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of lower-energy modes caused by the advent of surface
states. The alloy spectrum [Fig. 1(c)] shows interesting
peaks near 60Jo, which is the range in which local s
modes are predicted to arise when an S=7 impurity is
placed in S=$ host (with a doubling of J). In fact, the
exact prediction for an isolated impurity7 is 37J .

The specific heat and magnetization can be calculated
readily using the prescriptions given by previous
authors.® ! Dramatic specific-heat changes, for example,
would not be expected'® in the alloy treated numerically
above, since e(=J’/J—1) had the value 3 or —1; the
low-lying resonance modes which enhance the specific
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heat greatly are present for 0< |e| <0.2, the latter in-
equality being approximate. Combining the condition
for low-lying resonances with the ability to calculate
detailed magnetic spectra of alloys allows one to design
materials with substantially altered specific heats and
theoretically predict that property.
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We have studied the effects of an exchange-enhanced substitutional impurity on a host metal by double-
time Green’s functions. We have used a simplification of the Wolff model to describe this system, i.e., a
one-band model in which Coulomb interactions in the host lattice are neglected, and the impurity is repre-
sented by Unns;+V (n.+n;z), where n, is the electron occupation number for spin o at the impurity site.
A decoupling scheme is used in which operators on the exchange-enhanced site are never separated from
each other in the process of decoupling. This leads to a singular integral equation for the localized Green’s
function of the exchange-enhanced site, in terms of which all the one-electron properties of the system are
expressible. The integral equation, assuming essentially a Lorentzian density of states for the host lattice,
is exactly solvable in the U-infinite, V-finite limit, as well as for the special case of electron-hole symmetry,
U+2V=0. Numerical results for the {’-infinite, I"-zero limit for zero temperature are obtained for 7., the
number of electrons on the impurity site, and for the one-electron ¢ matrix as a function of energy. ny has
a value of 0.4, which may be compared with the values no=0 predicted by the Hartree-Fock theory and
no=3 obtained by using a determinantal wave function from which the doubly occupied state is projected
out. The ¢ matrix is found to exhibit a characteristic Kondo-like resonance at zero energy, and indicates a
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resistivity which falls rapidly with increasing temperature, as well as a specific-heat anomaly.

I. INTRODUCTION

HE purpose of this paper is to establish the basis
for a new approach to the problem of a magnetic
impurity in a narrow energy band.

Until a few years ago, it was generally believed that
the localized Coulomb interaction associated with
magnetic impurities in metals and heavily doped
semiconductors could be understood within the con-
text of Hartree-Fock theory.!? The inadequacy of
this point of view became clear with the now famous
work of Kondo? on the logarithmic divergence in the
host conduction-electron ¢ matrix. In the model studied

* Work supported in part by the Advanced Research Projects
Agency.
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by Kondo, the s-¢ Hamiltonian, strong localized cor-
relations enter indirectly through the assumption that
a local spin exists in the electron gas. In order to study
the strong Coulomb interactions present on certain im-
purities a model which explicitly exhibits these inter-
actions is obviously needed. The extraorbital model
of a magnetic impurity due to Anderson meets this
requirement, and considerable effort has been expended*
during the past few vears in studying correlations in
this system. It appears clear that for certain situations,
namely, for transition-metal impurities in transition
metals and particularly for heavily doped semicon-
ductors,® a one-band model such as was studied within
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the Hartree-Fock approximation by Wolff*> is more
appropriate. Because of our interest in the above-
mentioned systems, we have adopted a modification
of the Wolff model to study. The model consists of a
narrow conduction band in which Coulomb and poten-
tial scattering is effective at only one Wannier site,
the impurity site. The model resembles the one studied
by Hubbard,® with the crucial difference that in our
case only one site has the Coulomb interaction.

Central to obtaining an adequate understanding of
the behavior of this model is a careful treatment of
electron correlations at the impurity site. To this end
we have found the equation-of-motion technique well
suited. In decoupling the equations of motions, we have
been guided by the requirement of never violating
equal-time electron correlations at the impurity site.
Equations of motion for the electron Green’s functions
consistent with this requirement have been obtained
and solved for in certain limiting cases.

An alternative approach to localized correlations
within the one-band model has been taken by Suhl and
co-workers.”8 They employ diagrammatic techniques
and configuration averaging to obtain localization.
Their approach, which attempts to properly renormalize
the low-frequency singularity in the susceptibility
present within the Hartree-Fock approximation, is very
different from ours and we have found it difhcult at
present to draw any parallels between their work and
ours.

This paper represents the first in a series in which
we hope to extend our treatment to finite magnetic
fields, generalize our model to include the possibility
that the impurity site has a different coupling to its
neighbors from that of the remaining sites, and do a
better job of treating unequal-time correlations at the
impurity site. Considerable progress has already been
made on the first two objectives and we hope to publish
this shortly.

As this paper is a rather long one, we include below
a summary of the material contained in the succeeding
sections. In Sec. II, the model is described in detail and
certain exact results for the Green’s function are
derived. In Sec. III, the approximation scheme is in-
troduced and an integral equation for the impurity
site Green’s function is obtained. In Sec. IV, a particular
density of states for the host lattice is chosen and the
integral equation solved for two special cases (a)
infinite Coulomb potential and (b) Coulomb and scat-
tering potential chosen in such a way that electron-hole
symmetry exists. Finally in Sec. VI, the solution to the
integral equation for case (a) is put in a form suitable
for numerical calculations. The average impurity site

6 J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963);
277, 237 (1964); 281, 401 (1964).

7 H. Suhl, Phys. Rev. Letters 19, 442 (1967); M. ]J. Levine,
T. V. Ramakrishnan, and R. A. Weiner, zbid. 20, 1370 (1968);
M. Levine and H. Suhl, Phys. Rev. 171, 567 (1968).

8 D. R. Hamann, using the Anderson model, has obtained an
analytic solution within Suhl’s scheme (unpublished).
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occupation number and the energy dependence of the
imaginary part of the ¢ matrix are calculated.

II. MODEL HAMILTONIAN AND
GREEN’S-FUNCTION METHOD

The Hamiltonian for the model is

H=3 Tici'cjotV 2 no,e+30 2 nosites

1jo 4

—hY oni,, (2.1)

where ¢, creates an electron of spin ¢ at lattice site 7
and #ng,, is the number of electrons of spin ¢ at the im-
purity site. The difference in one-electron potential
between host and impurity sites is measured by V.
A Coulomb repulsion U is operative only between elec-
trons of opposite spin located at the impurity site (the
Pauli principle forbids two electrons of the same spin
being at the same site). A uniform external magnetic
field is described by the last term in (2.1). The kinetic
energy may be written as

Z Tijciv*(:jazz équqTCq,,

1jo qo

€= (11\)2 gl Ri=ROT" .
i

(2.2)

where ¢ is the band energy of the host and

Coot (Caat =NT12 Y ¢; teia R
7

creates an electron of spin ¢ and momentum q. Through-
out this paper, momenta will be designated by q or ¢,
lattice site indices by 7, j, k, or I

Our analysis is based on the equation of motion of
the retarded (+) and advanced (—) Green’s functions
defined by?*

(A 0,B(1))® =Fib[£(—t) K[A®,B()]), (2.3)

where A(f), B(t) are operators in the Heisenberg
representation and

0(x)=1, x>0 (2.4a)
0(x)=0, x<0. (2.4b)
Differentiation of (2.3) with respect to ¢ vields
i(d/dD (A (1), BA)))® = 8(i— ) (LA (1),B(1)])
+(LA®H]BW)])®, (2.5)
where use has been made of the relations
(d/dH)e(t—1"=s(1—1") (2.6)
and
- i(d/dt)A=[A,H]. 2.7

9 D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [ English transl.:
Soviet Phys.—Usp. 3, 320 (1960)].
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Differentiation of (2.3) with respect to ¢’ gives
i(d/dt"){({A(1),B(t")))*F = —s(t—1"){[A(1),B(1)])
+{(LAO),[BW)H]ID)=.

The Green’s functions defined by (2.3) are functions
of {—1' only, and one can define the Fourier transform

(2.8)

1 £
((4,B))p® =—

TJ

((A4(0),B(0)))®eEtdr. (2.9)

In the case of the retarded (4 ) Green’s function, the
integral (2.9) converges for Im/£>0, and in the case of
the advanced Green’s function (—) it converges for
ImE<0. The function

((4,B))g={(4,B))g™, ImE>0 (2.10a)
={(4,B))s™, ImE<O0 (2.10b)

is analytic except on the real axis. The equations of
motion of ((4,B))r follow from (2.5) and (2.8),
respectively.

The equation usually used is (2.11a). The equa-
tion of motion for the desired quantity ((4,B))
is given by (2.11a) and (2.11b). In order to find ((4,B)),
it is necessary to know the higher-order Green’s
function (([4,H],B))r whose equation of motion is
determined by (2.11a) and (2.11b) and involves
((([4,H],H],B))s. At some stage, a higher-order
Green’s function is approximated by lower-order
Green’s functions and the system of equations of motion
becomes a set of simultaneous equations which may be
solved for the lower-order Green’s functions. If ((4 ; B))g
is known then (B(#')A(!)), the expectation value of
B(t)A(1), is given by

(BWAW)=i / C({A; B))gaa— (4 B))sis])
et e iE (=t

—dE, (2.12)
1

B (E—p) +

where here and later in the paper the quantity § is
taken to mean the limit § — 0. As a consequence, all
the one-electron properties of the system can be
calculated once
Gii*(E)={(cis; c1s"))E (2.13)

is known.

Using Egs. (2.1) and (2.11a) yields the equation of
motion for Gy,,°

(E+4ha)Grm® = (81.m/2m)+ 2 T1,Gjm®
-

+61,0(VGo,m*+UTo00,m%), (2.14)
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where I'go,° is a higher-order Green’s function given by

T000,m" = {{105C05; Cma')) - (2.15)
The Fourier transform of G;,»° is given by

Go.o?(E)=(1/N)X ¢vRG, .7 (E)e v F», (2.10)
l,m

and obeys the equation of motion

(E+}l0’— GQ)GQ-Q'U:‘ aq.q'/27r+ VG'().q'”/.\vl"2

4+ UT00,q:°/ N2, (2.17)

where we have used (2.2), (2.14), (2.16), and
Gog "= (1/N)V2 3 Go,me™ " R, (2.18a)
To00,q'” = (1/N)"2 32 Togo,m7€ "0 R (2.18b)

Throughout this paper, the subscript 0 appearing, for
example, in Gy, means the lattice site O (the impurity
site) and not ¢=0. Note that

Go,q"=(1/NV2)3 Gq,g°.
q
It is helpful to define some quantities which will be
used in the remainder of the paper:
Feo=1/(E4ho—eg),
Fe=(1/N)L Fy,
q

(2.19a)
(2.19b)

Bo=(1/N)E eFy"= —14 (E+ho)Fe. (2.19¢)
q

We now relate Gq,q° to Goo’. Multiplying both sides of
(2.17) by (1/NV2)F,* and summing on q vields
Gog (1 —=F°V)—F°/2x N2
Fa

LT o0,q7 =

(2.20)

This relation is used to eliminate UTggo,q- from (2.17)
to obtain

Gaw®=F o[ (qqr/20)+ (Go?/F*N7)
— (Fg°/2wF°)]. (2.21)

Multiplying both sides of (2.17) by F°/V'2 and
summing on ¢’ yields

Gq,o"= (Fq"/.v\v'”?)[l/’21r+ VGo,oq‘f‘ Ur'ooo,o"]. (222)

With the aid of the two equations of motion (2.11a)
and (2.11b) it can be shown (Appendix A) that

Go,°=Gq . (2.23)

Equation (2.23) implies Gog:°=Gqo%, thus (2.21) and
(2.22) give the important result

Go.q"= (8qq'/2m)F "+ (1/N)F°T°F 7, (2.24)
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where the / matrix is a function of energy, but not
momentum

To= (VGo'+UTo00.0°)/ F°. (2.25)

The relationship between Goo® and I'ogo,o° is obtained
by summing (2.22) over ¢,

Goo®= (1/20+ UTp0,0°)F°/(1—F°V). (2.26)
T then takes the relatively simple form
To=(Goo’/F°—1/2m)(1/F"). (2.27)

Hence we have succeeded in relating Goq-° to Goo®. FFor
simplicity, in the remainder of the paper we set .V'=1.

III. APPROXIMATE SOLUTION OF
EQUATIONS OF MOTION

In order to determine I'gg,0%, we use (2.1) and (2.11a)
to write the equation of motion

(E+]la'— LT -_ V)I‘QU()‘(]U = (1/ 21!')(71()5)
4+ Toi[To0j,0°+Tojo.c” —Tjooo’], (3.1)
J

where

Tijk,i”= ({Cis otk Cio'))E (3.2)

Again making use of (2.1) and (2.11a), we write the
equations of motion for I‘ooj'()“, I‘ojo,oa, and Fj()(),()'7 which
appear on the right-hand side of (3.1):

(E+ho)Tooj,0°=2_ Tjrl'oor,0”
k

4+ Tor(Tokj,o” —Troj0®), 720 (3.3)
%

(E+ha’)[‘ojo_0” = (Co,—,fC]‘a>/2ﬂ'
+3° Tok(Toje,0°—Tr0,0%)
k

+Z Tjkroko,o”, ];é() (34)
k

(E~4ho—U —2V)T00,0° ={c;s'cos)/ 27
+3 ToxlT0x,0°+Tx0.0%]
%

=2 Tilro0®, Jj#0.  (3.5)
k

We are free to choose the zero of energy at

Tii=2 e=0, (3.6)
k

Approximations are now introduced in such a way as to
treat correlations on the impurity site (where there is a
Coulomb interaction) as accurately as is feasible. We
treat Green’s function I';x 0% exactly when two or more
of the indices 7, j, k refer to the impurity site. If only
one of the indices refers to the impurity site we make a
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Hartree-Fock-type approximation

Tijk.0'>(cis"¢js)Gr 0"

at most one of #, j, k equals 0. (3.7)

This approximational scheme is based on the notion
that it is the correlations between electrons at the im-
purity site which are of prime importance in this prob-
lem. Making use of (3.7), Egs. (3.3)-(3.5) are approxi-
mated by (3.8)-(3.10), respectively :

(E+ha)Tooj,0° =2 Tixlook,0%, j#0 (3-8)
k

where we have used the relation {cos'crs)= (crs'cos)
which follows from (2.23) and (2.12),

(E+ha)Tojo,0° =(cos"¢;a)[1/ 27+ 2 ToxGro®]
P
—Goo’ Z T()k(Ck,;TCj,;)
l\»
+2 Tiilokoo”, j#0 (3.9)
k

([L+/‘l0 —0'=2 V)Fjoo‘(]o = <Cja*605)[1/"27r+z TOka'()”]
k
+Goo® X Tor{cjstcrs)
k

=3 TiTko,o”, j#=0. (3.10)
k
The quantities
2 ToToos,0°,
7
etc., which appear in (3.1) may be obtained from (3.8)-
(3.10) which all have the general form

al;=b;=£3 Tyl'v, j#0 (3.11)
3

where T'; stands for To;,0%, T'ojo,0%, or I'joo,0°. It is shown
in Appendix B that (3.11) implies

S Toly == {~bot(1/7)

X[E£KTo+2 b(aFe) ']}, (3.12)
q
where
J=Y (@Fe)", K=% eaFe)", (3.13)
q q
and it is understood that
quz e"q‘&bi.
With the aid of (3.12), we find from (3.8)
Z To;T00j,0° =BTg00,0°/ F°, (3.14a)
7

where I, B as well as F* are defined in (2.19).
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The approximation (3.14a) for >_; To;Too;,0” has a
flaw. In the limit that U is very large, T'o0,0° goes to
zero as U™1; this is clear from (3.1) and reflects the fact
that the probability of finding two electrons on the
impurity site must be very small if the repulsion be-
tween them is very large. There is no reason based on
equal-time correlations why T'gg;,0” should be small in
the large U limit. An alternative to (3.14a) consistent
with our decoupling rules is obtained by applying the
Hartree-Fock approximation (3.7) to T'g,,0” to obtain

Z_ To;T 000" = (10s) Z To,Gj.o- (3.14b)
i j

Actual computations show that the final result for
Goo’ is relatively insensitive to which approximation is
used with (3.14b) leading to about 109 increase in the
electron occupation number at the impurity. It is
interesting to note that while (3.14b) does not vanish
as U — w0, it does fail to satisfy the dynamic sum rule

/ Im{{cos"cosCio ; Coo'))wrisf(w)dw=0,
T as [T — =%

., (3.15)

which clearly is satisfied by approximation (3.14a).
This sum rule follows trivially from the fact that

(cootostcoscis)=0, as U —e,

In the light of the above and the desire to treat all
the correlations at the same stage in the decoupling we
continue with (3.14a).

From (3.9) and (3.12), we find
2 ToTojo,0” = —{{nos)[1/ 2+ ToGr "]

j k

—Go’ Y T0k<Ck&f50&>}
P
F(F) 2 Fo'{{cos'cqa)[1/20+22 TorGro”]
T k
—Goo” X Tor{crs'cqs)} +BTo00,0°/F°. (3.16)
&

From (3.10) and (3.12), we find
2= Toilj00,0° = {{mos)[ 1/ 27+ ToxGr o]
J k

+Goo® X Torlcos'crs)}
&
= (A 2 Aq"{{cqsTcos)[1/ 274+ TorGro]
" &

+G000 Z TOk(anTCka‘)} +C”F000_0”/.‘1 7 y (317)
k
where
A= (E+ho—U—2V+e)!, A=Y A,
q

Co=Y el (3.18)
q
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Using (3.15)-(3.17) in (3.1) vields
[lf—{’"llﬂ‘— L'—" V—2 (BV/FG)‘F (C”//l a)]rooo'oq

=—(1/27){nos)—2(nos) 3 ToxGro”+ (F7) 13 Fy°
k q

X{<506T5q6>[(1/27r)+zk ToxGro”]
—Goo” 2 Tor{crscqs)}
k

+ (Ao) Zk A q"{<Cq&TCoa>[(1/27r)+Zk ToxGro”]

+Guw’ 2 Tuk(Cq,;TCka)} . (3.19)
k

Noting that

> TG’ =BG’/ F° (3.20)
k

and writing T'gg,0° in (3.9) in terms of Gy via (2.26)
gives

27rG(,0"= ‘[Ld(l_F”V)/(L"Fg)]‘i"2<’105>

B IBvBrr ,Ya BlaBa ,Y’U ]71

Fe (Fv)? Fe Fo4° A°
Bv lo La
X‘—('noa>+——+—+——} , (3.21)
Fo 40 U
where
o=fitho—U—V—=2(B°/F)+(C7/A7%),  (3.22)
B =2 (cos'cqs)Fy”, (3.23)
q
B9 =2 (cqs'cos) A", (3.24)
q
Y =2 F¢° 2 Torlcrs'cas), (3.25)
q k
Y= A2 Tolcqs'crs)- (3.26)
q k

The expectation value appearing in say (3.23) may
be related to an integral over energy of Gy °(E) by
(2.12), Go,q°(E) is then written in terms of Go,0"(£) by
use of (2.24)-(2.26). Hence, Eq. (3.21) represents an
integral equation for the quantity Goo? (£).

We next rewrite (3.21) in such a way as to exhibit
explicitly the fact that it is an integral equation. Define
an operator Og

Op A (E)) =i / AL’ (L")

XA (E/4i8)— A (E'—i8)]. (3.27)
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It follows that!0

B"(E)=Z <505TCqE>Fq”(E) =Z an(E)OE’{GmO&(E,)}
q q
=Y F o (E)Op{F ¢ (E)Go’ (E)/F?(E)}
q
=0p{ 3 F(E)F@ (E)Go® (E)/F?(E')}
q

L (LEE) =P G (1))
"I h—kt2e P )
—1

(3.28)

ge(B)=%
« —[E4+he—U—=2V]—¢

=—B°(—[E+2ha—U-=-2VT),
Y(E)=) F° Z Toj{c;s'Cqs)
q j

(cos'¢qs)
(3.29)
=3 F%e¢qOp{Gy,o°(E)}

qq’

=0F,[ S P (E)ey

aq’

X(‘Sqq’Fqi(E')_Fq&(E')qu‘"’(E’)
2r 20F3 (E)
Jﬁan(E-’)F‘q"_’ﬁEl)Gooa(h‘/)>l
(F7(EN)? J
1 IB&(E')_Bu(E)
- Op _l
| E—E'+2he
L (F(E)—F(E) B'(E))|
e
| E—E+2he Fo(r))
F& E/ "—F" ]f
0w {[ (£)—F(E)]
E—E'+2ho
B'?(E’)
X——G
[Fo(E)]
Y (E) ==y (=[E+2r—U=2V]).

An examination of (3.28)-(3.31) reveals that (3.21)
represents a singular nonlinear set of simultaneous
integral equations for the four quantities Gyo® (£+18),
Gnoa(E:‘EY.ﬁ).

2(ENp, (3.30)

(3.31)

IV. FINAL FORM OF INTEGRAL EQUATION

To proceed further, we must choose a particular form
for the density of states n(£) of the host lattice. If
one hopes to obtain an analytic solution to the integral

' D. R. Hamann, Phys. Rev. 158, 570 (1967).
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equation n(£) should be analytic in the complex plane
with the exception of a few isolated poles. In addition,
as a practical matter, it must be chosen to effect a
maximum simplification of (3.21). A Lorentzian density
of states

n(£)=(D/m)(E*+D*)~!

is, as other workers have found, ideally suited for this.
It has, however, one very serious drawback—the one-
electron band energy is infinite for this density of states.
For problems which have electron-hole symmetry, such
as for the s-¢ Hamiltonian and the present model when
U+2V =0, this drawback never manifests itself. When
electron-hole symmetry is lacking, as it generally is for
the model studied here, logarithmic divergences are
introduced because of the slowness with which the »(£)
goes to zero for large energies. There are two ways one
can attempt to circumvent this problem. One is simply
to use a density of states which falls off much more
rapidly ; these, however, lead to integral equations which
have so far proved intractable to analytic methods. The
second is to introduce a cutoff into the integrals which
reflects the fact that all physical density of states do go
to zero above a certain energy. It is this second course
we adopt in this paper.

To maintain a certain consistancy, we shall cutoff
all integrals at +=nD whether they are divergent or not.
The value of # will be left unspecified at present so that
the sensitivity of our solution to the size of the cutoff
can be studied.

Specializing now to the Lorentzian density of states
we find

(4.1

Fo(E=w+ir)= (0+ho+iD sgnr)™", (4.2)
(4.3)

It is shown in Appendix C that (3.28) and (3.30) take
the form

B (E=w+ir)=—1D sgnr/(w+ho+1iD sgnr).

B (w+18) = F*(w+18)[(n0s)+ 2D ¢1° (w+18) ], (4.4)
v (w+178) = F*(w+18)[a’+ (D/m) Y (w+16)
+2iD%*¢y"(w+18)], (4.5)
where
nD ( I) i(.v),
Vetoring= [ T (4.6)
—wp w—w' F+2ha+16
"D f(@)Goo? (@' +18)*de’
o (wtib) = / wETEE D @
J_wp w—w'+2ho+16
nD
a’=D f(w’)[G()o& (w'+1'5)
T L Gu (@ in) e (4.8)
We also note that
B?/F°= —iD sgnr (4.9

and

C°/A°=1D sgnr. (4.10)
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Finally, from (3.29) and (4.4), we find
B’ (w+18)=F(w— U—2V+16)

X [(n0s)—2D ¢27(w+18) ],
"D f(w)Goo® (w'+18)dw’
b w—U=2V+w+is

From (3.31) and (4.5), we find

(4.11)
where

¢’ (w+id) = (+.12)

APPELBAUM
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Y (w+18)=Fo(w—U—-2V+i8)[a®— (D/7)Z° (w+18)

+2iD%¢y" (w+148)], (4.13)
where

nD f(w")de’
pw—=U—=2V4w'+is

Z(w+i8)= (4.14)

We now use (4.4)-(4.14) to rewrite the integral equa-
tion (3.21) as

a”(w)+ (D, m)[ o1’ (w+i8) — ¢2° (w+18)]

Goo* (w+18) =
where
2707 (w) = (nos)+ (w+ho—U—V+3iD)U™, (4.16)
b°(w)= (w+ho—U—V~+3iD)
X (w+ho—V+iD)U. (4.17)
Introducing the function
YV (0+18)=4miDGoo’ (w+18)— 1, (4.18)

Eq. (4.15) is transformed into

Vo (w+16)

_ WiDg(w)—b(w)—(D/W)[Y”(w+i6)+2(w+i6)]
b(w)— (D/m)[ 3" (w+18)+ ¢4 (w+18) ]

(4.19)
where D (oW @ iB)
n ’ a ’ 7 * ’
¢3u(w—f—i6)=/ Jto - © ,  (4.20)
J_owp w—w'+2ho+16
"D (Yo (0 +18)dw’
@4 (w+1i8) = - (421

cpw—U =2V +is

If approximation (3.14b) had been used rather than
(3.14a) the integral equation (4.19) would have the
same form (4.19) but with a(w) and b(w) changed to

2ra(w) = (nos)+ (w+ho—U—V+2D)U-,  (4.22)
b(w) = iD(nos)+ (wtho— U— V+2iD)
X (w+ho—V+iD)U.  (4.23)

This is our final form for the integral equation,
actually (4.19) represents four simultaneous integral
equations; taking the complex conjugate of (4.19) and
or making the change 0 — — o gives three more integral
equations.

V. SOLUTION OF INTEGRAL EQUATIONS
FOR TWO SPECIAL CASES

In the first part of this section, we solve the integral
equations (4.19) under the assumptions (a) D/U,
V/UKL1 and (b) h=0 (the finite field case, #5%0, can

b () (D/m) [V (0+i8) +Z (w+i8) J+4iD[ 01° (w+i8) — 02 (w+i8) ]

(4.15)

be solved by a straightforward generalization of the
method presented here). Later in the second, we examine
the case V43U =0.

The integral equations (4.19) for ¢(w+i8) and
¥*(w+19) take the form

Vr(w)=[dw)+Y (] [gw+est (@], (5.1)
Ya(w)=[d@+V_ (@) WEw)+er (@], (52)
where
Yr(w)=y¢(+id), Ya(w)=y*(w+is), (5.3)
1 0 w’)dw’
Yi(w)=~/ J) . (5.4)
TJ)_wp w—w'E16
L df( W )
err=- | )
TJ)_up w—w'i6
(5.5)
1 P do’ f(o )Wr(w)
‘Plf:(w):‘/ —
mJ_up w—w'=+16
d(w)=[(V—w)/D]+i(1—(no)), (5.6)

d(w)=[(V=w)/D]=i(1=(no)),

where (no) is the average number of electrons at the
impurity site and

gw)=[lw=V)/D]+i, gl)=[(w=V)/D]—i. (5.7)

The integral equations (5.1) and (5.2) are similar to
those solved by Bloomfield and Hamann! for the s-d
model Kondo problem. We adapt their method of solu-
tion to (5.1) and (5.2), and sketch the procedure below.
For more details the reader is referred to their paper.
Define

Tat=g+eat, mrE=7+er*. (5.8)

One finds from (5.1), (5.2), (5.5), and (5.8)
Tat—ma =Vt =V d+V_]/rx, (5.9)
et —rr=[V*—V-J[d+V,]/rs*. (5.10)

' P. E. Bloomfield and D. R. Hamann, Phys. Rev. 164, 856
(1967).



188 LLOCALIZED CORRELATIONS
Multiply both sides of (5.9) by 7z~ and both sides of
(5.10) by w4* and add the two resulting equations to
obtain

ratrgt— (d+d) V=Y =g, 15
—[@+d)y——r2.  (5.11)

Since all of the functions appearing in (5.11) are either
analytic or sectionally holomorphic (analytic in upper
and lower half-planes but discontinuous across the
real axis from —nD to nD), we conclude that j(z)
=714(2)rr(z)—[d(z)+d(z) ]V (2) =V (2)? is either ana-
lytic or sectionally holomorphic. Because j(z) is con-
tinuous across the real axis by (5.11) it must be analytic.
It can be determined by the behavior of wawg
— (d4-d)Y — Y at infinity.
From (5.4) and (4.6),

2 nD
lim [d(z)+d(z)]V () = —— f(ENAE', (5.12)
0 e —nD
lim ¥ (2)2=0. (5.13)
From (5.5), (5.7), and (5.8),
z V
lim 74 (2) =—+<¢'——>
20 D D
1 nD
+— JEWA(ENE, (5.14)
w2 J—nD
Z V
lim 7z (2) =~———<i+——>
a0 D D
1 nD
+— FEWr(ENIE'. (5.15)
T2 J—nD
The above two equations give
1 2
lim 74 (2)7R(z) = <——)(z— V)41
30 D
1 nD
+—D‘ JENWa(E)+Yr(ENIIE . (5.16)
0 —nD

The integral in (5.16) is simply

nD

2(no)— (2/7D) J(ENAE!

—nD

as is evident from the definition of ¥ in terms of Gy "2.
We have, finally,

lim mgrp— (d+d)V — V2= (1/D)2(z— V)2

+14-2(noy. (5.17)

2 J. Zittartz and E. Miiller-Hartmann, Z. Physik 212, 380
(1968).

IN NARROW

CONDUCTION BANDS. I 881

Thus, we find
j(@@)={1/D¥(3—V)2+1+2(no) (5.18)
and
74@)mr(@) = j@@)+ ([d@)+d(E)Y @)+ V2(3). (5.19)

Returning to (5.9) and (5.10), multiply both sides of
(5.9) by 7r~ and both sides of (5.10) by 7z* and sub-
tract (5.10) from (5.9) to obtain

matrr =3[ mrFwate gt (YH—Y7") (d—d)
—(Y+t—=1)2].

Using (5.19) and recalling 7 (w=%18)=7*(w), we find
ratmg = j+VHd+Y-d+YV+Y-. (5.21)

Taking the limit z — w146 in (5.19) and dividing (5.19)
by (5.21), we find

(rrt/xr7)=[j+ ([@+dV++ ¥+

(5.20)

[j+YV+d+Y-d+ YV ]=H(w), (5.22)
from which
1 nD ’
m(5)=P() exp[———— / lnH(w’):I. (5.23)
21t ) _up 2—w’

The polynomial P(z) is determined by (a) infinities
of InH (') for —nD<w'<nD and (b) asymptotic be-
havior of 4. In Appendix D, we show InH (') has no
infinities on the interval —#D<«'<nD, thus P(z) is
determined by (2) only. We know the asymptotic be-
havior of 7 from (5.15), also

1 do’
lim expl:—~—— / lnH(w’)] —1
% 2riJ z—w’

nD

+—1— do’ InH (o), (5.24)
2z —nD
thus
where
Po= —i[l+(1/21rD)
nD
X dw'’ lnH(w')]— (V/D), (5.26)
Pi=1/D. P (5.27)
Finally, from (5.2), (5.8), (5.23), and (5.25),
V(@) =[d(@)+ V()] Po+Prw]™"
1 nD InH (w’)
Xexp(—-/ dw’—————-) , (528)
27t J_2p w—w'—i8

which constitutes a formal solution of the simultaneous
integral equations (5.1) and (5.2). The quantity (n,)
which appears in H(w') must be calculated self-
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consistently. We also note that

74(3) = (Po*+P1*2)

"D e’

1
exp<~— lnH*(w')), (5.29)
278) —up 3—w'

Yr(w)=[d(w)+ V(@) J[Po*+ Pr*e ]
1 0 InH*(w)
Xexp<—~~ / (Iw'—~—-rv>. (5.30)
271 J_up  w—w'+1id

We now examine the case 2V+ (=0 with a half-
filed band and ~#=0. In this case, the Hamiltonian (2.1)
has electron-hole symmetry and solutions of (2.1)
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should exhibit this symmetry, in particular, one expects
(nos)=(nos). This is evident even within the Hartree-
Fock approximation; the Coulomb and potential scat-

tering cancel for this case, since

V2 noetU 32 (nos)nos=0.

The integral equation (4.19) exhibits “reasonances’ at
w=0 and w=U+42V, since ¥V (w+1i8) is singular at
w=0 (for zero temperature) and Z (w+19) is singular at
w=U+2V.

If U+2V =0, these “resonances” are both at w=0
and cancel. The integral equation (4.15) for Goo?(w+16)
is

Goo® (w+19) =<A (w)+ (D ‘)

—nD

b [f(w’)—%][Goo"(w'+i5)*+Goo"’(—w’+i5)]dw’> /
w—w'+18

nD @) —1,/2][Go’(w'+16)*+ Goo? ( —w’'+18) ]Jdw’
<B(w)—+—4z’D?/ L)~ 1/ 2 )G (w4 i8)*+ God'(—e'+i8)] > (5.31)

nD
A(w)=(1"47)(2(n0s)—1)— (1, 47) (w+3iD)V1,
B(w) =3[ V2= (w4iD) (0+3iD)].
Equation (5.31) is obtained from (4.15) by noting
"D G(w'+18)dw’
f(—w)=1—f(w) and / ——=0).
—wp wtw'+ié

If (nos)=3% as expected then A(w)*=—.A(—w), also
B(w)*= B(—w), thus,

Goo”(w+18) =4 (w)/B(w) (5.34)

satisfies (5.31) as Goo? (w+18)* = —Goo® (—w+18). It is
easily shown that for this solution

(107)=0u{A()/B(")} =13,

as assumed.

(5.35)

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, the average impurity site occupation
(no) and the energy dependence of the imaginary part
of the ¢ matrix are evaluated at zero temperature for
the special case U=, k=0 considered in Sec. V.
The scattering potential V is also taken to be zero. In
order to calculate (n,), we express it in terms of the first
and second moments of H (w):

(110) =2(100) =20, { Goo" (')}
nD

=2(4rD) [ f(w)

—nD

X{Yr(@)+¢a(w)+2}do’, (6.1)

w—w'+18
(5.32)
(3.33)

where use has been made of (4.18), (5.1), and (5.2).
From the definition (5.5) of ¢g(w), we obtain

nD

S r (@ )do'.

—nD

(6.2)

lim ¢g(w) = (7w)!

Noting that ¥4 (w) =y (w)*, Eq. (6.1) for (n,) becomes

li.r,lgc (noy=D"'Re{wer(w)}+n/r. (6.3)

Equations (5.8), (5.23), (5.25) give

er(w)=mr(w)—g(w)=D"[w—iD— (1/2w)iM o]

1 0 do InH (o)
Xexp< / ; >—D—1[w—iD], (6.4)

2wt J_2p  w—w

where

nD
M, =/ dw w™ InH (w) . (6.5)
—nD

The exponential term appearing in (6.4) may be ex-
panded for large w

nD

1 InH (w’) iMy 1
exp(——. / dw’ -> =14+—+—
2t J_up w—aw’ 21w w?
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Combining (6.4) and (6.6) yields

wea(w)=(Mo/2x)+ (iM,/27D)

+ (M2/87*D)+0(1/w). (6.7)
Use of (6.7) in (6.3) gives a self-consistent equation for
(ny), since the moments M, and M; depend on (n)
via the dependence of H (w) on (1,). The equation was
solved numerically using standard interval halving
techniques and the moments evaluated by Gaussian
quadrature techniques. Absolute accuracy of 107*
is obtained. The resultant value of (n,) depends to
some extent on the choice of the cutoff nD. For n=3,
6, and 10 the value of (no), the total number of elec-
trons on the impurity site, is 0.40, 0.42, 0.42, respec-
tively. The value for (u,) gives some indication of the
adequacy of our approximations in treating correla-
tions. The Hartree-Fock approximation yields (10)=0.
The correlated function (1—ngin0t)|0), where |0) is
the unperturbed Fermi sea, yields a larger value of
(ng), 0.66.

In comparing this value with that obtained from the
decoupling scheme, it should be kept in mind that there
are two factors tending to reduce the latter which are
not general features of the decoupling scheme. The first
factor is our truncation of the spectral range of all
integrals to (—nD, nD), and the second is the presence
of a logarithmic infinity as # —« in the denominator
of Eq. (4.15) which defines Goo(w+158). Both factors
result from our use of a Lorentzian density of states,
and the use of a more realistic density of states would
eliminate them. We estimate that our value of 7, might
be increased by 259%, for a realistic band structure,' but
this would still be less than the {n¢) obtained from the
correlated wave function (1—#ngn01)|0). It is hoped
that the inclusion of unequal-time correlations will in-
crease the size of (n).

We turn now to a calculation of T'(w). In order to
evaluate ImT (w), it is necessary to put Eq. (5.28) for
¥4 (w) into a form that is more suitable for computation.
The quantity

K(2)=j+ (d+d) Y+ V2= 2(no)+1

+LE/D)-YT, (68
appearing in (5.19) has real and imaginary parts

ReK =2(no)+1+4{Re[ (z/D)—V]}?
—{Im[(2/D)—-Y]}?,

ImK=2{Re[ (z/D)— Y ]}{Im[ (z/D)—Y]}.

(6.9a)
(6.9b)

For reasons which will be apparent shortly, it is
necessary to know if K (z) has any zeros in the complex

¥ We have arrived at this estimate by taking the value of
(no) for n=1, where only half the spectral weight of the Lorentzian
has been exhausted, but where the logarithmic singularity is not
yet too large, and doubling it.
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plane. From (6.9), we see that this is possible if
Re[ (z/D)—V]=0 ‘
and (6.10)

{Im[ (z/D)—Y1}2=2(no)+1.

Clearly, if z=2, satisfies (6.10), then z¢* also does. It
will be assumed that K (z) has two zeros, zyand zo*, this
assumption has been checked by numerical calculation
for values of (n0) in the range of interest. The dimen-

sionless quantity
I'(z)=K (2)D?*/| z— 20| ® (6.11)

has no zeros, thus InT'(2) is not singular (except for the
cut of ¥, —nD <w “nD) and may be written as

1 P do' T (o’
Inl'(z)= —-— / — In—-—— (6.12)
2ri ) _pz—w I ()
From the definition of H (w), Eq. (5.22), we see
Im{InK+}=Im{InH (w)} . (6.13)
Also,

I't(w)/T™(w) =K*(w)/K~(w), (6.14)
Re{lnK*(w)}=Re{lnK—(w)}, (6.15a)
Im{InK+(w)}=—Im{InK—(w)} . (6.15b)

Equations (6.13)-(6.15) lead to the relation
In{ (I (w)/T~(w)} =2{ Im{InH (w)}. (6.16)

With the help of (6.12)
exp[3 InI'(w—198)]

1 nD ”’w
SVENLE
27t J_up w—w' —16
1 nD dw’
=exp<_— / e
27t J_up w—w' —18
X[nH (w")—In| H (w")] :]> (6.17)
and from the definition of I' (w—18)
exp[3 InT'(w—18) ]=[K (w—18) D/ |w—2z0| 2]V/2. (6.18)
These results allow the expression (5.28) for ¥4 (w)
to be put in the form

Ya()=[d+ VI Pot+Pw]w—z|[(|H|/DK-)]2

1 "2 o' In| H ()|
Xexp(—-.P / _

2ni J_up

Im{lnH(w’)}>

) ., (6.19)

w—ow’

which is suitable for numerical computations. The
constant 2o can be expressed in terms of moments of
H(w). Use of (6.16) in (6.12) yields

1 P do!
InI'(w) = —- / — Im{lnH («’)} (6.20)

™ nD W—w
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F1c. 1. Imaginary part of the ¢ matrix versus energy for an
energy range —0.9D<w<0.9D in units of the bandwitdh D.
[For infinite potential scattering Im7 (w=0) = —4=x.] The three
curves correspond to the three different values of the cutoff +x#D
as discussed in the second paragraph of Sec. IV. The temperature
dependence of the one-electron properties depends primarily on
the shape of ImT (w).

from which

lim Il (&) = — (r)[Im{Mo} +~* Im{M:}]. (6:21)

From the definition of I'(w), Eq. (6.11), we find

lim InI'(w) = 2w~ Re{zo} +w 2 2 (Re{z0})2— | 20| 2

+D2(14-2(no)—2n/m)]. (6.22)
Direct comparison of (6.21) and (6.22) yields
Re{zo} = — (1/2x) Im{M,}, (6.23)

(Im{z0})2= DY 1+ 2{no)— (2n/m) 1+ (Im{M o} /27)?
+ (Im{M,}/7). (6.24)

Expressing (19) in terms of moments by use of (6.7)
in (6.3) and using that relationship in (6.24) gives

(Im{ze})2=[ D+ (1/27) Re{M} 2.  (6.25)

07t
W ImT(w) n:=3
—.OBT
—_—/J n=6
-.09

-05 -04 -03 -.02 -.0l .01

AR 4

el

F1G6. 2. Imaginary part of the ¢ matrix versus energy for an
energy range —0.05D <w<0.05D. The curves are the same ones
shown in Fig. 1 but are plotted over an energy range more ap-
propriate to thermal energies.
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Finally,

Zoi= :E’LI:D+ (1/21!’) Re{Mo}:l

—(1/27) Im{ M}, (6.26)

where zo= denotes z, or zo*. Comparing (5.26) and
(6.26) yields
w—z¢t=D(Po+ Pw). (6.27)

This can be used in (6.19). The relationship (6.26) is
checked by direct calculation of 2%, i.e., by finding the
roots of K (z) through a numerical root finding procedure
and comparing the roots found with those calculated
from the relation (6.26). The results are in very good
agreement, thereby serving as a check to our numerical
procedures.

At zero temperature, H(w)=1 for »>0, so the
integral in (6.19) is from —xD to 0. The integral is
written as

/o do’ In| H()| / do’'(n|H ()| —In|H()|)

—uD w—ow’ w—w’

0 da,l

+H (w) (6.28)

—nD W—W

The interval (—#D, 0) is divided into as many as six
subintervals so that the integrand changes by at most a
factor of 30 within any subinterval. The integral over
each subinterval is evaluated by Gaussian quadrature
techniques. The case w=0 is treated by writing

/‘0 dw' In|H (w")] /‘_“’—40 dw' In|H(w')] *

’

—nD w —nD w

0 do' In|H(w")]
+ f L
—107*D w’

The first integral from —#nD to —107D is evaluated by
the numerical procedure described above and the
integral from —1074D to O is evaluated analytically
after H(w) is approximated by

w =2<no)+[g(w)]2—2ig(w)
Hno)+[g(w)
g(@)=(1/m) In| (nD+w)/w]| .

The values for ¢4 (w==410"%D) and w,(0) as deter-
mined by (6.28) and (6.29), respectively, are in good
agreement and differ by less than 19, with ¢ 4(0) lying
between Y4 (4+1078D) and ¢ 4 (— 1078D), further serving
as a check for our numerical calculations.

The imaginary part of the T'(w) matrix as a function
of energy is shown in Figs. 1 and 2. (Figures 1 and 2
differ in the energy scale.) In each figure, the different
curves correspond to different values of the limits of the
integral in (6.19), the values nD=3D, 6D, and 10D are

’

(6.29)

, (6.30)

where
(6.31)
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used. The shapes of the curves are quite similar par-
ticularly in the region of small energy (Fig. 2). It is the
shape of ImT () in the low-energy region which deter-
mines the temperature dependence of the one-particle
properties of the system through the relationship
7(w)™'=—2 Im7T (w), where 7(w) is the relaxation time
of the conduction electrons in the presence of the im-
purity. The uncertainty as to the exact form of Im7 (w)
as evidenced in Figs. 1 and 2 was sufficiently great to
dissuade us from carrying out detailed calculations of
such quantities as the resistivity and specific heat. The
sensitivity of the solution to the cutoff stems from the
fact that the nature of the scattering center must be
calculated self-consistently and this depends on D, ¢+ (w)
over a broad frequency range. It is clear, however, from
the figures that p and ¢, will show anomalous behavior
at low temperatures. In particular, it is clear from
7laImT that the resistivity will decrease with in-
creasing temperature much faster than for nonresonant
scattering.
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APPENDIX A

We prove (2.23), Gqq:°=Gq ¢°. First choose 4=c¢mn,o
in (2.11a) and B=cm,,' in (2.11b), H is given by (2.1),
and upon carrying out the indicated commutations we
find

(E+ha){(cms,B))
= 2m) {leme,BH+Z T'mil(cja,B))

+5m,o(V<<COa,B>>+ U(("O"'COV;B») ’
(E4ho){{Ad cm'))
=Qm) (4 eme' DHE Tmil{4,c5'))

(A1)

Fomo(V{(4,600t))+U ({4, m05c0,))) . (A2)
Let B=¢;,' in (A1), A=c;, in (A2) to obtain
(E+ha)Gn.i®
= Q)81+ Tonj Git”+8m,0(V{{conscio"))
(Ethe)Gone J +U{(nosconrc1s"))), (A3)
= Q2m) 8t m A3 Toni G1j7+8m,0(V{{cio's00))
J +U{{ctayn07¢04"))) . (Ad)
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Fourier transforming (A3) and (A4) gives
Gy '=F[(2n)8qg+VGog®

+U{(nosconces'))], (AS)
Gyo'=F [(2n) 8¢+ VGy .o
+U{{cqromosces))].  (A6)
Next let B=1sco," in (A1) A =n0sco, in (A2), then
(E-+ha){{cmaoscos’))
= 5m.0(27f)“‘<"06>+:; T mi{{Ciososcos'))
+8m.0(V{{costt05c05"))+ L' {{no5c0a,m05¢04'))) ,  (AT)
(E4ha){{noscoastma))
=5m.o(27r)“1<"oa)+§ Tmi{{noscoascia’))
+8m,0(V{(05C0s,c00"))+U{(03C0s,m0C054"))) . (A8)
Fourier transforming (A7) and (A8) one obtains
(Carstoscadt)) = F L 2m) (o) V (enestascas!))
+U{(nosCos,m0sc00"))], (A9)
{(105C00,Cqa")) = F o[ (2)n0s)+ V {{(#o5C0ssCos"))
+U{(noscossnoscos’))]. (A10)

Summing (A9) and (A10) over ¢ and solving for
{{cqosmoscost)) and {(noscos,Cqq')), respectively, gives the
result

({cossM0c0s")) = ({M0sCos,C0s")) - (A11)

Equations (A9) and (A10) now yield ((cqs,%05C05'))
=((n0sC0syCqs')) and comparison of (AS) with (A6)
gives Gqq'=Gy ¢°.

APPENDIX B

We prove that if (3.11) holds, then (3.12) follows.
First write (3.11) as

aly=b;=>" Tulr=b;4T;lv Y. Tuls, 7#=0. (B1)
k k#0

Define the restricted Fourier transformer of T' by

fq=z e RiT;,

7#0

(B2)
Multiply both sides of (B1) by e?¢-®i and sum over j
excluding j=0,
df‘q=bq—bo:b éqI‘():t quqq:z éq'qu . (BS)
qi
We wish to solve for

Z TOJ'P:'=Z €l'q =Z qu‘q- (B4)
F) q q
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Noting that from (B2)

X Iy=0, (BS)

q
solving (B3) for I'y, and summing over ¢ gives

bq 1 €q 1
0 =Z '—bo Z :tz I'(H:Z Z éq'l‘q' . (B())
1 aF ¢q e aFeg a aTeg ¢ aFe€q
Use of (B4) in (B6) gives (3.12).
APPENDIX C

Equations (4.4) and (4.5) are derived here. From (3.26) and (3.27), we obtain

" Fo(w'+i8) —Fo (w+1i8) Goo? (w'+18)  Fo(w' —i8) —F(w+18) Goo® (v’ —18)
6”(w+i6)=i/ :/w’ﬁ'(w’)[ - } . (C1)
e w—w'42ho F?(w'416) w—w'+2ho+16 Fo(w —10)
The unperturbed Green’s function /7 is given by (+.2) from which
F?(w'+18) —F°(w410) 1 1
— = —_— (€2)
w—w'+2ho Fo(w'+i8) wiho+iD
Fo(w'—i8)—F7(w+1i6) 1 1 [ 2iD
= 1+ ] . (C3)
w—w'+2hoc+16 F?(w' —18) w+ho+iD|_ w—w'+2ho+16
Substituting (C2) and (C3) in (C1) gives
1 - ‘
B (w+1i8) =—- [<n0a>+20/. do' [ ) (Goo® (w'—18) (w—-w'—{—thr—f—’iB)):l . (C4)
w+ho+1D J—w

In order to find v, we see from (3.29) that we require

o (F&(w’)-—F”(w) B&(w’)Goo‘"’(w')> ./”‘ o 1 ’)<F‘7(w’+iﬁ) — 7 (w+18) B7(w'+18) Goo® (w'+18)
o' = do' f(w -
w—w'+2ho [Fo ()] e ! w—w'+2kho Fo(w'+18) F?(w'+18)

Fo(w' —i8) —F7 (w+i8) B7(w' —id) Goo"’(w’—ié))

w—w'+2hotis  FP(w'—id) F?(w'—id)
[making use of (4.2) and (4.3)]

7 P=iDGu i) —iD g 2D
—i / do’ (w’)|: 4 14 >><Goo‘7(w'——i6):| . (C4)
. wtho+iD  wtho+iD\ | w—w'+2ho+id

Also required is

1 ,tBﬁ_(w’);B”(w)[ Lo {(l""(w')-1«‘"(w)\15&(w')1

| w—w 42 | 20 N\ w—w'H2he JFI())

-~o \—-~-—i——[( o) ) = () ) = (% ) — F (@)
2r ¢ w—w'+2ho w o w w+ho w () — <w))<F‘7(w’)_w +ha>]|

1 (FW@)=F@ 1| (D)

= J (@)
-0, _ d
ur l w—w'+2he F(w))  wthotiD me—w'+2ha+ia ¢

(C3)
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[where we used 87(w)= — 14 (w4 /o) F?(w)]. Combining (C4) and (C3) gives

3

(D/m) * do' f (w”) g Goo® (w'—18)
Yo (w+18) = l:/ +21'D9/ do'j (/)
w+t+ho+iDL)_, w—w'+2ho+16 S w—w' +2ho+16

+D / dw’f(w’)[Goo‘*(w’-{—ia)-i—Goo"’(w'—ié)]:l. (C6)

Again using (4.2) and (4.3), we obtain

| Bole)Go (@)

a’(w+i6)=0,,

=D/ do' f(w")[Go? (w'+18) +Goo7 (' —18) ]. (C7)
IO
With the result (C7) it is clear that (C6) is equivalent to (4.5).

The density of states (4.1) allows for a great simplica- tion in the integral equation (3.20) as evidenced by
(4.19). Unfortunately, the density of states (4.1) goesto zero rather slowly as /2 — 4 the direct result of
this is that the real part of the integral

* J(w")dw’
1o (wt-i6) = / e (C8)
J_ww—w'+2ho+16

is infinite. This behavior is unphysical and a cutoff at 1D is introduced

nD - ’) ’

Fretiy~| ——e. (€9
Jowp w—w'+2ho+16

This introduces a singularity (at zero temperature) into the real part of V°(w=+18) at w= t=nD—2ke which is
also unphysical. Fortunately, we are only interested in energies close to the Fermi energy and we expect that a
judicious choice on # will lead to meaningful results. It is found that our numerical results are fairly insensitive
to the choice of # for n=3, 6, and 10.

APPENDIX D

We show that the function H (w) of (5.22) has no zeros or singularities for —nD<w<nD. Define

d=dp+idr, d=dgr—id;, V==Vp4il, (D1)
where dg, dr, ¥ g, and Y7 are real and j is real by (3.18), then
JH2RY g+ V=Y P+2iVi(dg+ 1)

Hw) =" , (D2)
JH2(dRrY r+-di V)4V 2+ V2

where
dr=(V—w)/D, di=1—(ny), j=(w—V)2D241+2(ny). (D3)
Use of (D3) in (D2) gives
2no)+ (1= A +L(V =)D+ YV F=2ij[(V —w) D'+ V g]
) 20) (14 NHLV =)D T P+ (1= 1) ’ (D4)

where we have used V;= — f, f=Fermi function.
From (D4) we see that H (w) has no zeros or poles on the real axis.

H(w)




