equations; taking the complex conjuga

~ ~

te of ~4.19, and
or making the change 0 —+ —0 gives three more integral
equations.

V~((p) =—
f((p')(l(p'

)

n Z) (d —
CO ~18

(5.4)

1 "" ilp&'f(p&')if'(p&')
c .c'(~) =-

(4 Lt1 &15
(5.5)

1
(p&) =—

"" rl~'f(~')tb~( ')
)

r(g (d M &18

d (cp) =[(V p&)/D]+i (1 —(np)), —
d( ) =L(V—)/D] —(1—( o)),

(5.6)

Berne
~A g+ P.4 ) 7rR g+ PR

One finds from (5.1), (5.2), (5.5), and (5.8)

vrg+ —
iran ——[V+—V ][d+V ]/prr(

&rr(+ —
&rrc = [V+—V ][d+V+]/pry+.

(5.8)

(5.9)

(5.10)

"P. E. Bloom6eld and D. R. Hamann, Phys. Rev.ev. 164 856
(1967).

where (np) is the average number of electrons at the
impurity site and

g(p&) = [((p—V)/D]+i, g(cp) = [(co—V)/D] i (5.7)—.

The integral equations (5.1) and (5.2) are similar to
those solved by Bloomheld and Hamann" for the s-d
model Rondo problem. We adapt their method of solu-
tion to (5.1) and (5.2), and sketch the procedure below.
For more details the reader is referred to their paper.
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pf 5.9 y gg anp .9) 0 and both sides ofMultiply both sides o ( .9) o
(5.10) by s~ an a+ d add the two resu ting e
obtain

Thus, we 6nd

j()=(1/D)( -V) +1+2(")
and

(5.18)

+(d( )+~( ))Y( )+Y'( )j)Y —Y '. (5.11)—(d+ Y—
in 5.11) are either

hi ( lyti pp

functions appearing in

ut di o tiuo coss th
ionall holomorp ic a

—z~(z) g ( ) —Y(z)' is either a.na-
b fl (zholomorp ic. eca
(511)i b lherealaxisby . i m

It can be determine yd b t e e—(d+d) Y—Y' at infinity.
From (5.4) and (4.6),

(5.21)&A

ib in 5.19) and dividing (5.19)Taking the limit z ~ pi+ib in
by (5.21), we find

d+ Y+Y j=—H(pi), (5.22)Lj+Y+ +Y d+ Y

n, D

lim Ld(z)+d(z)]Y(z) = ——

lim Y(z)'=0.
g~QO

From (5.5), (5.7), and (5.8),

(5.13)
from which

1 "D dao'

pry(z)n. s(z) g( )

5.9 and (5.10), multiply both sides of
of (5.10) by + d b-.9 b and both sides o

tract (5.10) from (5.9) to obtain

+ = -' m. ii +z.g+prs++ (Y+—Y ) (d—d.)zB 2LprA prB +irk prB

ib =n.+(pi), we findUsing t5 19) and recalling pr(pp&i )=n.

+wg = j+Y+8+Y d+Y+Y .

s V
limn. g(z)=—+ i

D D

s V
lim mrs (z) =——i+

D D
nD

+—
—nD

z.s(z) =P(z) exp— InH (p~') . (5.23)

ial I' s is determined by a infinities
o ' — (pi'(piD and (b) asymptotic be-

lnH( ') h
i

' '
interval —ND&(p'&nD, thus P(z) is

determined by (2) only. We know t e asym
havior of w~ from 5.15 also

The above two equations give
2' 2 ztg)

dhi' lnH (p~'), (5.24)

2

1' ( ) (z) = —(z—V)'+1
thus

where
P(z) =Pp+Piz, (5.25)

+— f(E')L4 ~ (E')+4 s(E') jdE'.
ll D

Pp = i 1+(1/2prD)—
(5.16)

The integral in (5.16) is simp y
nD Pi =1/D.

nD

dip' lnH (pi') —(V/D), (5.26)

(5.27)

2(ep) —(2/irD) f(E')dE'
—na

as is evident from
We have, finally,

hm pry' s —(d+d)

"J. Zittartz and
(its).

of Goo "Dthe definition of iP in terms of

Y—Y'= (1&D)'(z—V)'

+1+2(Np) (5.17).
. Ph sik 212, 380E. Miiller-Hartmann, . y

'

Finally from (5.2), (5.8), (5.23), and (5.25),Finally, from

~ ~) =Ld(~)+Y (~)jLPp+Pi~3 '

~
~

—nD

'
utes a forma so u ion

'
ute 1 1 tion of the simultaneous

( (o)g q ( )
which appears in H (pp') must e ca c
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tbsp(~) =P«(~)+V+(~)]P'o*+&)*~] '

1 "D lnH'(o)')
IXexp —— f6'

27I I rtD cO —c0 +ill
(5.30)

now examine the case 2V+L ==0 rvith a half-
l — 21l d b d d h =0. In this case, the Hamiltonian

has electron-hole symmetry and solutions o ( .

consistently. We also note that

)rg (s) = (Pp*+Pi*s)

1 "D du)'
e. p ) o') ')), )5.)t))

27rz —„D3—co

should exhibit this symmetry, in particular, one expects
n = no-z. This is evident even within the Hartree-

Fock approximation; the Coulom an po
tering cancel for this case, since

V Q np, +U Q (np;)no, =0.

)4 )PThe integral equation (4.19) exhibits "reasonances at
d = U+2V since V(o)+ib) is singular ata)=0 an

p)=0 (for zero temperature) and Z(o)+t is singu a
co= 0+2 V'.

f U I 2V=O these "resonances are oth a co=
and cancel. The integral equation (4.1&) for Gpp (p)+

'

is

"' ):)) ') —l7Lo»') '+ ))"+o» (—'+ ))i~')

8 (o))+4i¹
nD

.1(op) =(1'4))r)(2(no;) —1)—(1 4)r)(~+3)D) V ',
8( ) =-'1'—'PV-' —(op+)D) (op+3)D)].

co —(u +i8

Lf(p)') —1,' 2]/G«(p)'+ ib)*+Gpp'( o)'+i b—)]do)'

GO (d +18

(5.32)

(5.33)

Equation (5.31) is obtained from (4.15) by noting

f( p)) =1 f—(o)) —a,nd

"D G(o)'+i b)«o)'
=0.

„D co+co'+i 8

If (no )=-', as -expected then ~$(o))*=—.4(—o)), also
8(p))*=8(—o)), thus,

where use has been made of (4.18 5.1 and (5.2).
From the definition (5.5) of tp)p(p)), we obtain

lim toe(&o) =()rp)) '
nD

f()o' ))f i) (p)') «o)' (6.2).
Noting that P&(p)) =P&(p))*, Eq. (6.1) for (np) becomes

G)))) (p)+ib) = 4 (p)) jB(oo) (5.34)
lim (np) =D ' Re(p)tp))(p)) }+nlrr. (6.3)

satisfies (5.31) as Gooo(o)+ib)*= —G„(—o)+ib). It is
easilv shown that for this solution

(no. )=o- f~( ')/&( ')}= l,
as assumed.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, the average impurity site occupation
(no) and the energy dependence of the imaginary part
of the t matrix are evaluated at zero temperature for

The scattering potential V is also taken to be zero. In
order to calculate (np), we express it in terms of the first
and second moments of H(p)):

(np) =2(n)).) =20. (Goo'(o)') }
nD

Equations (5.8), (5.23), (5.25) give

to))(p)) =)r))(p)) —g(o)) =D )Lp) —iD —(1)'2)r)jMo]

1 "n )fop' lnH(o)')
Xexp

2x"1 rt g) (d M

where

rtD

«p) )dm InH(p)) . (6.5)

The exponential term appearing in . y.4 ma be ex-
panded for large co

=2(4)rD) '

X I4 (~')+tb~ (~')+2}«~', (6.1)

iM 1 -'
p 1

M ' +0~ —. (6.6)
2~ 8~'
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Combining (6.4) and (6.6) yields

copy(co) = (Mo/2zr)+ (iMz/2zrD)

+ (Moz/8zrzD)+0(1/zd) . (6.7)

plane. From (6.9), we see that this is possible if

ReL(z/D) —V]=0

{ImL(z/D) —7)}'= 2(zz«1+ 1.
(6.10)

K(z) =j+ (d+d) V+ V'= 2(zzo)+1

+ 7 (z/D) —F)', (6.8)

appearing in (5.19) has real and imagina. ry parts

ReK = 2(zz«)+1+ {ReL (z/D) —Y)}'
—{ImL(z/D) —F)}' (6.9a)

Imczt = 2{ReL(z/D) —V)}{1mL(z/D) —V)}. (6.9b)

Use of (6.7) in (6.3) gives a self-consistent equat. ion for
(zzo), since the moments Mo and Mi depend on (zz«)

via the dependence of H(ru) on (zzo). The equation was
solved numerically using standard interval halving
techniques and the moments evaluated by Gaussian
quadrature techniques. Absolute accuracy of 10 4

is obtained. The resultant value of (zz«) depends to
some extent on the choice of the cutoA' nD. For n =3,
6, and 10 the value of (zzo), the total number of elec-
trons on the impurity site, is 0.40, 0.42, 0.42, respec-
tively. The value for (zz«) gives some indication of the
adequacy of our approximations in treating correl},—

tions. The Hartree-Fock approximation ).ields (zz«) =0.
The correlated function (1 zzozzz«—z) ~0), where ~0) is
the unperturbed Fermi sea, yields a larger value of
(zz«), 0.66.

In comparing this value with that obtained from the
decoupling scheme, it should be kept in mind that there
are two factors tending to reduce the latter which are
not general features of the decoupling scheme. The 6rst
factor is our truncation of the spectral range of all
integrals to (—zzD, nD), and the second is the presence
of a logarithmic in6nity as e —+~ in the denominator
of Eq. (4.15) which defines Go, (&0+i('z) Both .factors
result from our use of a Lorentzian density of states,
and the use of a more realistic density of states would
eliminate them. We estimate that our value of no might
be increased by 25% for a realistic band structure, "but
this would still be less than the (no) obtained from the
correlated wave function (1 zz«cnoz—) ~0). It is hoped
that the inclusion of unequal-time correlations will in-
crease the size of (zz«)

We turn now to a calculation of T(c«). In order to
evaluate ImT(cd), it is necessary to put Eq. (5.28) for
P~ (~) into a form that is more suitable for computation.
The quantity

Clearly, if z=z«satisfies (6.10), then so* also does. It
will be assumed that K(z) has two zeros, z«and z,*, this
assumption has been checked by numerical calculation
for values of (zzo) in the range of interest. The dimen-

sionless quantity

has no zeros, thus InF(z) is not singular (except for the
cut of Y, zzD - c«—. zzD) and may be written as

1111 (z) = ——
27rl .

F+(zd')——ln ---—
„zg z —c« I (co )

Froni the definition of H («z), Eq. (5.22), we see

Im {1nK+ }= Im {InH (c«) }.
Also,

F+(«i)/F —(a) =K+( )«/zK(c«),

Re{lnK+(&a)}=Re{lnK («i) },
Im{lnK+(co) }= —Im{»K (c«)}.

Fqua tions (6.13)—(6.15) lead to the relation

(6.13)

(6.14)

(6.15a)

(6.15b)

= exp
2~i

nD

7, D M —4) 'l5

xL& a( )—& lzz( ') li) i6.17)

and from the definition of F(c0—izz)

expL-,' InF(c« —izz))= LK(c0—ib)D'/~c« —
z«~ z)'z'"(6.18)

These results allow the expression (5.28) for P~(&u)
to be put in the form

pA(cd) =pd+V ](1'0+J'z«i] 'tM —z«[((]H]/D'K )]"'-'

1
Xexp J'

27rj

""d~' in~ H(c«')
~

(6.19)
7C D

ln{ (F+(zd)/F —
(zd) }= 2i Im {lnH (ce) }. (6.16)

With the help of (6.12)

expP, lnF (&o
—ili)]

1
= exp

2'j

For reasons which will. be apparent shortly it is which is suitable for numerical computations. The
necessary to lrnow if K(z) has any zeros in the complex constant zo can be expressed in terms of moments of

H (c«). Use of (6.16) in (6.12) yields
"9'e have arrived at this estimate by taking the value of

(n0) for n = I, where only half the spectral weight of the Lorentzian
has been exhausted, but where the logarithmic singularity is not
yet too large, and doubling it.

1 "D (3(u'

lnF («i) = —— — Im{lnH (&v') } (6.20)
t

7l 7CD CO
—(d
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)--.07
rm Tiki p-—-- n=3 Finally,

zo+= &iID+ (1/2pr) Re{Mp}]
—(1/2pr) Im{Mo}, (6.26)

I-9 -7 -5 -3 .3 g .5

n=6

.7 .9

where zp~ denotes zo or zpo. ComParing (5.26) and

(6.26) yields
oi zp+ =—D(Pp+P ipse) . (6.27)

n= Io

—12

Fxo. 1. Imaginary part of the t matrix versus energy for an
energy range —0.9D&ry&0.9D in units of the bandwitdh D.
/For infinite potential scattering ImT(co=0) = —$~.j The three
curves correspond to the three different values of the cutoff +ID
as discussed in the second paragraph of Sec. IV. The temperature
dependence of the one-electron properties depends primarily on
the shape of ImT(ou).

from which

lim lnI'(pi) = —(prop) 'I Im{Mp}+co ' 1m{M,}j. (6.21)

From the definition of I'(oo), Eq. (6.11), we find

This can be used in (6.19). The relationship (6.26) is

checked by direct calculation of so+, i.e., by finding the
roots of K(z) through a, numerical root finding procedure
and comparing the roots found with those calculated
from the relation (6.26). The results are in very good

agreement, thereby serving as a check to our numerical

procedures.
At zero temperature, H(oi)=1 for oo)0, so the

integral in (6.19) is from nD to—0. The integral is
written as

doo' lnIH(pi')
I

" dpi'(»IH(oi')
I

—»IH(pi) I)

BD

(6.28)+H(oo)lim Inl'(oo) =2&v ' Re{so}+pi 'L2(Re{so})'—IzoI'

+D'(1+2(n, )—2n/or)). (6.22)

~D GO
—G)

Direct comparison of (6.21) and (6.22) yields

The interval (—nD, O) is divided into as many as six

subintervals so that the integrand changes by at most a
factor of 30 within any subinterval. The integral over

Re{so}= —(1/2pr) Im {Mp}, (6.23) each subinterval is evaluated by Gaussian quadrature
techniques. The case co=0 is treated by writing

(Im{zp})'=D'L1+2(no) —(2n/or)]+ (Im{Mo}/2n')'

+ (Im{M,}/n). (6.24)
' d~' » IH (~')

I

Expressing (np) in terms of moments by use of (6.7)
in (6.3) and using that relationship in (6.24) gives

(Im{zp})'=LD+ (1/2pr) Re{Mp}g'. (6.25)

nD nD

10 4D

dpi' ln
I
H (o&')

I

(6.29)

—07'

-08

Im T(~)
The first integral from —nD to —10 4D is evaluated by
the numerical procedure described above and the
integral from —10 4D to 0 is evaluated analytically
after H(o&) is approximated by

IO where

2(no)+PC(~) j'—2fg(~)
H(oo) =

4(")+I (-»

g (pi) = (1/pr) ln
I
(nD+oi)/pi

I
.

(6.30)

(6.31)

—.05 —.04 —.03 -.02 —.OI .OI .O2 .03 .O4 .O5

cu/D

I 2"
Fro. 2. Imaginary part of the t matrix versus energy for an

energy range —0.05D &co &0.05D. The curves are the same ones
shorn in Fig. 1 but are plotted over an energy range more ap-
propriate to thermal energies.

The values for p~ (p~= &10 oD) and co~(0) as deter-
mined by (6.28) and (6.29), respectively, are in good
agreement and differ by less than 1%, with Pz(0) lying

between/~(+10 'D) and f~( 10 'D), further ser—ving
as a check for our numerical calculations.

The imaginary part of the T(oo) matrix as a function
of energy is shown in Figs. 1 and 2. (Figures 1 and 2

differ in the energy scale. ) In each figure, the different
curves correspond to different values of the limits of the
integral in (6.19), the values nD=BD, 6D, and 10D are
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used. The shapes of the curves are quite similar par-
ticularly in the region of small energy {Fig.2). It is the
shape of ImT(po) in the low-energy region which deter-
mines the temperature dependence of the one-particle
properties of the system through the relationship
r(oo) '= —2 ImT(co), where r(pp) is the relaxation time
of the conduction electrons in the presence of the im-
purity. The uncertainty as to the exact form of ImT(po)
as evidenced in Figs. 1 and 2 was sufhciently great to
dissuade us from carrying out detailed calculations of
such quantities as the resistivity and specihc heat. The
sensitivity of the solution to the cuto6 stems from the
fact that the nature of the scattering center must be
calculated self-consistently and this depends on Dq.;(~)
over a broad frequency range. It is clear, however, from
the figures that p and c, will show anomalous behavior
at low temperatures. In particular, it is clear from
7. ~ImT that the resistivity will decrease with in-
creasing temperature much faster than for nonresonant
scattering.
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Fourier transforming (A3) and (A4) gives

G,q"=Fq L(2qr) 'bqq+VGoq'
+U((no;co. ,c, .'))j, (As)

Gq q'=FqL(2n) '~qq+VGq. p'

+U((cq. „np;cp, ))j. (A6)

Next let B=np;cp in (A1) A =np-cp in (A2), then

(E+ho)((c .,no;co.'))

= &,o(2~) '(no.-)+P T,((c...no.co.')-)

+b,o(V((co,no co "))+-L'((no-co,no co ~))) (A~)

(E+hp) ((no-cp„c,))

= b„p(27r) '(no-)+P T,((np.-cp„c;,t))

+b p(V((np;co„co ~))+U((no co,n-oco t))) (AS)

Fourier transforming (A7) and (AS) one obtains
One of the authors (J.A.A.) would like to express

his appreciation to W. F. Brinkman and D. R. Hamann (( qs~nop o~ ))=Fq L(2qr) ( pp)+V(( or& op o~ ))
for helpful conversations. ~ U((np. cp.,np-;cp. ))j, (A9)

APPENDIX A

We prove (2.23), Gqq. =Go q'. First choose A =c„,
in (2.11a) and B=c,,~ in (2.11b), H is given by (2.1),
and upon carrying out the indicated commutations we
find

((np.cp.,c,.'-)) =F;$(2 )-qr'( p.n-)+ V((no.co.,cp.'-))

+U((no.co.,no co-.t))g -(A10)

Summing (A9) and (A10) over g and solving for
((cq,nppcp t)) and ((np;cp„c„t)), respectively, gives the
result

COa y'+0qrCOa' Ã08'COa'&COqr ~ (A11)
(E+ho)((c„...B))

+b,o(V((cp.,B))+U((np.-co.,B))), (A1)

(E+h )((A,c .t))

Equations (A9) and (A10) now yield ((cq„np;cp, t))
= ((nopco, cq,t)) and comparison of (A5) with (A6)

ea"= a'q ~

APPENDIX B

We prove that if (3.11) holds, then (3.12) follows.
First write (3.11) as

ar;=b, &P T~orp=b~&j~oro~Z Thoro~ j&0 (Bl)
k k y'-0

+b p(V((4, cp,t))+U((A, nt'))o). (A2)
Define the restricted Fourier transformer of F by

Let B=c~,~ in (A1), A =c~, in (A2) to obtain

{E+ha)G,i

= (2o.) 'b„,+g T, G, , +b„,p(V((cp„ci. ))

r,=p e'q R~r.
jy'-0

(B2)

Multiply both sides of (B1) by e"R~ and sum over j
excluding j=0,

(E+ho)G(,
+U(( c n„p(,p~))c), (A3) aI'q=bq —bp& pqrp& pqf'qWQ oq rq . (B3)

= (2~)-'b, „+PT, G„'+b,p(V((c,.',c,.)) Ke wish to solve for

(B4)
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Noting that from (B2)
Q I', =0, (B5)

solving (B3) for I'», and suniming over (/ gives

bq 1 6q 1—~p —'—r„~p p., r, .
g& 6q 'q QW 6q q a'W 6q q QW 6q

Use of (B4) in (86) gives (3.12).

APPENDIX C

Equations (4.4) and (4.5) are derived here. From (3.26) and (3.27), we obtain

P'((o+ib) =i
co —(d +2hg

F ((p'+ib) —F'((a+i 6) Gpp ((p'+ib) F ((p' ib) ——F ((a+gab) Gpp'((p' —ib)
(/(p'F ((p')—

F ((p'+ib) (p (p'+—2ho+ib F'( '(o—»'6)
(C1)

The unperturbed (careen's function F' is given by (4.2) from which

F ((p'+(6) F'((a+—ib) 1 1

(p —(p'+2ha F ((a'+ib) (p+/(o+iD

F'((o' i 6) F'—(~+i-6)

co —fd'+ 2ho +i8

2iD
1+

F'((o' i 6) (a+—ha+i D (p —+(p2h +aib
(C l)

Substituting (C2) and (C3) in (C1) gives

/3'((p+ib) = (np.-)+2D
su+ ho-+ iD

(/(p' f((p')(Gpp'((p' —ib) ((o —(o'+2ho+ib)) (C4)

In order to find y, we see from (3.29) that we require

F'(~') &"(~) //'(~')G—«'(~')
0„

(p —(p'+2ha LF'((p')]'

Lmaking use of (4.2) and (4.3)]

F '((p'+i 6) /" ((p+—i 6) //'((p'+i 6) Gpp'((p'+i 6)
(/(p' j((p')

(o (p'+2ha — F'((o'+ib) F ((p'+ib)

F'( ' (pib) ——F'( (+pi )6Po((a' —ib) Gpp ((o —zb)

(o (a'+2ha+i—b F ((o' ib) F ((o—' ib)—
—iDGpp ((o +ib)

(/ /(p((p ) +
co+ho. +iD

—ED
1+—— XGoo'((p' —ib)

co+ho. +iD co —co'+2ho-+ 8
2iD

(C4)

Also required is

1—0„
2'

// ((p') —//'((p)
i

1 F ((a') —F'((o) // ((p')
(——0„

(o —(p'+2ha 27r (p —(p'+2ha F '((o')

—co'+ho-
1 1 1

=—0. — (~' ha)F'(~') (~+ha—)F'(~) (F'—(~') F'(~))— —
2' co —(2 +2h(T— '(~')

1
=—0„

27r

F ((p') —F ((p) 1
(/GO

(o —(+2hpa' F'((p') (o+ho+iD (p (p'+2h(r+ib—
(C5)
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Goo ((o —((i)
d(o ( ((o )

~ —~'+2hg+i 6

(D; ir)
y'((o+ili) =

o)+ho. +)D

in(~, C4 and (('5) gives'( &=- —1+((o+ha)F'((o)] ('.omhinmgLwhere we used P'((o, =- — (o . '
m(~

d(o j ((o )

~—~'+2ha. +i6

o(&~ain usin~ (4.2) and (4.3), we obtain

( ') ( ')
I(('((o+(li) =0„

I I' ((d')

(3(d f ((o )t Goo ((o +'ifI)+Goo ((o(o' i f—( . (C6)

(C()

h i 1 q o (3.20
e( uivalent to (4.5).

as evidenced bpThe de sity of st tes (4. ) o

)nsit . of states . goes(4.19). Unfortunately, the density
this is that the real part of the integral

(( +i(i) = j ((o')(/~'

~ et) —M + 60+18

and a cutoff;it &&ID is introducedis infinite. is e. Th' b havior is unphysical an a cu o

1 '((o+i6)
) ((o )doo

r( ~ CO
—cO +2/10 + t 6

(C9)

he real art of V'((owing) at (o=anD 2h(r whi—ch is
d .. ha ad

'
er ies close to the Fe gp

d h
'

l ld' '
hoice on n will lead to meaning u res

to the choice of n for n =3, 6, an

APPENDIX D

—iD&cu& ~ED. Define5.22 has no zeros or singularit. ies or —nWe show that the function H((o) of (5. ) as no z

, V d V are real and j is real b 5.18 thenwhere 6'g, d~, V~, an ~ a

j+-'dr(1'r(+1'x' & r'+2i&r(d—r(+'& r()

j+2 (d R&'R+dl 1'r)+ 1'8'-+ &'r'

where
di(= V—(o D, dr = 1 —(rro), j = ((o—V)'D -'+1+2(no)

(D2)

(D3)

Use of (D3) in (D2) gives

»ro)+ 1 —')+I (~' —~)D '+1'aj' —2ijL(l' —~)D '+&'R7

2(,)(1+j)+I (V—)D-'+1' ]'+(1—')'- (D4)

d V = —~, =Fermi function.I
From (D4) we see that H((o) has no zeros or po es on


