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The temperature dependence of the antiferromagnetic-resonance frequency, sublattice magnetization,
and magnetic specific heat of FeF~ and MnF2 is calculated by use of the temperature-dependent magnon-
energy theory, which was recently presented by the authors. The calculations were done in both the conven-
tional random-phase approximation (RPA) and the magnon-renormalization approximation (MRA). The
experimental data are mostly found between these two approximate calculations. Thus, it seems that
the magnon interaction eAects are overestimated in the MRA. The calculation of the magnon energy at
the hrst Brillouin-zone edge in the case of MnF2 also supports this conclusion.

I. INTRODUCTION

S INCE Anderson' has shown that the spin-wave
theory is a good approximate method for the ground

state of antiferromagnets, many authors' ' have applied
this method to the calculation of the thermodynamic
properties of these substances. It has been known that
the spin-wave theory reproduces well the experiments
on MnI'~ at low temperatures. ' " Recent calcula-
tions, ""in which the dynamical spin-wave interaction
is taken into account, have proved the capability of the
spin-wave theory in calculating the thermodynamic
quantities at moderately high temperatures such as
0.6 T~. Here TN denotes the Neel temperature. I.ow"
showed that the spin-wave theory can well explain the
experiments on the temperature dependence of the
sublattice magnetization of MnF2 up to 0.9 T~, if we
use the neutron inelastic scattering data on the tem-
perature dependence of the magnon energy. In his
calculation, he also used the experimental data of the
antiferromagnetic-resonance frequency for the spin-
wave energy with k=0. Here k denotes the wave
vector of a magnon. To obtain the temperature-depen-
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dent magnon energy theoretically, he used the magnon-
renormalization approximation (MRA)." This MRA
or the quasiparticle model for magnons may be accurate
if magnon energies are obtained accurately as functions
of the magnon energies themselves. However, the
Hamiltonian in this approximation is expanded only
up to the quartic terms with respect to the magnon
operators, and, consequently, the MRA may be in-

appropriate at high temperatures. Actually, it has been
shown that the magnon energy with k= 0 obtained in
this approximation is real. only below some temperature
which is lower than T~.'4 Kanamori and Itoh" reported
a spin-wave calculation of the magnetic susceptibility
in which a higher-order contribution of the spin-wave
interaction terms is taken into account. They found
that the theory was in agreement with the experi-
ments on MnF~ up to 0.6 l~.

In this paper, we report on a comparison with the
experiment of the spin-wave theory which was devel-
oped recently by one of the present authors (O.N. )."
In that theory, which is based on the Holstein-Primako6
formulation for the Hamiltonian, the spin-wave inter-
a,ction terms are treated by means of a random-phase
approximation (RPA). Then our Hamiltonian is quad-
ratic with respect to the magnon opera, tors, and the
obtained magnon energy includes some parameters
which are statistical averages of the magnon operator
functions. The approximation in which these parameters
are determined self-consistently is called MRA. On the
other hand, the method in which the free spin-wave
theory is used for the calculation of these parameters
may be called the RPA. If we use this RPA in the case
of ferromagnetism, it is shown that the ferromagnetic
magnon energy decreases with increasing temperature.
The decrease is proportional to T'" at low tempera-
tures. Here T is the temperature in 'K. If we take into
account this temperature dependence of magnon

'3 M. Bloch, Phys. Rev. Letters 9, 286 (1962};J. Appl. Phys.
34, 1151 (1963}."O. Nagai, Phys. Rev. 180, 557 (1969);J. Appl. Phys. 40, 11.16
(1969).
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energy, we obtain the correct low-temperature depen-
dence of the magnetization, except for the additional
factor 0.2/S to the 2'4 term, "S denoting the magnitude
of spin. This was first pointed out by Keffer and
Loudon. "Similarly, if we use this RPA in the case of
antiferromagnetism, we will obtain the correct low-
temperature dependence of the sublattice magnetiza-
tion, within the framework of the Holstein-Primakoff
approach.

The spin-wave theory wil} be rather precisely com-
pared with the experiments on FeF~ and MnF~ in both
cases of RPA and MRA in this paper. According to the
present result, the experimental data exists mostly
between these two approximate calculations. Thus, it
seems to be suggested that the MRA overestimates the
spin-wave interaction effects. %'e calculate the anti-
ferromagnetic-resonance frequency (AFAR), sublattice
magnetization, and magnetic specific heat. As men-
tioned in the previous paper, " the temperature depen-
dence of AFMR depends on both the temperature
dependence of the exchange stiffness and that of the
anisotropy energy. On the other hand, in the case of
MnF~, the sublattice magnetization and specific heat
are not strongly affected by the anisotropy energy at
high temperatures, and the& are affected by the tem-
perature dependence of the exchange stiffness. Thus, it
may be interesting to examine our theory by comparing
the calculation of the above-mentioned quantities with
experiments. The method of calculation will be re-
capitulated in Sec. II. A numerical computation and its
comparison with experiments will be shown in Sec. III.

II. MATHEMATICAL METHOD

In t.his section, we will outline our theory briefly and
define the several terminologies which describe the
method of numerical computation.

For the sake of convenience, we develop our theory
by assuming that the Hamiltonian is given by the sum
of the exchange and the uniaxial one-ion-type anisotropy

energies:

H =2J P S,"S„—D[P (5,')'+P (S *)-'], (2.1)

where J denotes the exchange coupling between nearest-
neighboring spins S, and S, which belong to different
sublattices + and —,and D the constant proportional
to the anisotropy energv. A sum P &, & is extended over
all those neighboring pairs.

Thus, the theory in this section may be applicable to
FeF&. The theory of MnF&, whose magnetic anisotropy
is mainly originated from the interionic dipolar inter-
action, will be given in Sec. III.

Following Kubo, ' we define

5;+= (25) 'l' f a

5 ——(25)1t2a ff
5,'= 5—a,taj,

f, = (1—a, ta, /2S) "-',

5„+=(25)"'b tf
5, = (2S)"-'f„b„,
5 -'= —5+b„,tb

f = (1—b„tb /25)"-',

(2 2)

where a,~ and b t are creation operators, and aj and b„,
are destruction operators of spin deviations. These
operators satisfy the boson commutation relation.
Substituting (2.2) into (2.1) and expanding f, and f in
a power series of 1/5, we have a series

H =Hg+Hp+ (2.3)

where —,'~Y is the number of spins belonging to a sub-
lattice. Then H~ and H. can be written

apart from a leading term which equals the classical
energy to be obtained in the case of complete alignment
of spins. Here H~ and H~ are terms of the order (1/S)
and (1/S)", respectively. Other higher-order terms will
be neglected. %e introduce the Fourier transforms of
Qj aild bm '.

1 /g 1/2

a&
——— P a e'"'"~ b»= — P b~e '" "', (2.4)'

j .il m

Hr ——2JSz P (L1+8(l—1/2S)](agtag+b), tbg)+yg(agbg+agtbg t) ), (2.5)

2
H~= —2Js —Q yq, q,aq, 'aq, bk, 'bq, b(k& —ka —k3+k4)

k1 .k4

—2Js—P ((yk, aq, 'ak, aq, bq, +yk, aq, bq, 'bq, 'bq, )b(ks —kz —k3+k4)
2 3 k1- k4

(2.6)

+(y~,a&,b~, tb~,b~, +y&,a~, ta~, ~a&,b&, t)b(kr+k~ k3 —k4) )—
2

D Q(a»taq, —'az, a—z,+bz, tbz, 'bz, bz,)8(k&+kz —k3 —k4) .

Here s denotes the number of nearest neighbors 8= D/Jz and yq= (1/s) P, e'" '
&, p being a vector directed between

nearest neighbors. In keeping with the previous paper, '4 we use a RPA for the quartic terms of the magnon oper-

"F. J. Dyson, Phys. Rev. 102, 1217 (1956); 102, 1230 (1956)."F. Keffer and R. Loudon, J. Appl. Phys. 32, 2S (1961);also, J. Kanamori and M. Tachiki, J. Phys. Sot:. Japan 1?, 1384 {1962).
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ators in (2.6). For instance,

yk, k,ak, 'ak, bk, tbk, b(ki —k» —k»+k4) =p [a»fak(b~~bq)+bktbk(a, ta~) —(a»~a»)(b~fb»)
k, q

+yk»(akbk(a~tb»t)+akfbk~(a»b») —(akfbkt)(a~b»)+akb k(a~fb»~)+aktb kt(a»b») —(aktb»t)(a»b q))]. (2.7)

By ( ) we denote a statistical average. For a while, let
us leave them undetermined. The c-number terms in
this equation are useful in the calculation of the mag-
netic specific heat. Our Hamiltonian is now quadratic
with respect to ak and b), and their complex conjugates:

H=Q [Hik(ak'ak+bk'bk)

+EA»(akbk+ak'bk t)] (2 3S—).
XQ [(Hi» —Hi»~) uk'+ (H, » —H.k")u k'], (2.8)

where

Then, uq', zvq', and eq', which will be written upq& KFq&

and v~„respectively', are given ba n~q=ve~q=o and
t ~q

——1/XS, where

P ((a, 'a, )+(a„a,i)) . (2.10')
q XSq

The magnon Hamiltonian (2.12) is now definitely
defined, and we can calculate thermodynamic quan-
tities. The magnon energy in FSW, 4o~k, is given by

h»! ek
——[(H„)'—(Hp» )'-']"-". (2.1&)

2JSs[1+8(1 1/2S) (,,+,,
) 28,] (2 9 )

The FS1V is described well in Kubo's paper. '-'

H»» 2JSs(1 —u'———v!')yk,

and u' and w' are defined bi

2
u'=Q u, '=—Q (a,~a, ),

5" q

B. Random-Phase Approximation (RPA)

In the conventional RPA, the average ( ) in (2.7) is
taken on the basis of the unperturbed Hamiltonian H~.

(2 Ioa) Thns,

( )= Tr e e I/Tr e eH' (2.16)

~'=2 ~%'~»= —. 2 ~Q((a»bq)+(aq'b9')) (2 lob).55 q

In the second term of (2.8), Hi»~ and H»» are defined
by H~j, and H~k, resPectively, in which Nq' and wq' are
replaced by zero,

where P= 1/'k~T, k~ being the Boltzman constant. In
this paper, we call the approximation of (2.16) the
RPA. Then, the magnon Hamiltonian (2.8) or (2.12) is
easily defined. H~i, and H2k in these equations, which
will be written as H~k and H~k, respectively, are

Hi»" ——2JSs[(1—ue —re!i)+8(1—u„—v!i)] ) (2.17a)

Hi»"' ——2JSz[I+8(1—1/2S)]

H2g =2JSSyk.

The diagonal Hamiltonian is written

H=p [hid»(r»kio»+p»'pk+1) Hik] (-, t—S)—.

(2.11a)

(2.11b)

H.»" 2JSe(I —u!i———we) yk,

where i!s(=us+ I/2S), and u!!i are given by

1 Hg), ' 2
ie=p iek= —g 1+

XS k bier» (ee" " 1)—

(2.17b)

(2.18a)

XQ [(H1k Hik )uk + (H»k H»k )u!k ], 2
(2.12) u!!i=p u!eke» ————p —1+

k XS k Ace pk (ee""" 1)—
where o.~ and pI, and their complex conjugates are again
boson operators. The magnon energy 4o& is given by

Eiiek= 2JSs[(H,»)' —(H )»]'!' (2. l 3)
The magnon energy in RPA, IEco~k, is given by

(2.18b)

which is temperature-dependent.
Now we consider the following possible ap-

proximation s.
AFMR is given by A~~k 0, which can be calculated
from (2.19).

A. Free Spin-Wave Apyroximation (FSW)

ln this approximation, the spin-wave interaction is
neglected. Hence, we have

(a%'aa) = (b»'b») = (a»ba) = (aQ'b»') =o (2 14)

(a,a, ) = 1 .

C. Magnon-Renormalization Approximation (MRA)

If the unknown parameters vq' and mq' in the magnon
Hamiltonian of (2.8) or (2.12) are determined self-
consistently, this approximation is called the MRA,
which was discussed rather precisely in the previous
paper. "In the MRA, vq' and mq', which will be written
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0.2-
R

FeF2, although it is somewhat complicated. We also
calculate the above-mentioned physical quantities in

the case of this substance and compare them with

expenments.

0.1-

2J Sz

-0.1—
M

0.2 0.4
q L I

0.6 0.8

wR

as e~~ and m~„respectively, are given by

2 Hgj, 2
&Mk 1+

;('s /, (e'" ""—1))
(2.20a)

1 H2g~ 21+, (2.20b)
XS k/d, q/(, (e~""//" —1)

where

[(H iv)q (H M)2](/2 (2.21)

Hn, u 2JSz[(1—uzr ———w,v)+ 8(1—u((/ —q(u)], (2.22a)

H,„~=2JSz(1 —uu —wj/)y(, , (2.22b)

with u//= Pq u((/q~ 'Uz/= Pq v~q& and w~ Pqrqwz/q In
the case of uniaxial anisotropy, HjI, and H2I, are
functions of u~(=q(zr —zS) and wu. Hence, we have
only two equations to be solved self-consistently,

1 Hn ( 2

XS / . ,( (/' "—1()
(2.23a)

Fzc. 1. Dependence of vg, zg, v~, and 2o~ upon the reduced
temperature k~T j2JSz. Solid line, S=2.0 and 8=0.44. Dashed
line, S=2.5 and 8=0.02.

A. FeF2

FeF2 is a typical antiferromagnetic substance with a
Keel temperature of 78.4 K. The crystal structure of
this substance is of the rutile type: The unit cell of Fe'+
ions may be conveniently pictured as a body-centered
cube compressed along the s axis. In the antiferro-
magnetic state, the spins on body-centered sites are
antiparallel to those on corner sites, the spin direction
being along the tetragonal axis.

According to the experiment by Owen el al. ,
" the

exchange interaction within the same sublattice for
Mn'+ in ZnF2 is much weaker than that between the
corner and body-centered sites. If this is also the case
for FeF2, we may neglect the exchange interaction
within the same sublattice. The spin energy of Fe'+ in
ZnF2 was determined by Tinkham" to be

H,„= Ds,'+E(s—,' s„'), —

with D= 7.3 cm ' and E=0.70 cm '. The sign of E is
opposite for diferent sublattices. Because of both its
small size and alternating sign, we may neglect the
E term in the present calculation. The contribution of
the interionic magnetic dipolar interaction to the
anisotropy energy is smaller than 1 cm ', which amounts
to 3%%uc of the observed anisotropy energy, and so may be
also neglected. Thus, the total Hamiltonian for FeF2
may be given by (2.1), in which we have S=2, z= 8, and

yk ——cos(-,'k,a) cos(-', k„a) cos(-', k.c) . (3.1)

The calculation of the thermodynamic quantities is
a rather simple matter. Therefore, we shall make a few
remarks prior to performing numerical computations.

1 ygHgg- 2
1+ . (2.23b)

/VS ( k(aq/(, (e~" ""—1)

We show the temperature dependences of e~ and zv~
together with those of ~g and zan for the cases of 8= 0.44
and S=2.0 and 0= 0.02 and S=2.5 in Fig. 1.'7

F 50-
0

40—

w 30-
(3

20

(I

MRA

III. NUMERICAL COMPUTATION AND
COMPARISON WITH EXPEMMENT

In this section, erst we calculate the AFMR, sub-
lattice magnetization, and magnetic specific heat of
FeF2 in the various approximations, and we compare
them with experiments. Secondly, we consider the spin-
wave theory of MnF&, whose anisotropy is mainly of the
interionic dipolar interaction. The mathematical treat-
ment in this case is almost parallel to that in the case of

"For the numerical calculation of v~ and w~, see Ref. 14.

10-

0
0

I I I

20 40 60 80
T( K)

FIG. 2. AFMR of FeF2. The solid lines represent the theoretical
results in various approximations. The black circles denote the
experimental data.

'8 J. Owen, M. R. Brown, and R. Stevenson, in Proceedings of
the International Conference on Magnetism and Crystallography
(The Physical Society of Japan, Kyoto, Bun Kyo-Ru-Tokyo,
1962), p. 428.

'9 M. Tinkham, Proc. Roy. Soc. (London) A236, 535 (1956).
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TABLE I. Calculated values of AFMR in RPA and in MRA.
The J values are obtained by equating the calculated AFMR in
RPA, Accrgo, to the experimental value Aar, „&=75.9 kB. S=2.0
and z=8.

0.2-

PA

AcogoE2 1Sz
A~mo/2 JSz

J/kB
D/kR

0.8231
0.8229
2.88
9.22

0.44

0.8694
0.8692
2.73
9.66

0.48

0.9143
0.9141
2.60

10.0

D p )o~

I

20 40
T( KI

60 80

The expression of the sublattice magnetization is
given by

kI(T) = (-', XS)(1+1(25—P z»), (3.2)

where v& is the thermal average of (XS) ' (a~za~+a~zz~z)
on the basis of the total Hamiltonian H, and it is
calculated as

1 Hgk 2
&k 1+

HAYS ho)z (e&""'—1)
(3.3)

In FSK, Acok and H» are, respectively, replaced by
Aced~& and Hzk~ defined in (2.15) and (2.11a).similarly,
Amok and H jk are respectively replaced by ~~k and H ik
defined in (2.19) and (2.17a) in RPA and by hcuirz and
Hike defined in (2.21) and (2.22a) in MRA.

The magnetic specific heat is calculated by differ-
entiating the internal energy E with respect to the tem-
perature. E is calculated from (2.8) or (2.12), and it is
given by

E=XSP LHzku~+Hzjtwk —,'(Hzg Hz]t )ug'

—-', (Hzg —Hzk" )w~'j. (3.4)

FiG. 3. Deviation of the sublattice magnetization of FeF2.
The dashed line denotes the experimental result.

'|A'e also calculated AFMR in MRA, Scoop, at 0 K,
which is very close to ANgp value. The J values obtained
in MRA are also close to those in RPA, and they are not
tabulated. Referring to the previous data J=2.77 k~"
and D= 9.7 k~," we assume in this paper that the
magnitudes of J and D are given by

J=2.73 ke and D=9.66 ke, (3.7)

which leads to 8= 0.44. The AFMR in RPA and that in
MRA at finite temperatures are calculated, and they are
shown in Fig. 2, together with the experimental data by
Ohlman and Tinkham. ' It may be interesting to note
that the experimental data exist between RPA and
MRA calculations.

In Fig. 3, we show the calculation of the temperature
dependence of the sublattice magnetization cV(T) in
various approximations. The agreement between theory
and experiment is rather poor.

The magnetic specific heat C is also calculated. "The
MRA calculation seems to agree with the experiment"
satisfactorily, as can be seen in Fig. 4.

Here uk=it& —XS is given by (3.3), and w~, which is
the thermal average of (XS) ' (zzkbq+aqzbqz) on the
basis of the total Hamiltonian, is calculated as

1 Hgg, 2
1+

XS Acog (ee" ' —1)
(3.5)

Thus, the magnetic specific heat is calculated by the
following equation:

C=(fEjdT= (.VS)(2JSs)((f/dT)
&& L(u+ w) —(u+ w) (u'+ w')

+ ', (u'+ w')'-+ 8(u uu' uv—'+u"—)j, (3.6)

where u= Pk u„and w= Pk yqwq.
In order to determine the magnitudes of J and D, we

calculated the AFMR in RPA at O'K for several values
of 8. Some of the results are shown in Table I. By
equating the theoretical values of AFMR, Aorgp, with
the experimental value her„„„&=75.9 k~, ' we calculated
the magnitudes of J, which are tabulated in this Table.

'" k. C. Ohlman and M. Tinkham, Phys. Rev. 123, 425 (1961).

B. MnF2

MnF2 is crystallographically and magnetically iso-
morphous with FeF2. The lattice parameters, as deter-
mined from x-ray diffraction, " are c=3.3103 A and
a=4.8734 A. According to Keffer, " the major part of
the measured anisotropy in the susceptibility above the
Neel point (68'K) in MnF& can be accounted for by
magnetic dipole interactions, and the remainder is
possibly because of the interactions of individual para-
magnetic ions with their surrounding crystalline fields.
Keffer estimated the anisotropy field at O'K to be
8800 Oe, which consists of a dipolar anisotropy field of

"S. Foner, in ProceeChngs of the International Conference on
Magnetism, Eottingham, 19K' (The Institute of Physics and The
Physical Society, London, 1965), p. 438; also see M. E. Lines,
Phys. Rev. 156, 543 (1967).

~z J. Kanamori and H. Minatono, J. Phys. Soc. Japan 17, 1759
(1962).

2' The numerical calculation of C was done as follows: dE/dT= (kB/2JSz)(BE/BT*), where T*=kBT/2JSz and BT*=0.01 was
used.

24 J.%.Stout and E. Catalano, J. Chem. Phys. 23, 2013 (1955)."M. GriGel and J.W. Stout, J.Am. Chem. Soc. 72, 4351 (1950).'6 F. Keffer, Phys. Rev. 87, 608 {1952).
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30

I

&0

0
E Zo-
I

E3

fO" 1O-

RPA
FSW

T-
N

where

Hi&.= 2JSzf (1—u' —w')+8(1 —u' —e')

+e(1—»~) [1—2 u~'(I —viq) j
+ (Go*—Fo'+-,'Gi, *)(1—u')

[ue (zGq +G«q )+zw, F, ]} (3 11a)

Hg&,
——2JSz[»,(1—u' —w')+ z F&,*(1—u')

0 10 20 30 40 50 60
T ('K)

Frc. 4. Magnetic specific heat of FeF2. The black
circles denote the experimental data.

8300 Oe and a crystalline anisotropy field of 500 Oe.
Thus, the crystalline anisotropy field amounts to 6%
of the total anisotropy field.

Following I-ow et al. ,
' we take into account two kinds

of exchange interactions. One is the antiferromagnetic
exchange interaction, with the coupling constant J,
between the nearest-neighboring intersublattice spins
along the (111) directions, and the other is the ferro-
magnetic exchange interaction, with the coupling con-
stant J', between the nearest-neighboring intrasub-
lattice spins along the c axis.

The Heisenberg spin Hamiltonian of MnF2 may be
written as follows:

H=2J P S,"S -2J'[ Q S,"S,'+ P S„S
( J, m) ( m, m')

—D[Q (S,*)'+Q (S ')'j+Hg; p, (-3.8)

Hg;p ——(2ue)' Q R;„'[R; '(S,"S„)

—3(S; R,„)(S„R;„)].(3.9)

Here p~ denotes the Bohr magneton, R;„is the distance
between spins i and n, and P; „are taken over pairs i
and n.28 Other notations are defined in Sec. II.

Using the method described in Sec. II and carrying
out some manipulation which will be given in the
Appendix, we obtain the following expression for the
simplified magnon Hamiltonian:

H=p [Hi&, (a&, &ak+bk&bq)+Hi&, (a~b&, +ai, &b&, &)j, (3.10)

"G. G. Low, A. Okazaki, R. W'. H. Stevenson, and K. C.
Turberfield, J. Appl. Phys. 35, 998 (1964); also, A. Okazaki, K. C.
Turberfield, and R. VV. H. Stevenson, Phys. Letters 8, 9 (1964).' For the spin-wave calculation of the dipole-dipole interaction
in antiferromagnets, see Ref. 9. Also, see J. Van Kranendonk and
J. H. Van Vleck, Rev, Mofl. Phys. 30, 1 (1958).

where g &, , i (or p &, ~ i) denotes a summa, tion over
pairs j and j' (or m and uz') on the same sublattice and
Hd p the dipole-dipole interaction, which is given by

+», Q w, 'F,*]. (3.11b)

We omitted the c-number terms in (3.10) for simplicity.
Here u, ', etc. , are defined by (2.10a), etc. , and other
notations are defined as follows:

e = (J'z'j Jz) = (J'/4J),

G&,
*———(2pe' zJ) Q R„' "(R," 32, '—)"

J—2'

(3.128,)

z' =2, and haik ——cos(k,c) .

Xe'~'" &, (3.12c)

(3.12d)

The magnon Hamiltonian (3.10) is written in the
same form with that of (2.8) in Sec. III. Henceforth, we
shall often refer to the formulas derived in Sec. II.

The magnon energy is simply given by

Puu&, [(Hig+H——,&,)(H,„—Hi&, )1' '-'. (3.13)

Before going to the numerical computation, we will
give a remark on the calculation of P~ u~'G~* and
P, w, 'F,*. We write G,* and F; as

G%*= (2ue'/—zJa'e) G(Q),

F, = (2u, '/z Ja'c) F—(e),

(3.14a)

(3.14b)

TABLE II. Numerical values of G (0) and expressions for g„(q).
In the numerical calculation which is described in the text, the
summation over n was taken within the sphere with the radius of
9.2 A, which is denoted by an arrow.

Xumber
of

n neighbors C'„(0)

—8.6694
2.7170
0.1624—1.0836
0.9606
0.6160—1.0704

g„c„(o).
—8.6694—5.9524—5.7900—6.8736—5.9130—5.29/0—6.3674

g (q)"

goo 1

5 (gl 00+go 10)
2 (g 101+go 1 1)

g002

gllo
gill

k (g102+g012)

8
9

10
11

—0.3168
0.3396—0.3211
0.4000

—6.6842—6.3446—6.6657—6.2657

gl12
4(g200+go2o)

gooa

g (g201+g021)

a KeRer value = —6.16 LF. KeRer, Phys. Rev. SV, 608 (1952)j.
b g liiia =COSlq&a COSmq„a COSnq, C.

)&e"e«'' (3.12b)

F&,* (2u«-jzJ)——p R, '(R p 3-Z„/2)—
m J
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respectively, where

G(q) =a c2P R, '("R,r 2 3Z—y2)e'0 "1~' (3.15a)

F(q) =a'c Q R, '(R 2 3Z—„,2)e'2 " ~ ('3. .15b)

0.10

0.08-

0.06

0.02

U &011)

~~U (002)~-.U(111)

-- U(0121

Then, let us write G(q) and F(q) as

G(q)=KG (0)g (q) and F(q)=EF. (o)f-(q), (3.16)

where G„(0)g (q) denotes the contribution from the
nth-neighbor spins in the same sublattice and F„(0)f (q)
from tke nth-neighbor spins in the different sublattice.
Here g„(0)= f„(0)= 1. For several neighbors, G„(0)
and g (q) are tabulated in Table II and F„(0) and

f„(q) in Table III. We remark that pouo'g„(q) and

po 200'f (q) are written as follows:

U =P u, 'g. (q) =(1/252)(5, *52'*), (3.17a)

fV =p rco'f (q) =(1,/2S')(S;*5 *), (3.17b)

where (S,"'5, ') denotes the correlation function of the
two spins belonging to the same sublattice and (5, 5„')
the correlation function of the two spins belonging to
the different sublattices. The subscript n denotes j—j'
or j—m svmbolicallv. Finally, we can write

Q u, 'G, *=—(2uR2/2JR2c) Q G„(0)I/„, (3.18a)

Q», 'F '= —(2uR2. -JR2c) Q F„(0)lf „. (3.18b)

1. FSH

Inserting zero into uq' and zq' in Hik and H~l„we
obtain the well-known expressions. " The dipolar
anisotropy term in the magnon energy depends on the
wave vector k. However, for finite k values, the ex-
change energy term is much larger than the dipolar
term in the case of MnF~. Then, we can neglect the
k dependence of the anisotropy term, and thus the

TAaI.K III. Numerical values of F (0) and expressions for f„(q).

0.00
—0.02—

—0.04 =--- .
- W(ill)

0.2 0.4
—0.06

~W 015)
Wtl 55)

,
@{115)

0.80.6
= kT/2JSZ

E'Io. 5. Temperature dependence of U and W„, which are
defined by (3.17a) and (3.17b), respectively, in RPA for S=2.5
and 8=0.02. U(la, ma, ec) and W(ala, yma, ~nc) are denoted by
U(lmn) and lV(lmn), respectively, in the figure. The temperature
dependence of U and 8'„ in MRA is also calculated, and a similar
temperature dependence to that shown in Fig. 1 is found, which is
not shown in this figure.

dipolar anisotropy energy can be replaced by the
uniaxial. anisotropy energy in the Harniltonian.

The value for J used in the present calculation is
j..76 kg, which corresponds to the 6gure derived by
Trapp and Stout on the basis of an accurate measure-
ment of the perpendicular susceptibility of MnF2."
Low ef al.22 deduced the magnitude of J' to be (0.3&0.1)
k~, of which the eA'ect on the thermodynamic properties
is supposed to be rather small. The above value of J
taken together with the low-temperature AFMR deter-
mined by Johnson and Nethercot" leads to the 8 value
of 0.020. These values for J and J' will be also used in

the following calculations.

00RO L(fflo+IJ20)(H10 H20)]

—(2JSs) (2(1—uR —uiR)

Z. EP3

In this approximation, uq' and nrq', which will be
denoted by ugq and zvgq, are calculated by using the
FSK, as defined in Sec. II. Since we can assume crystal-
line anisotropy instead of dipolar anisotropy, ugq and
2RR2 can then be calculated from (2.18a) and (2.18b),
respectively. Using the 8 value of 0.020, we calculated
V„and t/t'„, which are shown in Fig. 5.

AFMR is given by the following expression:

1

2
3

5

6
7
8

8
8

16

16

Number
of

n neighbors rn(0)

4.9268—2.9192
2.2296—1.3600
0.)956

0.5096—0.5280
0.1825

Q„ I'„(0) ~

4.9268
2.0076
4.2372
2.8772
3.0728

3.5824
3.0544
3.2369

.t (v)"

1 ( t311+ (13l)
tl li

2 ( fl 38+ fate)

t a31

~(t;,+( . )
f833

Xp(1 —uR —1'R)+ 2 (Go' F0*)(1—uR)

—
2 p (u R,G '+u R F ')j)"'-'

q

The calculated result of IEcugf) is shown in Fig. 6. In this
figure, RPA(dipolar) stands for the calculation in which
only the dipolar anisotropx" energy is taken into account,
and the uniaxial anisotropy energy is neglected. On the
other hand, RPA(uniaxial) denotes the calculation in

0 Keffer value =3.23 LF. Ke6er, Phys. Rev. 87, 608 {1952)g.
"ffR1« =cos$/q~a cos$mq&a cosfnqoc.

"C.Trapp and J. O'. Stout, Phys. Rev. Letters 10, 157 (1963).
'0 F. M. Johnson and H. 'Nethercot, Phys. Rev. 114, 705 (1959).
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Fro. 6. AFMR of MnF2. The solid lines represent the theoretical
results in various approximations. See the text for definitions of
these lines. The dashed line denotes the experimental result.

which only the uniaxial crystalline anisotropy energy
is considered. By properly accounting for both the
dipolar and uniaxial anisotropy energies, the experi-
mental data can be fitted with the theory up to 50'K. If
we assume 6% of the uniaxial anisotropy fiel and 94%
of the dipolar anisotropy field in the total amount of
the anisotropy field, which is in accordance with KeEer's
estimation, " the calculation denoted by RPA is very
close to the experiment, "although still we find a slight
discrepancy.

The sublattice magnetization is defined by (3.2) with
(3.3). Here Hii, is given by (3.11a) in which uq' and
w,

' are calculated from (2.18a) and (2.18b), respectively.
In the calculation of (2.18a) and (2.18b), the crystalline
anisotropy was assumed, and the constant 8 was as-
sumed to be 0.020. The calculated result is shown in
Fig. 7 together with the experimental data. ""

The magnetic specific heat was calculated by use of
the formula for E, (3.4), with (3.11a) and (3.11b). The
calculated result and the experimental data are shown
in Fig. 8.

3. MEA

The self-consistent equations for v~q and x~q are
given by (2.20a) and (2.20b), where Hii, and H2k

are given by (3.11a) and (3.11b), respectively. In the
expression of IIii, and II21„ lq', etc. , are replaced by
N~q, etc. Thus, it is tedious to carry out the self-con-
sistent calculation for these unknown parameters in
the case of MnF2. Therefore, we proceed with our
calculation on the magnon energy by use of the follow-

ing approximation. We calculate vq'P= uq'+ (cVS) ]
and mq', which will be written v~q and m~q, assuming
the crystalline anisotropy and neglecting the intra-
sublattice exchange interaction. That is, we calculate
sir and war from (2.23a) and (2.23b) self-consistently.
Here 8 value is assumed to 0.020. Using these v~ and
war, we calculate v~, and w~, from (2.20a) and(2. 20b).
We substitute s', w', v,

' and w,
' in (3.11a) and (3.11b)

by v~, m~, v~q, and m~q, respectively.

"V. Jaccarino and L. R. Walker, J. Phys. Radium 20, 341
(1959).

'~ P. Heller and G. B.Benedek, Phys. Rev. Letters 8, 428 (1962).

Assuming 6% of the crystalline field and 94% of the
dipolar field to the total anisotropy field, we computed
the temperature dependence of AFMR, which is
denoted by MRA in Fig. 6. The experimental values
reasonably agree with both RPA and MRA calculations,
though the experiment seems to exist between these two
approximate calculations.

The sublattice magnetization and magnetic specific
heat are calculated by use of the magnon energy which
was obtained in the above-mentioned approximation.
They are shown in Figs. 7 and 8, respectively.

Finally, we computed the magnon energy at the first
Brillouin-zone edge" k,a = k„=k,c= vr by assuming the
crystalline anisotropy energy. We also assumed J'=0.
According to the present calculation, the experimental
data seems to exist between both RPA and MRA calcu-
lations, as can be seen from Fig. 9.

IV. SUMMARY AND DISCUSSION

We have computed the temperature dependence of
the AFMR, sublattice magnetization, and magnetic
specific heat of FeF2 and MnF& at moderately high
temperatures. We applied the temperature-dependent
magnon-energy theory to the calculation of these
physical quantities in the cases of RPA and MRA.

By the present calculations, we found the following:
The experimental values of AFMR are found between
two approximate calculations, RPA and MRA, in both
cases of FeF~ and MnF2. The temperature dependence
of the magnon energy at the first Brillouin-zone edge is
calculated in the case of MnF2. The experimental values
are again found between RPA and MRA calculations.
The RPA calculation of the sublattice magnetization of
MnF~ fits well with the experiment at high temperature
of 0.7 T~, although we find that the experimental values
exist between these two approximate calculations. On
the other hand, the sublattice magnetization data on

0.4

03- PA

~o
0.2-

Q
X

0.1-
N

I i
0 10 20 50 40 50 60

T ('K)

FIG. 7. Deviation of the sublattice magnetization of MnF2. The
black circles denote the experimental data by Jaccarino and
Walker (Ref. 31) and the black triangles those by Heller and
Benedek (Ref. 32).

"R. L. Greene, D. D. Sell, W. M. Yen, A. L. Schawlow, and R.
M. White, Phys. Rev. Letters 15, 656 (1965); also, R. M. White,
Phys. Letters 19, 453 (1965).
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FIG. 8. Magnetic specific heat of MnF2. The black
circles denote the experimental data.

On the other hand, we obtain"

T~(D= ~)= 156'K

from the equation for TN of the Ising spin system. Thus,
the spins in FeF2 are well described by the vector spins
rather than the Ising spins used in the description of the
Neel temperature.

Recently, Murao and Matsubara" developed a
Green's-function theory of ferromagnetism in which the
two types of the excitation spectrum are introduced.
One corresponds to the usual collective excitation of the
spin-wave type, and the other corresponds to the single-

"T.Tanaka, L. Libelo, and R. Kligman, Phys. Rev. 171, 531
(1968)."P. W. Kasteleijn and J. Van Kranendonk, Physica 22, 367
(1956).

'~ P. W. Kasteleijn, Physica 22, 387 (1956)."T. Murao and T. Matsubara, J. Phys. Soc. Japan 25, 352
(1968).

FeF2 is not found between these two calculations. The
MRA calculation of the magnetic specific heat does fit
well with the experiment in both cases of FeF~ and
MnF~. However, the present Hamiltonian is truncated
at the quartic terms with respect to the magnon
operators, and there may appear some discrepancies
between the theory and experiment, if we take into
account the higher-order terms which are neglected in
this theory. Thus, the present calculation, particularly
in the cases of the AFMR and the magnon energy at the
zone edge, seems to suggest that the MRA over esti-
mates the magnon interaction efI'ects.

It is known that the anisotropy energy of FeF2 is
very much larger than that of MnF. . Actually, we
assumed that t)j= 0.44 for FeF2 and 8= 0.02 for MnF2 in
this paper. In the case of infinitely large anisotropy
energy, the spin system may be considered as the Ising
spin system in which the spin-wave model may not be
valid. However, according to the recent two-spin cluster
calculation on FeF2, '4 the Keel temperature is calcu-
lated as T~=77'K, which is very close to the Neel
temperature of the system with 8= 0,3r

T~(D=0) = 76'K .

095-

0 10 20 30 40
T (qK)

FIG. 9. Comparison of the optical absorption data of Green et. 4
(Ref. 33} with the present theory for MnF2. co~(T) denotes the
magnon energy at the Brillouin-zone edge.

ion excitation of the %eiss molecular-field-theory type.
The latter may not be taken into account in the present
theory. The effects of the single-ion excitations on the
thermodynamic quantities may become appreciable at
high temperatures. This remains to be done as a future
problem.
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APPENDIX

In this Appendix, we derive the Hamiltonian of
(3.10). By use of the procedure described in Sec. II, the
spin Hanultonian of (3.8) can be written"

H =2JSs P [H~q(aq ak+bq bq)+Hqq(aqbq+aqtbqt)

+Hqk(agtb k+a),b gt)

+«k(aqa-q+4b-q+a~ "a-k'+4th qt)$, (A1)

where H~i„etc. , are given by

Hgq = 2JSs{1+8+Gq* Fq'+-',G„'—
+q(1 —

Ygg) [1—Q I,'(1—r&q)]

—Q [uq'(1+e+Gq* —Fq*+Gq q*+-', (G„*+G,*))

+evq +u'q ('Yq+sFq*)

+qxq'Fq +qyq'(2Gq +Gm )]), (A2a)
"We omitted the c-number terms in (A1) for simplicity. The

conclusion in this Appendix does not change in the calculation of
the magnetic specific heat.
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H2» =2&» f Yk+2&k* —Q [2iq'(Yk+2F»')

+2Vq'(Yq k —Fq k*)+qyq Fk ]}
H3» =2JSV f-2'Fk —Q ['22iq'Fk

where

D1»= D4»=H1»+H3»)
(A2b)

Eik = —E4» =H2»+ 2H4» )

D2»= D3»= H1» —&3»,

E2» E3k H2k 2H4k ~

(A8)

+xq (Yq —k Fq—k )+2yq (Yk+2Fk )]}&

Finally, introducing the operator c;» and c;kt defined
(A2c)

H4» =2JSz f 4G» —25 Q yq'

X [Ylq —k 2 (Ylk+ Ylq)]

—-'2 [Nq'(Gk +2Gq )

where

we obtain

n;k = cosh8;kc;k —sinh8;»c;k,

tanh28;k ——E(k//D;k,

H =p p hid, .k(c,.ktc,.k+, )

(A9)

(A10)

(A11)

+22vq'Fq +xq'(Yq+2Fq') where
bieik (Dik2 E.»2) 4/2 (A12)

Here the following definitions are used:

*'=(-~'S) '( b-'+ 'b-),

yq'=(. VS) '(aqa q+aq2a q2)

(A3a)

= ( 5»S) '(bqb, +b, 'b, '), (A3b)

+2y, '(8+Gk, *+-,'(Gk*+G, '))]}. (A2d)

1 2

Q cosh28;k(1+2nf k),
2S.A'

(A13a)

The statistical averages of (I/AiS) (aktak+ aka»2),
(I/A S)(akbk+ aktbk ), (I/AiS) (akb kt+ ak "b k), and
(I/A' S)(aka k+ak a k ) with respect to the magnon
Hamiltonian (A11), which are denoted by vk, qvk, xk, and
y», respectively, are calculated as follows:

G„—=(624&2/VJ) P R" 5(V.'' —I '')e'"'Rii'

F (624 2/s J) Q p 5( p' 2 if .2)eik RR

(A4a)

(A4b)

1
qvk —p sinh28;k(1+2n;k),

2SS
(A13b)

m 2

Other notations are defined in Sec. II.
Now we diagonalize the magnon Hamiltonian of (A1).

Confining our attention to the positive half-space of k,
we define the new operators as follows:

a+» ——(1/V2) (A lk +.4 2»),

b~k= (1/&2)(Blk&B2») .
Furthermore, we introduce ~1») A2» 0'3» and o'4»

follows:

(
~1k = (1/V2) (nlk &n3»),
~1k

(A6)

= (I/v2) (n.kan4») .
82»

Then, we obtain

4

H= 2 Q Q [Dik(nik'nik+niknik )
k) P s~&

+ k(n;k'+; kf")] ( )

xk —— —
~
P (—1)'+' cosh28;k(1+2n;k),

2SX) *=i
(A13c)

H3p—0 and H4p —0.
If we consider the magnon energy for the finite k values,
the exchange interaction term is larger than the dipolar
interaction term, Consequently, we can neglect H3» and
Hqk terms in the magnon Hamiltonian of (A1), and we
have a simplified form of the Hamiltonian (3.10).

I 2

yk = — Q ( —1)'+' sinh28;k(1+2n;k), (A13d)
2SX

wh««;k=(ee""*& —1) '. If we assume that the ex-
change energy is considerably larger than the anisotropy
energy, one obtains the following relations:

xk 2F» Vk and yk: 2G» Vk. (A14)

From the inspection of (A4) and (A13), we find that

P G, vq~O and P Fq vqyq 0, ~(A15)
q

in both RPA and MRA. Furthermore, we have
Gp =Fp =0. Thus, we obtain


