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The Zn-spin correlation function for the two-dimensional Ising model at T= T, is evaluated for the
special case in which all the spins lie along a straight line, separated by many lattice constants. The resulting
2rE-spin function is simply a quotient of products of two-spin correlations. A hypothesis of reducibility of
fluctuations in the critical state is introduced. This hypothesis asserts that the product of any two local

fluctuating quantities in the same neighborhood of space may be eAectivelx replaced bp a finite sum of
local fluctuating quantities in this neighborhood. As a result, the previousl& found form for the 2n-spin
function noway be used to evaluate the correlation function of n energy densities when all n points lie on a
line. The n-energy correlation function is simply a sum of products of two-energy correlations. The quotient
form for the spin correlation plus scaling is shown to immediately impl& the logarithmic specific heat.

I. INTRODUCTION

S INCE Onsager's original work, ' many authors have
discussed thermodynamic properties' ' and correla-

tions' " in the two-dimensional Ising model. Much of
this work has concentrated on using the Onsager
solution to learn about the behavior near the critical
point. The concept of scaling, " "' for example, has arisen
in part from information gained from this model.
According to the scaling idea, there are two indices,
described" as x and y, which together determine the
nature of all the critical singularities.
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In the two-dimensional Ising model, x and y each
have simple values: x=15t'8, y=1. However, even
though the Onsager solution exists as a guide, no fully
satisfactory physical argument is known to be available
for understanding the values of x and y. These values are
only obtained by very detailed and rather untransparent
calculations. One can hope, however, that such simple
values of x and y can be seen as the result of some
structural property of critical correlations. In this paper,
I argue that the result y= 1, which implies the logarith-
mic specific heat, is a natural result of a simple structure
of the n-spin correlation function.

This argument is based upon an evaluation of the
2n-spin correlation function under the conditions: (a)
that the Ising model is at the critical point; (b) that
all the spins lie on a single straight line; and (c) that
the spins are all separated from one another by many
lattice constants. Then, if the spins are ordered along
the line as o-1, fTI, o.2, a2, . . . , 0.„, 0-„, the correlation
function is calculated to have the form

At first sight, it does not appear that the result (1.1)
defines an~ critical indices. Further progress comes
from the introduction of an extra idea, of the redlcibih'ly
«f critical /tnctuations Reducibility a.rises from the idea
that there are only a limited number of independent
Huctuating local variables in any phase-transition
problem. Say there are s of these, O„(r) for v= 1, 2, . . . ,
s. A product of two 0„'s at neighboring positions is
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again a local fluctuating quantity, which t;hen must be handled by the method described in Sec. 3.1 of Ref. 4.
a linear combination of the 0„'s. In symbols, whenever In direct analogy to Eq. (I.3.13), we find that
r and r' are sufFiciently close together,

O„(r)O. (r') =3„„.(r—r') &g o;o; ) =exp-', tr ln(1 —2irgri)'

= Ldet (1—2irgir) j '~~ . (2 3)

Here the A 's are simply numbers and the 0„'s are
fluctuating operators.

Equation (1.2) permits us to reduce to simpler forms
correlations of 2n spins whenever pairs of spins lie

very close together. If the reducibility equation (1.2)
is applied to a product of two spins, the main term in

the sum involves the operator b(r), which is physically
the energy density minus its critical value. Thus Eqs.
(1.1) and (1.2) may be combined to yield expressions
for energy-energy correlations. This analysis yields two
notable results. First, the energy-energy correlation
function is evaluated just from (1.1) and (1.2) ioilh the

result that at the critical point

&b(1)b(2))-l/lri —r~l' (1.3)

Equation (1.3) implies y= 1 and a logarithmic singular-

ity in the specific heat for this two-dimensional system.
The other result is that whenever the points 1, 2,
2n lie many lattice constants from one another along a
single straight line, we have

&b(1)b(2) b(2n)) = 2 (b(1)b(2))
per rri

&(&b(3)b(4)) &b(2w —1)b(2n)) (1.4)

The last line follows because

tr lnX= ln detX

ir( 7',k) = 8, ,o, if kP {i}for any {i}
=0, otherwise. (2 4)

The relevant part of g is then diagonal in j and takes
the form

g(Ok; Ok') = ', 8„„.+-..
($Pf1

oipy(k —k')Ly(p ) jrBT» (2.$)
4x

according to (I.3.21). Here ri and r, are standard
Pauli-spin matrices, while 4(p„) is defined bv Eq.
(1.3.18). In this definition, C depends upon two param-
eters called A and 8 in the notation of I and of Refs. 2
and 3. At the critical point, 8= 1, and then 4 takes the
form

(2.6)

for an& X. The quantity g is a matrix in j, k space and a
2&2 "spin" space, while q is diagonal in coordinate
space. In fact, we have

at the critical point.
Section II is devoted to the derivation of Eq. (1.1).

Since this derivation is highly technical, many readers
will wish to skip this part. Section III discusses reduc-
ibility LEq. (1.2)j and its application to the two-
dimensional Ising model. Section IV includes infor-
mation about energy correlations and includes the
deviations of the results (1.3) and (1.4).

G. EVALUATION OF MULTIPLE-SPIN
CORRELATIONS

Consider 2n spins on the x axis at the points 1 = (O,ki),
1'= (O,ki'), ,

n'= (O,k„') arranged so that

The remaining parameter .I is a measure of the asym-
metr~ of the lattice. When A =1, the coupling in the y
direction is much stronger than the coupling in the x
direction; when A = ~, the coupling in the x direction
is much stronger. At A =3+2&2, the couplings in both
directions are equal.

It is difficult to evaluate the trace in Eq. (2.3) exactly
for any finite value of the asymmetry parameter A.
However, Ku has argued' that the A dependence of
the two-spin correlation function is very simple. In
the limit of large separations in the y direction, he
suggests that the total 3 dependence of (o;o;) is s,

multiplicative factor [(4+I)/(2 —1))"'.
To generalize Wu's conjecture, consider

ki&ki'&k~& -. (2.1)

The condition kg{i) means that k lies between k;
and k, or, more precisely, that we have

kg{i} when k;(k&k . (2 2)

An evaluation of the 2n-spin correlation function is
most easily obtained via the Toeplitz determinant
method' as applied by Wu. " For completeness, we
mention a derivation of our beginning formula starting
from the work of Ref. 4. The 2n-spin case can be

in&+ o;o;,) = -,' tr ln (1—2ilgg) '. (2.7)

In the asymptotic limit of large separations, the main
term on the right-hand side of Eq. (2.7) might be
expected to come from the large k —k' form of g(Ok, Ok'),
which in turn comes from small p„. However, at p„. =0,
Eq. (2.6) implies that C (p,) is independent of A.
Therefore, we might expect the main term in the
asymptotic expansion of (2.7) to be independent of A.
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We therefore write

1n(II 0;0; ) = ln(rr a;o; ),+correction term,

The F's can be expressed in more physical terms. By
considering the case of only two spins, we see that

where the subscript zero indicates a correlation function
at a particular value of A, picked to be A = ~.

The correction to g arising from terms which do not
vanish as A —+ occurs only for p» &0, and hence is a
relatively short-ranged function of k —k'. Since this
correction is short-ranged, the entire correction term
cannot involve correlations between diferent regions

{i}and {j}.Hence, the correction term is of the form
of a sum over the different regions:

correction term=+ [4 tr ln(1 —2ri;gii;)'~ ~

F,=(o,a; )0,

while the four-spin case gives

Cr;oi&OjtTj& p

F23

0 ffj~~' 0

Therefore, Eq. (2.11) reduces to

(2.14)

(2.15)

i tr ln(1 2&,g&,) ~ „] Therefore, for example, we obtain

However, Ku' has already argued that if k; —k;)&1,
the correction term for two spins is i~ ln(A+1)/(A —1).
Consequently, the correction for 2&z spins is n times as
large. As a. final result, we find that

(II ~ ~') = L(1+1)((A—1)]""(II~'~')o (2 8)

Here the subscript zero denotes the average at A = ~.
In this limit, the average can be computed, since' at
A= ~, we have

[1—2g(Ok; Ok')] = —— r2
m k —k'+-', 7-3

0101'&202' 0 0101'0303' 0 0202'0303' 0
(2.17)

0 10'1' O 0'20'2' O 0'3&3& O

Nevertheless, the four-spin correlation function can
be further simplified. In Eq. (2.17) we set 2=1' and
2'= 3.Then, since the case A = ~ is still an Ising model,
we get ni2=n32= 1 and Eq. (2.17) becomes

&10 3 0 0 101&0303& 0 01&{T3& 0
&10'3' O=

0 101' 0 &1'0 3 0 &3&3' 0

=hj;7; (2 9a) Consequently, we obtain

(rr ~;0)o=[det„( k, g)]—'",. . (2.9b)

where det„covers the part of k space in which g is
different from zero. Wu has, in fact, evaluated a and Fq
determinant precisely like this one. The result is [see
Wu' Eqs. (4.7) and (4.8)]

&i&i &ja~' 0 bio~' o &joi o

)
o girja'j' o &i0j o 0'~0 i o

with
i j&i

(2.11)

2
F*= II — II —,, (212)

ig[&, ir ~ ei', , i'&i 1 —[2(k —k')] '-'

In Eq. (2.10) the products cover the region in which
~~0.

To simplify Eq. (2.10), the products are grouped
according to the different regions {i}denoted bv Eq.
(2.1). Then, we have

Equation (2.19) is an exact result for correlations
when A = ~ and all the spins lie on the x axis. However,
Eq. (2.8) enables us to relate each correlation function
with finite A to a correlation with A = ~ for the
special case in which all the spins are separated by a
distance much larger than a lattice constant. By
applying Eqs. (2.19) and (2.8) we see that Eq. (2.19)
remains true for correlations with finite A. After a
rearrangement of terms, we derive Eq. (1.1):

(II(~ ~' ))=rr II
0 io'j 0 i&tT j&

The derivation of Eq. (1.1) requires that the spins all

(2 13) lie on the x axis. However, because of the rotational
invariance of the critical state, ' one can expect that



(O(R)x) =.i „(.x)+ P .i„(o„(R)X)
v=1

Eq. (1.1) will hold true whenever the spins are widely uated as
separated on any line in the lattice, even when that line
is not parallel to one of the principal axes.

III. REDUCIBILITY OF FLUCTUATIONS

To use Eq. (1.1) to derive other types of critical
correlations, we introduce the concepts of local critical
variables and of the reducibility of fluctuations in

products of these variables.
It is possible to define several thermodynamic

variables which have anomalously large fluctuations
near the critical point. For example, in the Ising model
the magnetization M and the energy X each have
divergent fluctuations at the critical point. To see this
divergence, we need only note that the constant-H
specific heat and magnetic susceptibility, each divergent
quantities, are proportional, respectively. , to the mean-
squared fluctuations in 3C and M. '"'

Both of these extensive fluctuating variables can be
expressed as a sum over all coordinates of local fluctuat-
ing variables. The magnetization is proportional to the
sum of spins at the different sites and the energy is
proportional to a sum of a local energy density. We
find it convenient to use an energy density which has
zero expectation value at the critical point, so we write
for the case of equal couplings in the two directions

6 (J&k) = 2JP'j, (ojk-kl, k+'P'j I,k+ & —j, l ~1+&2j, k—2)

+-2J(~, k(~,+2k+~, & 2k+, ~, 2+2+, ~, k 2.)) & (3, 1-)

where angular brackets denote an expectation value at
the critical point. These densities of critical fluctuating
quantities ok and h(1) are local variables in the sense
that they depend only upon spins in the neighborhood
of point 1. In general, we write a density of a fluctuating
quantity as O„(r), with v being an index which defines
which quantity we have under consideration.

We wish to assert that there are eRectively only
a finite number —say, s—of independent fluctuating
quantities. This assertion is an unproved hypothesis
whose consequences we wish to develop. First, we must
state quite precisely what we mean. Let O(R) be a
local variable at R which depends only upon spins in
the neighborhood of R. That is,

O(R) depends upon a., only if ~~ R—r'~ &Rp (3.2)

for some fixed Ro. I.et X be an operator which depends
only upon spins far from R, i.e.,

X depends upon p, only if
~

R—r~ &Rpk

with X))1. (3.3)

Then all averages of the form (O(R)X) may be eval-

' L. D. Landau and E. M. Lifshitz, Statistica/ I'hysics {Perg-
amon Publishing Corp. , New York, 1958), pp. 350—357.

m

O(R) =A p+ P A„O„(R),
v=1

(3.5)

with constant coeAicients 3„.
But now consider a product of basic variables of the

form
O„(R+-',r)O, (R——,'r) . (3.6)

If r&RO, this is a local variable in the sense of Eqs.
(3.2)—(3.4). Hence, it must be expandable in the form
(3.5). We conclude that the product variable (3.6) is
reducible in the form of a sum of basic variables.

O„(R+-', r)O„(R—-', r)

=A „„p(r)+PA „„.„"(r)O„. (R), (3.7)
v''

where the 3's are constants, not fluctuating variables. "
Equation (3.7) is our basic assertion of reducibility.

In our applications, we shall always choose the
O„(R) such that the average of O„(R) at the critical
point will vanish. Then, we obtain

A „„p(r)= (O„(R+-',r)O„(R——,
' r) ), . (3.8)

In this paper, we apply Eq. (3.7) to the reduction of a
product of two spins. We assume that the two most
singular local variables that can appear in a product of
two a's are p, and h(r), so that Eq. (3.7) reads

&Ryr, »rR —r/2 (GR-r'20kR—r/2)&{ 1+B(r)p a+C(r) $(R)
+less singular operators) . (3.9)

A further simplification arises because of the necessity
for symmetry of all critical-point correlations under
the change of sign of all spins. The left-hand side of
(3.9) is even under this symmetry operation; the right-
hand side can only be even if B(r) vanishes.

Our conclusion is that

&R+r/2p R—r, 2 (vpe, )$1+C(r) &g(R)

+less singular termsg. (3.10)

This conclusion is not new. It has been used by several
previous authors. ' """ Furthermore, parts of the
general idea of reducibility have been previously stated
by Green. "

"Examples of this reducibility are contained in Hecht's thesis
{Ref.9).

"M. E. Fisher and R. J. Burford, Phys. Rev. 156, 583 (1967)."M. Ferer, M. A. Moore, and M. Wortis, Phys. Rev. Letters
22, 1382 (1969).

20 M. Green, J. Phys. Soc. Japan Suppl. 26, 84 (1969).

+terms which go to zero as l&.
—+pp, (3.4)

where the A's are the same for all X's. In this sense,
any O(R) is expandable in our basic operators as
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IV. ENERGY CORRELATIONS

According to Eq. (1.1), at the critical point

we find that

(h(R1) h(R, ))= (q/c')1/ Jf 12'. (4.9)

(0 lir1'1i20 2') (0 1~12'}(1r2111')

&1r11il')(11202') (ii11r )&01'02'}
(4.1)

when all the points are far separated along a line. Now
let the pair of points 1 and 1

' as well as the pair 2 and 2'

be much closer to one another than the separation
between these pairs:

According to scaling, "- the energy-energy correlation
function E~. ""» at the critical point. Hence Y= 1

follows as a consequence of the structure of spin
correlations on a line, Eq. (1.1), a,nd the reduction
equation (3.10).

Multiple energy correlations can be evaluated by
the same technique. According to Eq. (1.1),

~12=
~

2 (ri+ ri )—2 (r2+ r2 ), . (4.2) (4.10)

In that case, we can reduce the product of neighboring
spins according to Eq. (3.10) and find that

F1.=1+C(l r1 —ri ~)C(l r.—r2 ~)(h(R1)h(R2)), (4.3)

with
Ri ———,'(ri+ ri ), Ri ———,'(r2+ r2 ) .

The right-hand side of (4.1) is expandable in a power
series in

~

ri —r»~l/'812 and
~

r2 —r2 ~l/'812. To second
order in these variables, we find that

F12= 1+ ri —ri
~ ~

ri r2
)

—(d'/dR12'-)

Xln(0(R1)0(R2)). (4.5)

A comparison of (4.3) with (4.5) now yields the relations

where F;, is of the form (4.1).As each i and i' approach
one another, the left-hand side of (4.10) can be reduced
with the aid of (3.10) and the right-hand side evaluated
with the aid of (4.3). KVe find

(gt 1+C((r; r; —1)h(R;)))= Q L1+C(~ r; r; —~)

XC( r, —r, . l)(h(R, ) h(R, ))). (4.11)

From equating the coefficients of g, C(
~

r; —r;
~ ) in

Eq. (4.11) we find that

(Q h(R;))=0, for 22 odd

C(l r,—r21) =
I
r,—r21. , (4.6)

= r. &h(R1) h(R2))&h(R2) h(«))
perm

(h(Ri) h(R2) )= (1/c') (d'/dE»2 ) ln(ii(R1)11(R2)). (4.1) (h(R„ 1)h(R„)), for 22 even, (4.12)
Since the spin-spin correlation function obeys a power
law at the critical point,

(1r (Ri)ir (R2)} 1/8122,

which is the result (1.4). This result holds at the critical
point whenever the R; lie well separated along a single

(4.8) line.


