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Low-Temperature Spin Orientation in Cobalt Tutton's Salt*
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The spin orientation of the Co+' ions in Co(NH4)&(SO4) 2 6H20 was calculated for the minimum-energy

state. First an effective magnetic field arising from the dipolar interaction was computed, and this was

employed in the spin Hamiltonian to determine the energy of the cobalt Zeeman and hyperfine interactions.
The latter was comparable to the dipolar energy, which complicated the computation. It was found that
the spin system becomes antiferromagnetic below the estimated Neel temperature of 0.10'K. The spin

orientations are given and shown to correspond to the magnetic space group P21/a'. The results are in

general agreement with the experiment of Miedema, Postma, and Huiskamp.

INTRODUCTION

HE spin orientation configuration of magnetic

dipole lattices at very low temperatures has

been calculated by Luttinger and Tisza' (1946) and by
Daniels and Felsteinern (1964). The former authors

treated the case of isotropic dipoles on cubic lattices,
the latter treated the case of cerium magnesium nitrate,
in which the lattice is trigonal and the g tensor of the
magnetic ions is anisotropic. The method used by these
authors was to assume that the magnetic ions form a
superlattice. I.uttinger and Tisza assumed that for the
cubic lattices„ the magnetic unit cell had twice the linear

dimension of the chemical unit cell. The orientations of

each of the dipoles in the unit cell are thus independent
variables which describe the configurations of the
dipoles in the whole crystal. From the orientations of the
dipoles, it is possible to calculate the magnetic field

produced at each of the dipoles by all the other dipoles
in the crystal. The total interaction energy is the sum

of the energy of each of the dipoles in the magnetic field

P, p; H, and the low-temperature configuration is that
for which this expression is a minimum. In all of these
calculations, the magnetic dipoles were ions without

hyperfine interactions. The purpose of this paper is to
make a similar calculation for a magnetic salt in which

the ions have a hyperfine interaction whose magnitude
is comparable with the dipole-dipole interaction. In this

case, the energy of the ion in the local field is not given

by an expression as simple as p H. The procedure
adopted is to treat the dipole-dipole interaction as
equivalent to a local magnetic field as before. This field

is inserted into the spin Hamiltonian for the ion, which

is then diagonalized. The lowest eigenvalue is the energy
of the ion, and the corresponding eigenvector describes
the state of the ion. A self-consistent solution is then

sought, in which the state of the ions obtained by

* Supported in part by the U. S. Air Force Once of Scienti6c
Research, under Grant No. 1139-68.

i J. M. Luttinger and L. Tis7a, Phys. Rev. 1P, 954 (1946).
' J. M. Daniels and J. Felsteiner, Can. J. Phys. 42, 1469 (1964).
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diagonalizing the spin Hamiltonian and choosing the
lowest-energy state coincides with the state assumed for
the calculation of the internal magnetic field. Since it is
not possible to obtain an analytic expression for the
energy of the ion in the local field, this self-consistent
solution is sought by an iterative procedure, starting
from an approximation to the configuration of lowest
energy. It is expected that the configuration to which
the iteration converges is, in fact, the lowest-energy
configuration consistent with the assumptions that each
ion is represented by its quantum-mechanical state, and
that the magnetic interaction can be represented by an
effective magnetic held.

In this paper we consider the Tut ton's salt
Co(NH4) 2(SO4) & 6HiO which has an anisotropic g
factor and a hyperfine term S A I that is the same
order of magnitude as the dipolar energy. As a result the
latter two terms must be taken into account explicitly.
This is a logical extension of the work of Daniels and
Felsteiner which was for the case of a crystal with an
anisotropic g factor with I=0.

In this salt there is a good reason to believe that the
lowest-energy configuration is one in which the spin of
each ion has a component in the direction of the
positive b axis. Magnetic interaction causes the spin
direction to rotate a few degrees towards the cc plane.
The configuration, in which every spin has a component
along the negative b axis, obtained by reflecting the
original spin configuration in the ac plane, is also a
configuration of lowest energy degenerate with the first
one. The evidence for this conjecture lies in the low-
temperature measurements made on this salt by the
angular distribution of p rays' and by magnetic
susceptibility. 4

' A. R. Miedema, H. Postma, and W. J. Huiskamp, Proceedings
of the Tenth International Conference on Refrigeration, Copen-
hagen, 1959, p. 198 (unpublished).

'A. R. Miedema, J. van den Broek, H. Postma, and O'. J.
Huiskamp, Physica 25, 1177 (1959).
864
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STRUCTURE AND MAGNETIC PROPERTIES

The solid compound Co(SOi). (NH4)zSOi 6Hz»s a
Tutton's salt, and its symmetry and structure are well
known. The space group C~~, ', P~„~a has a monoclinic
unit cell with the dimensions'

a.= 9.32 A,
bo= 12.51 A,

co —— 6.24 A,

b=z=K,

A

P = 106.56,
and with the symmetry axis orientations of the cobalt
oxygen octahedra

+=34', |f = 130',

as defined below. There are two ( o+' ions per unit cell,
type A at the position 000 and type 8 at the position
~ 2 0, as shown in Fig. 1. All of the other atoms are
located at general positions. Each Co+' ion is surrounded
by a distorted octahedron of water molecules with an
axis of symmetry T~ and T~ for each sublattice, re-
spectively. In Fig. 2 are shown these axes displaced to
the origin and the angles and projections that will be
used in this paper.

The t o+' ion is in the 3d', 'F' spectroscopic ground
state with the total spin S=-'„but in a magnetic
problem the effective spin 5=-,' is employed. This
considerably simplifies the labor involved in the present
calculation. The nuclear spin I=-,' gives rise to eight
hyperfine components in the electron-spin resonance
spectrum. The g factor and hyperfine coupling constant
3 of each Co+' ion are given by Bleaney and Ingram' as

C

&'EG. 2. Laboratory system x, y, .and crystallographic a, b, c axes
for cobalt Tot ton's salt. The axial syrnrnetry directions of the two
cobalt octahedra are indicated by T~ above the ac plane and by
Tz below this plane for the A and B sites, respectively. They each
have the projection k1 in the cc plane. This projection makes the
angle a with Tg and T~, respectively, and P with the c axis.
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write the dipole-dipole interaction energy N, j between
two ions i and j in tensor notation

tt;, =I';, po; ajar,

where Latin letters denote position, while t'reek letters
refer to the coordinates x, y, z, the fT are the Pauli
matr ices) and I;~ p is defined as

~ij al3= 4P (gieaki8lrig 3giai gjsorij iirij o/ rij ')(2')
Ke follow the Einstein convention about the summatioEl
of repeated indices. The quantities I';; p constitute
elements of the product of three matrices LG;. D;,"G,7,
where G; contains the elements g;, and where D;,
contains the diagonal elements (r;P 3r;, ')jr,,' and o—ff-

diagonal elements —3r;, r;,~g'r;,'. More explicitly,

gl, ——6.45, g, = 3.06,
:ill=0.0245 cm ' 3 =00020cm '

G, = g,„
f

I

g

glg-

gi;z

(3)

CLASSICAL TREATMENT AND
DIPOLAR INTERACTION

In order to calculate the configuration of minimum
interaction energy we start by assuming that the only
interaction is dipolar. Following Daniels's notation' we

D„=—
rig'

—3xijpij

3zf ijl ij

This allows us to write
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The total interaction energy lV; of one ion with all the
other ions in the lattice is obtained bs summing
Eq. I')}:

il;= Q fl;;.

I' EG. l. Unit cell for Co (S04) (XH4) 2S046H..O showing Co+' ions
at two A sites (000), (111)and one 8 site (y $ 0). Unit cell param-
eters are a0=9.32 A, ho=12.51 A, co= 6.24 A, and P = 106.56'.

' W. Hofmann, Z. Krist. 78, 279 (1931);82, 323 (1932).
B. Bleaney and D. J. E, ingram, Proc. Roy, Soc. (London)

A208, 143 (1951).' J. M. Daniels, Proc. Phys, Snc. (London) 66, 673 (1953).

For a crystal with two sublattices 3 and 8, the
summation of Eq. (6) may be divided into a summation
over each sublattice. For example, if i is on sublattice 3,
then

where H~;j-'~ is the dipolar interaction energ» of the fath
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TABLE I. Values of the sublattice sums used to determine the
matrix elements P; D;; -'=P; D;,B and g, D».

Sub-
lattice Q (3s' —r')!'r' P (x —y )/r6 Q xy/r P xs/r Q yz/r'

—0.011046 —0.004631 0.001526 0 0

AB 0.008296 0.001213 0.000276 0 0

' The summations were made inside a sphere of radius 150 A; in addition,
the values were calculated between the 150 A radius and a 200 A radius.
The contribution of the points between the two radii is less than 0.5 j&.

ion of sublattice 3 with the jth ion of sublattice B.It is
convenient to use 6X6 matrices to handle the two-
sublattice problem, where

0 G,.
D. ..1a D . .aa

and the appropriate superscripts may be added to the
matrix elements of Eqs. (3) and (4) to designate the
sublattices. This allows us to formulate and sum Eq. (6)
in terms of 6)&6 matrices for G and D:

ll'=-,'P2e (G D G) e, (10)

The axially symmetric g value is diagonal in the
tetragonal system with g~~ along Tg (or Tg). Equation
(5), on the other hand, is expressed in the lab system
where the summation is much easier to evaluate. As a,

result we need two transformations of g, one that goes
from the tetragonal system T~ to the lab system Tl., and
another that goes from the tetragonal system T~ to the
laboratory system. These are denoted, respectivel&, by
R~~ and RB~, where the dagger means transpose con-
jugate. It is easy to calculate R~ and R g, and follow-
ing Fig. 2, we have

Rg ——Ry R,&—~,

Rg ——R - R &-I'

(12)

(13)

where n= 34' and f= 130'. A 6X6 matrix RL, with the
upper left-hand 3&&3 block is equal to R~ and the lower

since G, and e, are the same for all j on a given
sublat tice.

Q D,,"G,"s, = (P D;,) G,"e, .

right-hand 3X3 block constituting R~ transforms each
sublattice from the same laboratory system to its
particular tetragonal coordinate system:

(14)

This matrix may be employed to transforni each 3X3
part of G to the laboratory system. Both G-~ and G~
are diagonal in their respective tetragonal coordinate

systems. It is most convenient to carry out the calcula-
tions in the laboratory system which is defined in terms
of the crystallographic axes. There are only two types of
dipole matrix, namelv D = D~ and D = D
since the two sites are related to each other by a
symmetry operation. To calculate the matrix D we need
only to know sums over the quantities (3s~—r2)/r',
(s' —y')/r', xy/r', xs/r', and ys/r', since proper linear
combinations of these produce all nonzero matrix ele-
ments in D. The summations are given in Table I.

Using the 6)(6 matrices G and D in the laboratory
system we can calculate matrix a as

a=-'p'(G. D G), (15)

and then diagonalize it to obtain the six eigenvalues X'

and eigenvectors V'. The results are shown in Table II.
The six eigenvectors not only form an orthonormal set
(weak constraint) but they obey the orthonormality
condition (strong constraint) within each sublattice:

Hp„———,'PD 6, (17)

where as usual the subscript j is dropped for conve-
nience. The magnetic field Hl, corresponding to the
lowest energy level P6' is the following six-component
vector:

Hl. ——Hp„Y6'.

This magnetic field vector is easily transformed from its

with a similar expression for the B sublattice.
The interaction energy W;; has been expressed in

terms of two interacting magnetic moments pq and p~.
This may be looked upon as the interaction of one of the
magnetic moments with the magnetic field Hp„pro-
duced at its site by the other moment p~ H~= p~. H~.
The operator Hp». may be looked upon as the magnetic
field operator at ion j due to all of the other magnetic
moments in the lattice. Hence, it is given by

l ABLE II. Eigenvalues X' and eigenvectors V for the dipolar matrix a.

l.evel V, '
X'

(cm ')

0.040
0.008
0.005
0.000—0.015—0.034

0.383
0.816
0.136—0.885
0.405
0.446

—0.045—0.420—0.245
0.406
0.906
0.881

0.921—0.366
0.960
0.228—0.122
0.161

.B

0.383
0.816—0.136
0.885
0.405—0.446

U„;B

—0.045—0.420
0.245—0.406
0.906—0.881

.B

—0.921
0.366
0.960
0.228
0.122
0.161



188 l. oa -- rF. ~lpFR.~ ri. l~v svlx ok':i T;~'rloi l x con.xl. r Tt;"r rom s s.«i. .r 867

Thus far we have treated the problem classically. To
find the spin alignment it will be necessary to employ
quantum mechanics, using this magnetic field H in the
spin Hamiltonian where g is diagonal.

QUANTUM TREATMENT AND HYPERFINE
INTERACTION

In the previous section we found the effective mag-
netic field arising from the dipole-dipole interaction of
the surrounding spins. Now we will proceed to solve the
spin Hamiltonian using this field H as the applied
magnetic field acting on the electronic spins. The
Hamiltonian in tensor notation" is

H=pH g. S+S.A. I. (20)

For the present Tutton salt crystal we have axial
symmetry with the specific parameters

H=I»[g~(S.H +S„H„)+g„S,H.]
+A, (S,I,+S„I„)+A i iS,I, (21).

The magnitudes of gll, g&, .~i l l, and 3, were given above.
The efI'ective spin S= ~ is employed, although the
actual spin for the Co+'3d' 'F ground state is ~3.

The Hamiltonian (21) is complex, and to simplify it.

we apply the further rotation R,~,

()

R
(22)

present lab system to the coordinate system where the g
factors are diagonal by means of the matrix RI. defined
above, to give

H= RI. . HI .

calculations were carried out. in several stages in a self-

consistent manner. First, the equations were solved for
1 J i. [ l

=0 to check the eigenvalues and polarization.
Then Eq. (25) was computed to obtain the six-com-

ponent polarization vector P'. This was compared with
V6', which is in the lab system, through the relation

V6"——Rl P'. (26)

This vector V6" is used in Eq. (18) to compute a new
magnetic field for use in the Hamiltonian. With this
new field H" and the values ypAj and —,'oAll for the
hyperfine term, the computation process was repeated.
The new minimum eigenvalue has an associated eigen-
vector which was used to calculate a new polarization
called P". The new polarization P" gave a new vector
V6"'= RL,P", which provided the magnetic field H"'
= HO„V6"' for use in the next cycle of solving the
Hamiltonian equation. The process was repeated iter-
atively until the same polarization vector was obtained
after two consecutive iterations. Then the values of .4~
and A „were increased to 20% of their true values, and
the process was repeated using the final or self-consistent
values of the 10%A calculations for the initial iteration.
At each step of increasing A, and A „by 10% the
calculations converged rapidly to a self-consistent
answer. The final-ground-state eigenvalue X and polari-
zation components V; are listed in Table III. Figure 3
shows the orientation of the polarization vectors V~ and
V and the corresponding tetragonal axes T.~ and T .

Finally, we list the following components for the
state vector of the cobalt ions in their lowest-energy
state ';»»q6) (spin types A and 8); the first quantum
number corresponds to the electron spin and the second

where the 3/3 matrices R,'A and R,'" rotate about the
tetragonal axes through the angles

Hg
——tan —'(H „"/H,. ")

Os=tan '(Hys/H, s).

The total rotation in the lab system is thus

R= R 'Rl. .

(23)

(24)

I

G L IDE PLANE
W

TB

a

The diagonalization of the Hamiltonian (21) will pro-
duce 16 eigenvectors P, and 16 eigenvalues X; since there
is a degeneracy of (2S+1)(2I+ 1)= 16.The polarization
in the ground state with the eigenvalue XI6 and as-
sociated eigenvector P~6 is

asin f

I'.=(4 is', S.~»» u), (25)

where o.=x, y, s and the three components J' may be
calculated for each sublattice.

Since the hyperfine coupling constant A is the same
order of magnitude as the Zeeman term, the practical

g K. D. Bowers and J. Owen, Rept. Progr. Phvs. 18, 304 (l055).

I'ic. 3. Xormal projections onto the k1-k3 plane of the eigen-
vectors V and tetragonal axis vectors T with their origins at the
cobalt lattice sites. The horizontal glide plane between the sites
is at k3 ———46&. The A-site projections occur along k3 =0 at the
positions k1 ——0, ~a sing, +2a sin»»t', . . . , while the B-site pro-
jections are situated at k;» ———,'b0 and the sites k1 ——~~~a sing,~-,'a sing, . . . .
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TAar. K III. Column 2 gives the minimum-energy eigenvectors
VA and V~ for the cobalt spins. These values v ere determined
from the entire Hamiltonian, including the dipolar, hyperfine, and
Zeeman terms. The minimum-energy eigenvalue is X= —0.06776
cm '. The components of the dipolar field at the cobalt site are
given in column 3 for the dipole-dipole interaction Hdd alone, and
in column 4 for the combination dipolar-hyperfine interaction
I~dd A.

F.igen vector
component

IN

V f9

Eigenvector
value

0.679
0.613
0.403

—0.679—0.613
0.403

&Jdd
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24
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FIG. 4. Magnetic unit cell of cobalt Tutton's salt showing seven
A-type spins and one 8-type spin. Dashed lines indicate the two
glide planes and four vertical screw axes are also indicated. For the
magnetic ground state the spin orientations may be either as
shown, or with all of the spins reversed in direction.

DISCUSSION

The eigenvectors V' and V of Table III give the
directions of the magnetization vectors arising from the

two types of cobalt spins in their magnetic ground
states. These directions were determined from the
entire spin Hamiltonian, including the Zeeman, dipolar,
and hyperfine interactions. The magnetization direc-
tions in the absence of hyperfine interactions are given
in Table II for the various energy states. The ground
state —0.06776 cm ' including hyperfine interactions
is lower by 0.03412 cm ' than that without this inter-
action, which indica, tes tha, t the hyperfine term stabi-
lizes the magnetic energy at low temperature, and
thereby raises the Neel point.

The Neel temperature TN may be estimated by
equating the eigenvalue —0.06776 cm ' of the magnetic
ground state to the thermal energy kT:

T&

ikey/k=0.

10'K.

This agrees well with the value TN 0.08'K reported by
Miedema et al.'4

Below the Neel temperature the spins on the two
sublattices align oppositely relative to their respective
tetragonal axes T~ and T~. The tetragonal directions
are related by the fact that the space group has a screw
axis s along the b direction and glide planes p perpen-
dicular to the b direction, as shown in Fig. 4. In addition,
it has centers of inversion i at the cobalt sites shown on
this figure. In the magnetic space group associated with
the cobalt magnetic moments, the screw axes remain so,
but the glide plane p becomes a glide-plane spin-reversal
symmetry operation tp, where t is the time-reversal
operator which inverts spin directions without affecting
the space coordinates. The inversion operation i be-
comes ti since the inversion of the space coordinates i
must be accompanied by a spin-reversal t to leave the
magnetic lattice unchanged. According to these rules
spin 8 of Fig. 4 transforms to spin .0 bx a translation
2a, a reAection in the lower glide plane, and a spin
reversal. Spin B transforms to spin A' by means of a
translation of 2b and a rotation of m about the screw
axis s. These two sets of operations tp and s interchange
spins between the two sublattices, while ti interchanges
them within the sublattices. This magnetic space group
or Shubnikov group may be designated P2q/a' where u'

indicates that the glide plane is associated with the
time-inversion operation, while the screw axis 21 is not.

The nature of the low-temperature magnetization
may be elucidated by considering its projection in a
plane containing the tetragonal axes T~ and Tg and the
crystallographic b axes. Figure 2 shows the vector T~
pointing out from its atomic site ~ ~~ 0 Lradius vector
(~a, ,'b, o)j and displace—d so it points down from the
origin while retaining its magnitude and direction. It
will be convenient to employ the orthogonal coordinate
system whereby k1 is the bisector of the T~-T~ angle, k3
is coincident with b and z, and k2 is in the ac plane
perpendicular to k1 and k3, as shown in Fig. 2.

The orientations of the TA and T~ directions in the
k1-k3 plane, as well as the projections of the V" and V
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directions in this plane, are shown in Fig. 3. Here the
actual-site vectors are projected normally in this plane
and the glide plane is indicated. Figures 3, 5, and 6 show
that the magnetization V and V is antiferromag-
netically aligned in the k& and k& directions, and
ferromagnetically aligned in the k3 or b-axis direction.
This is in agreement with the experimental results of
Miedema et al. ,

'4 and is a consequence of the sx mmetry
of the magnetic space group P2i/a'.

It will be of interest to clarify the spatial orientation
of the vector V-' in terms of the polar angle 8 between
V~ and the Z=ka axis, and the azimuthal angle p
between the projection of V~ on the xy plane and the x
direction. Miedema et al. determined a polar angle
8= 62 for the nuclear-spin magnetization by angular
correlation measurements, ' and determined the polar
angle 8=66' for the electron spins by magnetic sus-

ceptibility. ' Since the axial component of the hyperfine
interaction is dominant (A„))A,), it is expected that
there should be little difference between the directions
of the magnetization arising from the electronic and
nuclear spins. The possibility of the individual mag-
netizations being out of the k2k& plane was not de-

tected by Miedema et al. , so they reported p = 23'
relative to x and pl„- ——0' relative to the kik2k3 coordi-
nate s)stem (cf. I ig. 6). Ur)u calculated 8 100' and

11'. Our value of 0=66' is in agreement with

Y

Kl

T
A p,

K,

E'IG. 6. Orientation of the axial crystal field direction TA, in the
k1-k3 plane, and the eigenvector V-~ shown 19' azimuthal behind
the k1 axis with its indicated projection (——) on the k&-k& plane.
The difference in the polar angle 8 =56' and 66' for Tg and Vg,
respectively, is 10', which is close to the value 6' reported by
Miedema under the assumption that both TA and V~ are in the
k1-k3 plane. The angles p and p are 107' and 130', respectively.
To simplify the drawing the k axis was drawn in the negative
direction toward the reader.

the measurements of Miedema et al. , and our value of

pI, ——19' is not far from Uryu's value. ' Urxw's result for 8

is, however, in disagreement with experiment.
In this paper the spin alignment of the cobalt elec-

tronic spins was determined by taking into account the
dipolar interaction between the electronic spins and the
hyperfine interaction with the cobalt nuclei. The
calculations of Uryu take into account the dipolar and
exchange interactions. Ke have been able to employ
accurate values of the hyperfine coupling constant A,
since they are well known from KSR results. Ury, on
the other hand, was forced to guess at the value of the
exchange integral J since it has not been measured.
Nakamura and Uryu' estimated J=0.013 cm ', which
is only half as large as 3 ll.

CONCLUSIONS

A method for calculating the minimum-energy orien-
tation of a system of electronic spins under the action
of an axially symmetric g factor and a hyperfine
interaction of comparable magnitude has been presented.
The method was employed to deduce the ground-state
configurations of antiferromagnetic cobalt ions in
Tutton's salt below their Neel temperature. The calcu-
lations made use of the known crystallographic and ESR
data, and provided a magnetic structure in general agree-
ment with the y-ray angular correlation measurements.

I'IG. 5. Projections of the polarization vector directions l'A and
V and the coincident tetragonal directions TA and Tg on the
kf-kq plane. The angle q

——19'.

' N. Uryu, J. Phys. Soc. Japan 16, 2139 (1961).
'OT. Nakamura and N. UryA, J. Phys. Soc. Japan 11, 760

(1956).


