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Variational Winciple in Spin-Wave Theory: Application to the
Theory of Magnetostatic Surface Waves*
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We have formulated a variational principle suitable for discussion of long-wavelength spin waves in
ferromagnets. The form we discuss takes account of the fact that in the presence of magnetic dipole inter-
actions an integral operator with a non-Hermitian kernel is encountered. We show that our form of the
variational principle fully reproduces the bulk spin-wave dispersion relation and the magnetostatic surface-
mode dispersion relation for a semi-infinite geometry, with magnetization parallel to the surface. We apply
the variational principle to a discussion of the effect of exchange on the Damon-Eshbach magnetostatic
surface modes. We find a nev surface branch that lies between the bulk manifold and the Damon-Eshbach
branch. The two branches intersect at a finite wave vector k, that depends strongly on the direction of
propagation. For k)k„we find no surface-mode solutions. The properties of the new lower branch are
discussed in detail.

I. INTRODUCTION

/ ECENTI.Y, a number of studies of surface spin
- -4 waves and their influence on the properties of
Heisenberg ferromagnets and antiferromagnets have
appeared. ' ' These investigations consider a semi-
infinite array of spins and include in the theory the eRect
of a free surface on the spin motion. In most of the
studies, "4 ' the interaction between the spins is as-
sumed to be an exchange interaction of the Heisenberg
form. Under a variety of circumstances, the presence
of the free surface gives rise to surface magnons in which
the spin deviation associated with the mode is localized
near the surface. In these studies, the frequency of the
surface mode is found to lie below the bulk spin-wave
band. Since the work just cited ignores dipolar inter-
actions between the spins, the theories are valid only
for spin waves with wavelength sufFiciently short that
the dominant contribution to the spin-wave energy
comes from the exchanged interactions. While dipolar
interactions were included in Ref. 3, the spin-wave
spectrum was studied only for thin films with the order
of 30 atomic layers. Consequently, no useful informa-
tion was obtained about the very long-wavelength sur-
face waves, where the penetration length of the mode
in the semi-infinite crystal is large compared to 30
atomic layers.

A number of years ago, Damon and Eshbach' studied
surface spin waves in the limit of very long wavelengths,
where the exchange interactions can be ignored, and
the dipolar interaction predominates. These authors
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found that in this region, the surface wave frequency lies
abo~e that of the bulk modes.

The purpose of the present paper is to examine the
properties of long-wavelength surface magnons in the
presence of both dipolar and exchange interactions. We
are motivated by the contrast between the two regimes
mentioned above. Evidently, when the wavelength of
the surface magnon is sufFiciently short that the domi-
nant contribution to the excitation energy comes from
exchange interactions, the surface wave frequency lies
below the bulk band. However, in the dipole dominated
regime, the surface mode lies above. The behavior of
the surface mode in the transition region, where both
exchange and dipolar interactions are of comparable
strength, should thus be interesting.

We proceed by writing the equations of motion for
the spin density in a semi-infinite slab in the presence
of dipolar interactions. We confine our attention to the
long-wavelength regime by replacing dipolar lattice
sums by integration. A variational principle is then for-
mulated. Since, as we have previously pointed out, ' one
encounters a non-Hermitian dynamical matrix in the
theory of spin waves in the presence of dipolar inter-
actions; it is necessary to formulate the variational
principle in a form suitable for this case. This involves
the use of both the left and right eigenvectors of the
appropriate dynamical matrix. A fter demonstrating
that the variational principle reproduces the Damon-
Eshbach result for the surface-magnon dispersion re-
lation in the absence of exchange, as well as the standard
dispersion relation for bulk waves, we proceed to in-
clude the eRect of exchange by introducing the appro-
priate terms in the equations of motion and modifying
the wave functions in a manner described below.

We then present detailed studies of the surface-
magnon dispersion relations in the presence of exchange
by utilizing the variational principle. Since one en-
counters a sixth-order polynomial in the theory, it is
unfortunately necessary to resort to numerical methods
of solution. We find two distinct surface-magnon
branches. The frequency of the upper branch ap-
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proaches the Damon-Eshbach limit as the surface-
magnon wavelength goes to infinity. The frequency of
the second branch approaches the top of the bulk band
[the frequency a& —+y(HB)'r2] in this limit. As the
wave vector increases in magnitude for a fixed direction
of propagation, the two branches approach each other
and intersect at some critical wave vector k, , that
depends strongly on the propagation direction. 4h'e find
no surface modes above the bulk band for wave vector
k&k, . This result suggests that the Damon-Eshbach
modes, and the second branch just described, are con-
fined to a finite region of the two-dimensional phase
space appropriate to the surface-mode problem. The
surface branch does not pass through the bulk band to
emerge below the band to be identified with the modes
discussed in Refs. 1—5 in the exchange dominated
regime.

In their original work, Damon and Eshbach" found
that the surface magnons existed only for a limited set
of propagation directions. Suppose the magnetization
M is parallel to the s axis, which lies in the surface, and
P is an angle that measures the direction of propagation
with respect to an axis (the x axis) perpendicular to M,
also in the surface. Damon and Kshbach' found no
surface solutions with the direction of propagation such
that cosP((H/8)"'. We find that as P increases, and
cosP ~ (H/8)'r' from above, the critical wave vector
k, —+ 0. Thus, as P increases toward Damon-Kshbach's
critical value, the cutoff wavelength X, =(2m-/k, ) be-
comes longer; for p very close to p, =cos '[(H/&)'r'],
only very long-wavelength surface modes exist. Crudel. y
speaking, as P increases, the amount phase space in
which the surface-mode solutions occur decreases con-
tinuously, to vanish when P =P,.

In Sec. II, we cast the equations of motion into a form
convenient for our purposes, and we formulate the
variational principle for the case where only dipolar
interactions are present. In Sec. III, we illustrate the
use of the variational principle by recovering some
standard results from it. In Sec. IV, we include exchange
and apply the theory to a discussion of the effect of
exchange on the surface-mode frequencies.

The form of the variational principle employed in
the present work should be useful for a wide variety of
problems, such as the influence of sample geometry on
the spin-wave spectrum for sample shapes not easily
treated in an exact analytic manner when both dipolar
and exchange interactions are present.

II. EQUATIONS OF MOTION: FORMULATION
OF VAMATIONAL PRINCIPLE

Hamiltonian thus has the form

)& (Rr„,'S(l) S(m) —3[Rr„S(l)][Rr S(m)]) .

(2.1)

In this expression Rr ——R(l) —R(m), and the prime on
the second summation indicates the term with 1=m is
excluded.

We next consider the equation of motion of the oper-
ator 5&+'(n) =Sr*'(n)+iS&»(n). With A=1, one has

The equation of motion will be linearized by replacing
S=(n) by +S everywhere and ignoring the small terms
of the form 5 (n)S"(n), which are quadratic in the devia-
tion of the spins from the s direction. If we define

D„(Rr ) =(5/Rr, „')[3(J; Rr„)(x) Rr~) —Rr„P8r,]
=——5(r, ;.w )(i,"Rr~/Rr~') r (2.2)

then one finds

i8'+'(n) =gn [H+P' D.,(R„„)]S+'(n)

+la 2' D;-(R-)5"'(m)+le 2'

X[Dye(R„„)—D„(R„)—2iD,„(R„„)]Sr'(m) . (2.3)

The equation for 5' '(n) is easily derived by taking
the Hermitian conjugate of Eq. (2.3).

We next treat the dipole sums in an approximation
valid in the long-wavelength limit, where the spin
amplitude 5&+'(m) varies slowly from site to site. We
do this by replacing sums over the discrete lattice by
integrations. We integrate over the volume of the
sample, excluding a small sphere centered about the
site 1 that is omitted from the sums.

Let us consider one of the sums as an example of this
procedure. Let

S..-=—', Q'D:-(Rr )S'+'(m).

If one regards S&+) as a continuous function of position
and empolys the form of D, ,t(Rr ) given in Eq. (2.2),
then

We consider a semi-infinite array of spins placed in
an external magnetic field H and coupled together with
magnetic dipole interactions. We consider a crystal in
which the site symmetry is cubic. The surface will be
chosen parallel to the x-s plane, with the magnetization
and the external field H both parallel to the s axis. The

g. = ——z*

where n is the number of lattice sites/unit volume, and
the integration is over the volume of the sample, ex-
cluding a small sphere of radius e centered at Rt. Per-
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forming an integration by parts yie s

Elk
s-, := ——2.

2

- (r' —R,)
dA' 5&+'(r')

IR&—r'I'

I (r' —R&)
d"r'- —(9 V')5&+&(r') .

IR, —r'I

27r
n5—5 +&'(R )&

3

er the surface of the sample,The area integration is over
ndine surface of the small sphere surroun ing

dAf h f
al to z no contribution from the inte-

gration over the samp ele surface is obtaine or is
ives theticular sum. From the small sphere, one receives

&+'(R&) to the surface integral.contribution —(i47r)5 & o
'

g
~ .

Thus, one has

form in Eq. (2.5) into (2.4)Upon substituting the orm in
ondin equation of motion orhe correspon i g

'
or

e the inte ral equations wi inone may reduce th
l to the surfaceordinate erpen icu ar oover the single coor y

Tn carrying ou t this procedure, one encoun ers
'

of the form
1

(2.6)2 ski! ' (r! 1i rll e r, r —r~

Ke consider the particular case witwhere r =r„yy. 'e
subscri t a=x as an e~aniple.

. first employing the FourierOne may evaluate 8 z rs emp
representation

vip[ —(q (r' —r)]

l
r' —r

I
(2~)'

&r2.6 allows the r„Inserting this form into Eq.
integration ot to be performed at once, leaving

The sums

' '" W" 5&+&(r').d'r
I

IR& —r'I a.'- c),= —2)'k

+"-
(/(I

t 0!((!( (l )—e
—&x& gy +~ 1 1

P'D, „(R& )S' &(m), Q'D. ,(R& )S& '(m)
m

b l ated in a similar fashion. One 6nds no
contribution from the integral over t~ e samp e s

z 'D (R )5' '(m), one notes thatTo evaluate z

!'r= —2uri(k, , k„)e—u» & u -u& .

Similarly, one easily s owows that

s.= 2~i(k—,('k „)e
To evaluate 8„, a s ig y

1' htl ~ different procedure will be
empolyed. One has

P D„„(R& )S&-'(m)

= —Q [D„(R&„,)+D;-.(R& )]S' '(m).
&.= —(y —y')

etk 1 I
' (r1 1 I 1

)

IIr' —rI'

('om pining esb
'

these results we find the equation o
motion assumes the form

iS &(+r&) =gp~t ur(H+2 M )5'+'(r) —2&rg&«&M, S& '(r)

Id' 'd, . (r —r')5&+&(r')+g(«&M, d'r—qgPa

= —(y —y')

—27r(y —y')

We define

($p pd8

[('+(y y')']'"—
&(( ( Jo(k &p)

[('+(y y')']"—'

Ir=2&r sgn(y —y ) e "»&u u &.

X r —r — —' —' 5'&- &,r', 2.4)X[d (r —r')+-'d, (r —r') —&du (r —r )].
where

I~lo~h foim
5&v&(r) =& '»»&g&~&(y)

k =Ic "+k.~ is a two-dimensional wave vectorWh. el e Kl 1
= Ic„L~ -.2 1S

parallel to the surface, and rll =xi+a~.

(2.5)

d, (r r') =[(x—. &'!(Ir r'I ')](—x &')

and the saturation magnetization, =ngpgg- .
We desire to employ Eq. (2.4) to study spin waves

ith the semi-infinite geometry describedin a medium wi e s
earlier in t is secl

' th' ection. For this configuration, e p
nal in-ence of the sur ace oesh f d es not destroy translationa

'
h ect to the two directions (x and z)variance witu respec o

us will have thearallel to the siirface. The solutions thus ~vi ave e

~ (y y') = e
—u»

& v &u— (2.7a)

—&rgpr&M, — dy'y, (y —y') &+'(y')k„.
I

&
2&rt'&u&, Af, kr, 'y„( v —v iq& (v )&(Y

+&rg(&r&M, (2k, '+ k, ')k „ &(y'y. (y y')g& '(y'). —

and
—u»lu —u'& (2 7b)'r. (y —y') =sgn(y —y )e-

Then, upon inserting the forms in qs.s. 2.5 and (2.7)
into the equation of motion orr (+) we obtain

( ) =g(&r&(H+2rrM, )S +
(y&)

&—2&rgpr&M, S& '(y)
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Qr*(y) = —cuss"(y)+-,'(o»k(( «3 'V.(33 ')~"(y')

It will be convenient for us to construct the equations
of motion for the x and y components of spin deviation
S'*'(y) and S'"'(y). We first assume solutions that vary
with time like e *'"', then we form an equation for S (y)
a,nd S&(y) by combining the equations of motion of
g(+) and g(—)

Let
~ (y) —=S'"'(y),

s~(y) =is'»(y)

Also let cosp=(k, /k~~), ~~=giisH, co~ ——4sgiisM. , and
caii=ezz+auM. Then we find that s*(y) and s"(y) satisfy
equations of the form

the ferromagnetic ground state may be unstable'; the
instability manifests itself by the appearance of complex
spin-wave frequencies.

One may obtain the Damon-Eshbach surface spin-
wave dispersion relation by explicit examination of the
solutions of Eq. (2.9). One assumes solutions with s„
s„proportional to e && and eliminates q by requiring
this functional form satisfy Eq. (2.9) identically. How-
ever, we shall find it more convenient, when exchange is
introduced, to work with the variational principle con-
structed from Eq. (2.9). Thus, we proceed to formulate
the variational principle, and then demonstrate that
the results of Damon and Eshbach follow, when ex-
change interactions are neglected.

First, consider the case of a set of .'V coupled linear
integral equations with a Hermitian kernel

—cosp dy'y, (yy')s (y') , (2.8a) I f'(y) =2 dy'&* (yy')f (y'), (2.11)

Qs"(y) = —auHs*(y) ——,'coirk„ cosp cosp dy' where X is the eigenvalue, and It;, (yy') =It, ;~(y'y).
One constructs a functional X of the form

X&e(yy')s'(y') — dy' 3( yy)s"(y') . (2.8b) &= dy dy P g.+(y)& (y y )g&(y )
0 i, j=l

Equations (2.8) provide a convenient form for the
equations of motion, since the coe%cient of each term
is a real number. We may write Eqs. (2.8) in the form

Qs'(y) = dy' Q I';;(y,y')s'(y'),
0

(2.9)

where i and j refer to the Cartesian subscripts x and y,
and

F„(yy') = s(dsik~[ cosP 3,(y,y') = —I'„„(yy'), (2.10a)

F.„(yy') = —~sb(y —y')+-,'co&&kii3, (y,y'), (2.10b)

F,.(yy') = —~OH&(y —y') ——,'~,»k„cos'p 3,.(y,y') . (2.10c)

Fuchs and Kliewerv have derived a set of equations
similar to Kqs. (2.8) in their study of surface optical
phonons in ionic crystals. The structure of Eqs. (2.8)
difI'ers markedly from the equations encountered by
Fuchs and Kliewer. The principle difference is that in
our problem, the kernal F;,(y,y') is non-Hermitian in
the presence of dipolar interactions (i.e., &sir/0). One
notes from Eqs. (2.10) that F;,(y,y')WF, ;*(y'y) unless
co&I =0. In the theory of lattice dynamics, one encounters
a Hermitian kernel in the integral equations. Ke have
previously pointed out' that one encounters non-
Hermitian operators to diagonalize in spin-wave theory
in the presence of dipolar coupling between the spins.
This is a consequence of the fact that if the dipolar
interactions between the spins are su%ciently strong,

~ R. Fuchs and K. Kliewer, Phys. Rev. 140, 2076 (1965}.

«y g *(y)g*(y). (2 12)
i=i

If the vector g(y) is chosen equal to the eigenvector
f(y), then K is the eigenvalue X of the integral equation.
If, however, the vector g(y) differs from the true eigen-
vector f(y) by an amount bg(y), one finds from standard
discussions' that one obtains an estimate of the eigen-
value li, with an error of order (8g)'. If one seeks the
lowest eigenvalue, then insertion of a guess for the eigen-
vector f(y) into Kq. (2.12) produces an upper bound to
the true eigenvalue.

Now consider generalization of the variational
principle to the case where the kernel is non-Hermitian,
as in Kq. (2.9). Let us introduce the left eigenvector
sr, *'(y) associated with the eigenvalue Q that satisfies

si, *(y)Q= dy' 2 ~~'(y') I' *(y',y) (2 13)

The left eigenvector in Eq. (2.13) is distinct from the
right eigenvector that appears in Eq. (2.9), if the kernel
F is not Hermitian. To avoid confusion, we denote the
right eigenvector that appears in Eq. (2.9) by sa'(y)
in the subsequent discussion. Ke shall see in a moment
that a simple relationship between sr. '(y) and sa'(y)
exists for the present problem.

' M. H. Cohen and F. KeBer, Phys. Rev. 99, 1135 (1955}.' See, for example, J. Mathews and R. Walker, in Mathematical.Vethods of Physics (W. A. Benjamin, Inc. , New York, 1965},
p. 317.



We then form the quantity

«y «y' 2 s~'(y)*r' (rr')»~'(r')

«y Q sg, *(y)~sp'(y). (2.14)
0

0 0

If one inserts the proper left and right eigenvectors
into Eq. (2.14), then it is easily seen that «I equals the
eigenvalue Q. Furthermore, if one inserts approximate
forms for sr, and ss in Eq. (2.14), then one obtains an
estimate for the eigenvalue that contains an error
proportional to (8sl. ,

a)'". The functional exhibited in

Eq. (2.14) thus provides a generalization of the varia-
tional principle suitable for the present problem.

I.et us next consider the form of the equation satisfied

by the left eigenvector. Explicitly, upon rearranging
Eq. (2.13) slightly, one has

waves in materials of finite spatial extent. However,

Sparks has not taken account of the non-Hermitian

character of F;; in formulating the variational principle.
The form given in Eq. (2.12) was utilized in this work.

In the general case, one must employ the proper form

of the variational principle to obtain meaningful results

from the theory. However, we note that Sparks has

applied his form of the theory only to a discussion of

the limit where the magnetic field is large and the eRect

of the dipolar interactions small, i.e. , ~H&&co.~I. In this

limit, if one examines the form of the eigenfunctions,

one sees that to a good approximation s =sf'. In this

case, the distinction between left and right eigenvectors
is unimportant, and the form given in Eq. (2.12') pro-

vides a suitable basis for the discussion.
NIore precisely, we shall see in Sec. III that for the

case of bulk excitations, when coy~&&co ~, Sparks's form

of the variational principle gives the spin-wave fre-

quency correctly only to first order in ~ ~. For the sur-

face waves, which in the Damon-Eshbach regime owe

their existence in a fundamental way to the presence of

dipolar interactions between the spins, one must em-

ploy the full form of the variational principle to obtain
meaningful results.

«», (y)= «r'r "(r'r)s~" (y')
III. SOME APPLICATIONS OF

VARIATIONAL PRINCIPLE

Upon emplo3 ing the properties of I';, (yy') under int er-

change of (iy), (jy'), one finds

In Sec. II, we have seen that one may compute the
spin-wave excitation spectrum of the dipolar spin array
by considering extremal values of a functional 0 that
one may write in the form

«lsi "(y) =

+ «3'I'„(rr')sI. "(3'),
0

«». '(r) = «r'I'-(yy')s. '(y')

+ "r r (yr) "(r).

XP~"(y)s~ (y') s~'(y)'sR "—(v') j
+s~ (r)*I'.*(r,r')sa (y')+»"(y)*r*.(yr')»"(r')

oo —1

2Re dy s&"*(y)sz*(y) . (3.1)
0

After comparing this result with the equation satis-
fied by the right eigenvector, the following simple
relationship is obtained

sr. (y) =sp" (y), —

sL (y)=s~'(r)

(2.15a)

(2.15b)

If one is given a right eigenvector, a left eigenvector is
obtained by merely interchanging s and sI' in the
column vector.

At this point, we should mention that Sparks" has
also employed a variational principle to study spin

'0 M. Sparks, B.Tittmann, J. Mee, and C. Xexvkirk, Vourteenth
Annual Conference on Magnetism anfl Magnetic Materials, Xeiv
York, 1968 (unpublished), paper HA-J.

In this section, we shall apply the variational principle
to two standard situations in order to illustrate its use
and to demonstrate the importance of employing the
complete form of the variational principle.

A. Bulk Spin-Vfave Excitations

Let us consider a macroscopic disk of ferromagnetic
material that is infinite in two directions (the x and z

directions) and which has thickness l. in the y direction,
where I. is some macroscopic length. As in Sec. II,
the magnetization is taken parallel to the z axis. One
may study spin waves in this structure by using the
variational principle in the form given by Eq. (3.1),
except the upper limits of the y integration are taken
to be I. instead of infinity.



Let us consider the following form for the trial
function

s (y) = e ~ i!!s !s(y) —~ei/!!!s

where g is a complex number. If periodic boundary
conditions are applied in the y direction, then

One finds that

sly!lv'e *"!!'""v,(yv') = (2k„k')I.

all d

dy!Iy'e 'i!'!s "'v (vy') = —2i(k„k'-')I. .

1 k$ k I l

~H+ 6 COff+COcif

2e cos8 k' k'
k ky—2 ceo,i& sin8

k2

One seeks the values of the variational parameters
e and 0 which make 0 an extremum.

Consider first the dependence on 8. If we define

1 = (2e)
—

[sdss+ e'sdss+sd is (k, '/k. ' k!!'e'-' j—k') ],
8=+sd,ss(k, k„/k'),

then

Ke set
Q=cos sg(A 8sing) . —

80/88 =0= —8+(sing/cos'8) (sf 8sing) . —

Thus,

If we recall the definition of F;,(y —y') and note that

k =k +ky +k k =kll cos9, k. =kll sin8,

and write
g=ee",

then we obtain

and finally we obtain the well-known dispersion relation

&& = (!dss[sdss+sd!s(1 —k.'/k'-)]) —"-. (3.2)

The present form of the variational principle, thus,
properly reproduces the bulk spin-wave dispersion re-
lation. It is interesting to compare the result of Eq. (3.2)
with the prediction of the variational principle in the
form employed by Sparks, " which ignores the non-
Hermitian character of the kernel I. Sparks's form is
obtained by replacing the left eigenvector in Eq. (2.14)
by the right eigenvector. One finds an expression for Q

which agrees with the exact result of Eq. (3.2) only to
first order in cv,~~, when cour))~.iI. As we mentioned
above, this is the only limit considered by Sparks, who
examined the effect of the finite size of a ferromagnetic
disc on the nature of the spin-wave spectrum. V~e can
easily see why Sparks's form produces the correct result
in the limit cuyI))~~I. In this limit, one sees e —1, so
the left and right eigenvectors are equal.

B. Damon-Eshbach Surface Modes

9, e next return to the semi-infinite geometry and
consider solutions of the form

sss"(y) =e—', s (y) =sle ',
with q real a,nd positive. AVe consider both g and q to
be variational parameters. One easily sees that

dy (lv'e "'&+"'&.(y,y') =0.

Then again with g = ee", we obtain

II = ( —1/2e cosH) [sdss+e sdss+nsd ys(cos~li —e )],
with

n =k „/(k, !+q) .

Since q) 0, one has 0(a( 1. The first condition
slQ/s18=0 allows us to choose 8=sr or cosg=——1. Then,
II= (1/2e)[sdss+e'sdss+n(cos'p —e)]. Then, taking dQ/
lie=0, one has

sing=8/sf, and II=+(A' —8').
We next set 8Q/ge=0 to determine e. Note that only.0 depends on e. Thus, 6 is stationary when A is station-

ary. Hence, e is found from

1 kll2 1 k.'
0 COQUE 6) )J (L jf +(A) )Ir

2 k2 2~2 k2

gives

and

e = (sdss+nsd. ss cos P)/ (sd ss
—nsd, is) .

gsI/gn =0

n= 2(sdis cos~|3 sdss) j&d.qs cos p

II = 2[(sdH/cosa)+sdss cosy]

(3.3)

(3 4)

(3.5)

Thus,
sdH+sd. is(k~ !k") sdH+sd is(k~ !k )

E.
"=

sdss sd v(k!! /k ) sd—ss+&d.&s(k!s ' k2')

This gives

2 = [sdss+!d is(kx jk )][sdss+sd is(k„'/k')]"

Equation (3.5) is the dispersion relation obtained by
Damon and Eshbach for magnetostatic surface modes
in the semi-infinite geometry. The parameter o. must
be &0, since q is real and positive. Thus, one obtains
solutions only for directions of propagation such that

cos, 'l') cosg, = (sdis/sdss) "-'.
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Xote, that, except for the special case P =0 (propaga-
tion perpendicular to the magnetization), one must

employ the proper form of the variational principle
which takes full account of the non-Hermitian character
of the kernel I'. This point is made clear by inserting
the form of o. into the expression for ~'-. One finds

e= I~a"/sa"
(
=cost3.

Thus, for /&0, ~ differs significantly from unity even

for the case cuff))co.~I. The existence of the magneto-
static surface modes is intimately tied up with the
presence of dipolar coupling between the spins, even in

the high-field limit. We now proceed to examine the
effect of exchange on the surface-mode frequency.

semi-infinite lattice of spins considered in Sec. II. Upon

taking the long-wavelength limit, one encounters terms

proportional to B(y)a(Bs,/By) and 8(y)a(Bs„/By) in the

equations of motion, where a is the lattice constant.
The presence of these terms impose the boundary con-

dition of Eq. (4.1) on the solution.
Actually, the boundary conditions in Eq. (4.1) are

approximations to the exact boundary conditions. If,
for example, one retains the next higher terms in the
derivatives of s, and s» with respect to the spatial co-

ordinates, then for a simple cubic lattice of spins with

nearest-neighbor exchange interaction I, next-nearest-
neighbor intera. ction Ji, and a free (100) surface, one

finds that the boundary condition becomes

IV. ESTIMATE OF EFFECT OF EXCHANGE ON
MAGNETOSTATIC SURFACE MODES

In this section, we apply the form of the variational
principle derived in Sec. III to a study of the eRect of
exchange on the Damon-Eshbach surface modes.

First, consider the eRect of including exchange on the
equations of motion. It is well known that in the long-

wavelength limit, one may include the effect of exchange

by replacing the magnetic field coif bx the quantity
cong —DV"-', where

~'-' = 8'-',!Bx'-+ 8'-'!By'+ 8'-',!Bs'-'.

One may, thus, include the eRect of exchange in the
variational principle by replacing &AH everywhere by
curl+DLttii' (B'/By') j, since—we always consider solu-

tions to the equations of motion which have the Hloch
form in the x and s directions.

In addition to modifying the equations of motion for
y/0, the fact that spins in the surface region are coupled
to fewer neighboring spins than those in the bulk. im-

pose conditions on the form of the solution. If one begins
with spins on a discrete lattice with short-range ex-

change interactions between the spins, and if the long-
wavelength form of the equations of motion are ex-

amined, then in the absence of surface pinning fields one
deduces that the boundary condition

When this boundar& condition is combined with the
equation of motion for y/0, then in the absence of

dipolar coupling between the spins, one may derive the
long-wavelength form of the surface-magnon dispersion
relation given in Ref. 1. We will only be concerned with

a study of very long-wavelength surface magnons in

this worl. . Thus, we will approximate the exact bound-

ary condition by the long-wavelength form given in

Eq. (4.1).
The boundary condition can be incorporated into the

theory by choosing the appropriate variational func-
tion. For y40, the equation of motion has the form
given in Eq. (2.9), with cull replaced b&.

It is easy to see that the equations still admit solutions
of the exponential form e &». In an exact treatment,
the boundary condition insists that near the surface
the solution be modified so that s, and s» have vanishing
slope at y=0.

%'e incorporate this condition into the theory by
choosing a variation function of the form

Bs' ' Bs»
(4.1) with

(4.2)

nu&st be imposed on the solution. This form of the
boundary condition has been derived by Kittel. " We
note that in recent years, it has been demonstrated that
the surface pinning fields in carefully prepared films are
very small. "- Thus, we ignore the effect of surface pin-
ning fields in the present discussion.

Formally, the boundary condition in Eq. (4.1) mac
be derived by including exchange interactions in the
discussion of the equations of motion for the discrete

"C.Kittel, Phys. Rev. 110, 1295 (1958).
"- P. E. XVigen, C. F. Kooi, and M. IZ. Shanabarger, J. A@pl.

Phys. 35, 3302 (1964).

f(y) =1—8y"-, 0(y(t
=ye-", t&y( ~ .

We choose y and /9 so that f(y) and Bf!By are con-
tinuous at y=t. One finds explicitly that

V e expect the macroscopic equations of motion in-
cluding the phenomenological exchange term —DV"
should provide a valid representation of the exact equa-
tions of motion everywhere, except within some distance
from the surface the order of a few lattice constants.
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Straightforward integrations show that

Thus, in the long-wavelength limit, where the wave-
length )(~( = (2'/k&() is a macroscopic length, we feel

the simple exponential everywhere, except for a region
near the surface whose spatial extent is small compared
to All. Thus, we consider only the limit

Yt&(.1.
In this limit, one verifies by explicit computation that

the integrals over y„(y,y ) and y,,(y,y')
by this small change in the wave function to lowest
order in qt.

Consider next the operator 8"-/()y'. We need the
expectation value

parameter t. Thus, we repeat the theory of the magneto-
static surface modes of Sec. III, treating the attenua-
tion constant q an ed th parameter q as variational
parameters.

Again, we let
g=E 8'

)

as in Sec. III. As before, the phase angle 8 appears only
in the denominator of the expression or in
of cos8. Choosing 8 so that 0 is an extremum leads to
the choice tIt=m. , as in ec.h tIt —, i Sec. III."Kith this choice of 8,
one then has

f1 = (2() [Qla+E (d&&+(1+( )((&E(1+(P )
+ca,&I(cos'P —e')/(1+(F)]. (4.3a)

We have introduced the parameters

q =q/k„,
t'dg =Dkil

~ ~

One determines e and y from the con itions

(1'0/(t~ =0,

BQ/8(p =0.
(4.3b)

(4.3c)

6

P a„p =0. (4.6)

Condition (4.3c) gives an expression for e' m terms of

0)

(' = [cv (r cos'P —2(F(1+(«')o&E)/

X[aus+2 y(1+ q )'(u E) . (4.4)

Condition (4.3a) gives a second express(on for e',

(d«+(u (& cos'P(1+ p) '+(uE(1+p'l
9

(0« ~ (&(I+ ("-) '+~E(1+.P")-
Upon equating Eqs. (4.4) and (4.$), we obta&n an

equation that determines the parameter p. Unfor-
tunately, we are led to a polynomial of sixth order in p.
We can write the resulting polynomial in the form

Explicitly we find

2C6 = &OF

00 1
dy f'(y) =—(1+order of qt)

2q
Q6= 124)p )

a( =2' F (((«&+(dE+8(dE),

ay=co [E(((&1«+ c&o3s)+4((d«+26)H)+ E) ~

a& =&oE[co (&(1+3 cos',3)+2(a)«+5(o«)+12(dE],
a =(d ( [(d« (d« cos p+(LJE(1+Cos p))+4CdE((dE+4)«),Qi =(d yl COIL

—Calg Cos

ao =a) )r ((a«+(dE) (1—cos'p)+(o v' cos'I3.

B2

dy f(y) f(y) = lqy'E '" 2«(1 lPt')— —''By' '

= —-', q(1+order of qt) .
Thus,

"LVe could also choose 8 =0. This would lead to a negative value
of Q. We have pointed out in Ref. 3 that for a given value of k»
and k. for each positive frequency solution of the exact equations
of motion, one can also derive a negative frequency solution by the
appropriate symmetry operation for a slab geometry.

((()'/()y')) = —q'[1+order of qt]= q'. —
This shows that for a variational function of the

form given in Eq. (4.2), one replaces co« in the discus-
sions of Sec. III by arE+D(k(~'+q'). When qt((1, the
form of 0 is independent of the precise value of the
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For given va, lues of the parameters co~, ~g, ~ ~I, and P,
one can solve for the real positive roots of Eq. (4.6).
The frequencies of the surface magnons may then be
computed by employing Eqs. (4.4) and (4.3a). Unfortu-

nately, we have not been able to find analytic expres-
sions for the roots, except in the limit as co~ —+ 0. Thus,
except for this region, we have found it necessary to
resort to numerical solutions of Eq. (4.6).

Some typical results of this study a.re illustrated in

Fig. 1. For this figure, we have chosen units in which

~~1 =1.Ke have taken cu 1~
= 1, and the surface-magnon

dispersion relations are plotted for various values of
the parameter cos'P. Ke plot the frequencies as a func-
tion of g/dE. Since urE=Dk~~', this is equivalent to a

plot of 0 versus kll, except for the scale.
One notes that for a given value of P such that.

cosP& (/d//I/dB)'" (=1/K2 for the parameters employed
in Fig. 1), one has two surface spin-wave frequencies
for each value of /dE The p.olynomial in Eq. (3.6) has
two real roots for each ~E. As ~p —+ 0, the frequency of
the upper branch approaches the Damon-Eshbach fre-

quency
fl//E 2 (/d///COSQ)+g/d// COSQ

I n addition to the Damon-Eshbach branch, we find a
second branch with frequency below ()DE, but above
the )t =0 upper limit (/d///d//)'" of the hulk manifold.
As ~g —+ 0, we find the frequency of this second branch
approaches (/d///d//)'" from above, for all values of
cos8. This result will be derived analytically from the
above equations in the subsequent discussion. As ~z
increases, these two surface branches intersect at some
real wave vector k.(8), which depends strongly on the
direction of propagation P. In particular, as P approaches
the critical value p, =cos 'L(/d////dB)//2) beyond which
Damon and Eshbach find no magnetostatic surface
wave, we find that k, —+ 0. Thus, crudely speaking, the
amount of phase space available to the magnetostatic
modes decreases continuously to zero as the critical
angle is approached.

I.et us consider next the limit as cog —+ 0. Jf one
examines the coefficients a in Eq. (4.6), one finds that
all coefhcients a„with n& 2 approach zero. In the limit
as co~ —+0, one obtains the Damon-Eshbach solution
from the terms that remain. Suppose that we have a

very small value of ~~. The numerical study shows that
the polynomial in Eq. (4.6) has a root with /p nea. r the
Damon-Eshbach value. However, there is a, second
root in which q»&1, when ~g&&coa. We can extract an

analytic expression for this second root, when cvE is

small.
Equation (4.6) may be written in the form suitable

for examination of the roots with y))1;

4~E'0 'P+«der of (1/p))
+.2/dE(/dH+/dB) p'[1+or edr of (1///))
+ ~/d i/(/d// /dB cos'p) I 1+order of (1/y)—]=O.

Thus, when p» 1, we may replace the full expression

by the approximate form

/dE 0 +&/dE(/d//+/dB) P =4/d 1/(/dB COS P /dH)—.

Let x=cu~q'. Then rearrangement of this equation
gives

~.l/(/d// cos 0 /d//)/2(/dB+/d//) 2X /'p(/d//+/dB) .

M'hen f,.»1, we can drop the second term on the
right-hand side of this last form. This yields an expres-
sion for the second root of the polynomial valid when
c))1
9:[/d.l/(/dB cos 0 /d//)/2/dE(/d//+/dB)] / /dE((1 .

(4.7a)

Upon noting that /dE=Dk, ~' and id=(Il/k„) for the
a.ttenuation constant q for the lower branch, one finds

/i=kti (/d 1/(id// C.os~/3 /dH)/2D(/d//+/dB))"'. (4.7b)

Thus, for a given value of D, the penetration length
of the lower branch into the crystal ~ infinity as kll 'l"
= (X~ &/2/r) '" as the wavelength X„of the surface branch
in the surface becomes inhnite.

When @)&1,the parameter e' becomes

E =(/d il COS P —2/dE/// )/(/d i/+2/dE id ) .

1.pon inserting the result of Eq. (4.7a) into this
expression, one finds

Ca) gg COJg

lim 0=(/d///dB)'/2+terms of order (k~, 2/') .
/t.

) )
~0

The fact that the frequence of the mode approaches
(/d///d//)i/' as k~, —+0 is a, consequence of Fq. (4.7b)
which states that qekl) " in this limit, we present a
heuristic argument that supports this point. Consider
the frequency of a bulk spin wave

0=(/dH(/dH+id i/L1 kg'/(k~'+k '+—k-')]})'".
The change in energy associated with a disturbance that
decays like e && is found from this result by replacing
ky by ~'q=iCk))'", where C is a constant and k))
=Q(k, -'+k, "-). Then, the excitation energy is

&= (/d//(/d//+/d i//1 k '/(k„' —C.'k„'")]—})'/'

As Ail —+ 0, this becomes

0= {/d//pcdB+(id i//C')k~&' ' sin2p)}'/'~(/dH/dB)'/2

as k)) —+ 0.
There are a few more comments about the behavior

of the lower branch that are relevant in the regime of
small ~E. If one examines the formula for 0 as co~ —+ 0,
one notes that the contribution to the excitation energy
that comes directly from the exchange interactions (i.e.,
from the operator —DV' averaged over the variational



function) vanishes as k„—4 0. One notes that as

q =q/ki~ —4 ~ these terms contribute to 0 an amount
proportional to &o«p3=order of (k„3Xk„4/3) =order of
kll"', The new branch has its origin in the boundary
condition that forces the eigenfunction to come in to
y=0 with vanishing slope. It is curious that in the long-
wavelength limit, the statement of the boundary con-
dition is independent of the strength of the exchange
intera. ctions, in the absence of surface pinning fields.

It is easily seen that our theory of the lower branch is

mea, ningful only if exchange interactions of su%cient
strength are present in the system —i.e. , one cannot
mathematically take the limit D~ 0 in the present
formalism. This is because we have assumed that the
equations of motion derived in Sec. II are valid every-
where, except for a region near the surface whose
spatial extent is small compared to 1/q. Let us thickness
of the region, where the macroscopic equations breal.
down, be denoted by /. Then one clearly requires that
q/((1 for our theory to be valid. But if, for fixed kll,
one formally takes the limit D —4 0 in Eq. (4.7b), one
sees that q

—+ ~ . When the length q
' becomes micro-

scopic, it is clear tha, t the present treatment breaks
down. From the numerical estimates presented below,
we will see that q

' is a macroscopic length if parameters
chara, cteristic of typica, l magnetic materials are em-

ployed.
Now let us examine some of the numerical values of

the parameters that enter the preceding discussion.

First, consider the critical wave vector k„where the
two branches intersect. From Fig. 1, we have for /=0
(propagation perpendicular to the magnetization),

(/de/cu»), i/'-' —6X10 '-'.

Recall that we have employed units in which ~~~ ——1,
in labeling the axis of the figure. If we write(dg=Dkll"'-,
where kii" =23r/li&', then the "cutoff" wavelength

A. (') is given by
l~ "=103(D/co») "'.

The frequency coJ& is the Larmor frequency of a
spin in an external magnetic field H. Explicitly,
a&» g(e/2333c)H ——If we take g.=2 and H = 100 Oe, then

/d» = 1.6X10" rad/sec. For any given microscopic
model, one can express D in terms of the exchange
interactions between the spins and the lattice constant
of the crystal. For a, simple cubic lattice of spins with

nearest-neighbor exchange coupling between spins, one

may express D in terms of the molecular-field Curie

temperature T, by the relation

D =[k«T,/2A(5+1)]a'.

If we assume T,=300 K, S=3, and a=4 A, then

D—'1.6X10 ' cm' rad/sec.

These numbers give the estimate

Z"—1O 4 cm.

Thus, the cutoff wavelength X(' is quite short, when
compared to the wavelengths encountered in micro-
wave experiments. Hence, it v ould be quite dificult to
excite magnetostatic modes with wavelength near the
critical value X"' by direct methods, unless one works
near the critical angle P, where k, is small.

Let us next consider the value of the attenuation
length 1/q associated with the lower branch, for wave-
lengths of interest in microwave studies. We have seen
that the cutoff wavelength P "is small compared to, say,
1 cm. Thus, we can estimate q

' from Eq. (4.7a), which
is valid for wavelengths 'A))X'~. Upon rearranging Eq.
(4.7a,), we have

[D(GP»+/d«)/3rGO 1(rid «cos p —Ql»)]

If we use the parameters employed in Fig. 1, where
cu,~~

——~II, ~~ ——2~II, and, furthermore, if we take cos'P
=1, then

q
—1 —lil/3(D/~ ) I/3

For the value of D and ~yI employed above, one has

q-'=10—4X//3 (cm) .

Jf X=1 cns, then

(q ) ipp er brppph: 10 c111.

We can compare this va, lue of the penetration depth
with that associated with the Damon-Eshbach branch
for the same wavelength and parameters. From Sec.
III, one finds for the upper (Damon-Eshbach) branch

(q ')DE —(&/2 )( i«rco/ds'p cur&)/(~ 11 cos '—p+~» sin'-p) . -

For the parameters employed above, with /=0, and
X=1 cm, one has

(q )nE—10 CI11 .

Thus, for wa, velengths of the order of 1 cm, the surface
mode associated with the new lower branch is far more
tightly bound to the surface than the Damon-Eshbach
mode. This means that the coupling of the mode as-
sociated with the lower branch to an external micro-
wave field is small compared to the oscillator strength
of the Damon-Eshbach mode in this wavelength regime.
It is easily seen that the ratio of oscilla, tor strengths
is simply proportional to the ratio (q ')i, „b„„,q/
(q ')nE. We have just estimated this ratio to be = 10
for X—1 cm. This estimate indicates that it will be quite
difFicult to observe the mode associated with the lower
branch with conventional microwave techniques, since
the oscillator strength is small. Note that the pentration
length (q ')ip„.«b»pph increases as the critical angle
P.=cos '[(/e«/re»)'"] is approached. Thus, the oscil-
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lalor strength»i;&z. be increased by study'. in' an& les of
propagation ~3 close to the critical value, d, ."

" 'I'he al)I)roxinsalt. «xl&tessiott givetl it& I'.tl. (4.7al is t&ot vali&I

for P close to P,
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Correlations along a Line in the Two-Dimensional Ising Model*
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The Zn-spin correlation function for the two-dimensional Ising model at T= T, is evaluated for the
special case in which all the spins lie along a straight line, separated by many lattice constants. The resulting
2rE-spin function is simply a quotient of products of two-spin correlations. A hypothesis of reducibility of
fluctuations in the critical state is introduced. This hypothesis asserts that the product of any two local

fluctuating quantities in the same neighborhood of space may be eAectivelx replaced bp a finite sum of
local fluctuating quantities in this neighborhood. As a result, the previousl& found form for the 2n-spin
function noway be used to evaluate the correlation function of n energy densities when all n points lie on a
line. The n-energy correlation function is simply a sum of products of two-energy correlations. The quotient
form for the spin correlation plus scaling is shown to immediately impl& the logarithmic specific heat.

I. INTRODUCTION

S INCE Onsager's original work, ' many authors have
discussed thermodynamic properties' ' and correla-

tions' " in the two-dimensional Ising model. Much of
this work has concentrated on using the Onsager
solution to learn about the behavior near the critical
point. The concept of scaling, " "' for example, has arisen
in part from information gained from this model.
According to the scaling idea, there are two indices,
described" as x and y, which together determine the
nature of all the critical singularities.

* M'ork supported in part by the Kational Science I'oundation,
under Grant Xo. XSF GP-7765, and the Advanced Research
Projects Agency, under Contract No. ARPA SD-131.
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In the two-dimensional Ising model, x and y each
have simple values: x=15t'8, y=1. However, even
though the Onsager solution exists as a guide, no fully
satisfactory physical argument is known to be available
for understanding the values of x and y. These values are
only obtained by very detailed and rather untransparent
calculations. One can hope, however, that such simple
values of x and y can be seen as the result of some
structural property of critical correlations. In this paper,
I argue that the result y= 1, which implies the logarith-
mic specific heat, is a natural result of a simple structure
of the n-spin correlation function.

This argument is based upon an evaluation of the
2n-spin correlation function under the conditions: (a)
that the Ising model is at the critical point; (b) that
all the spins lie on a single straight line; and (c) that
the spins are all separated from one another by many
lattice constants. Then, if the spins are ordered along
the line as o-1, fTI, o.2, a2, . . . , 0.„, 0-„, the correlation
function is calculated to have the form

At first sight, it does not appear that the result (1.1)
defines an~ critical indices. Further progress comes
from the introduction of an extra idea, of the redlcibih'ly
«f critical /tnctuations Reducibility a.rises from the idea
that there are only a limited number of independent
Huctuating local variables in any phase-transition
problem. Say there are s of these, O„(r) for v= 1, 2, . . . ,
s. A product of two 0„'s at neighboring positions is


