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We carry out a Weisskopf-Wigner-type calculation for a system of two quantum levels which

are simultaneously coupled by a quantized radiation interaction H and a classical external
perturbation V. The results for the level populations properly reduce to the quantum oscil-
lation solution when H- 0, and to the exponential-decay solution when V- 0. When neither
H nor V is zero, the upper level undergoes a modulated exponential decay. We derive an

expression for the perturbed decay rate and discover a, new type of modulation factor. The

result suggests possibly important modifications to the standard, phenomenological solution

of the three-level H'+ V problem, which is of practical interest.

I. IN&".EDUCTION

Experiments' ' on the system of states 2s, 2P,
and 1s in atomic hydrogen reveal many interest-
ing features of, and provide a number of impor-
tant tests for, the time-dependent perturbation
theory of atomic transitions. As indicated in
Fig. 1, the transitions occur under the combined
effects of an external perturbation V and the radi-
ation interaction B. The metastable 2s state can
be coupled to the 2P state via a Stark matrix ele-
ment t V), while 2P is coupled to 1s via the radia-
tion coupling )H), which gives rise to the 2P spon-
taneous decay rate y fx )H )'. If the 2p state did
not decay (i.e. , y = 0}, then the 2s-2P coupling by

( V ) would result in the well-known "quantum os-
cillation" between these states, at (angular) fre-
quency 5, and with transition amplitude ~ I VI'.
As it is, with y 40, one expects in general some
sort of quantum oscillation superimposed on an
exponential decay.

A phenomenological theory describing transi-
tions within this system due to the coupling (Jf+ V)
has been given by Lamb, as an extension of ear-
lier work by Bethe. ' Lamb used the theory,
under the condition I Vl «(—,

'
hy), to derive line-

shapes for the 2s -2P quenching resonances' ob-
served to high accuracy during measurements
on hydrogen fine structure. ' The same theory
has been used by %'angsness, ' under the condi-
tion I VI » (2 Ky), to account for the temporal
intensity variations in various spectral lines
of hydrogen observed during beam-foil experi-
ments. '&' Wangsness concludes that for suffi-
ciently large I Vl, the 2p-1s exponential decay
will be modulated by the 2s-2P quantum oscilla-
tion. Series has also used the theory to propose
a novel method for measuring the Lamb shift. '0

The theory of these transition processes is
phenomenological in that the 2p-1s coupling by
H is accounted for by simply adding a "damping
term, "proportional to y, to the ordinary equa-
tions of time-dependent perturbation theory which
describe the coupling of the (stationary) states by
V. Thus, for the problem in Fig. 1, the equa-
tions for the 2p and 2s state amplitudes ~ and

are taken to be

the = V %exp(- i6t) —,'iay8,—
Ps

ia 6= V* tt exp(+ i6t) .
Ps

25
Io~ 8) )
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FIG. 1. Three-level sys-
tem. in hydrogen. The 2s and

2P levels (energy separation
8 0) can be coupled by an ex-
ternal (Star+ perturbation V.
The 2s level is metastable,
but the 2p level decays spon-
taneously to the ls ground
state, emitting a photon of en-
ergy 8 ~0. The decay is due

to the 2P-ls coupling by the
radiation interaction H, which
results in the 2P spontaneous
decay rate q ~H'.

Here, V&s = (2P I V I 2s), and the relatively small
2s-state decay rate is ignored. In neglecting to
include the 1s state in this description, it is im-
plicitly assumed that the ground state is suffi-
ciently far away (~, » 6) so as to be only weakly
coupled by V. The ground state thus serves only
as a sort of reservoir into which the 2p decays
are dumped. However, it is generally true that
the same V which couples 2P to 2s will also couple
2P to 1s. The effect of this additional coupling
can become important for I VI - ( ~ A'y), or larger,
as in the beam-foil experiments. '

The phenomenological Eqs. (l) can presumably
be justified by writing equations of the Weisskopf-
Wigner (WW} type. " However, if we wish to in-

188 82



188 DECAY IN A TWO-LEVEL QUANTUM SYSTEM

elude the ground state, so as to estimate the ef-
fects of the additional 2P-1s coupling by V, as
well as to insure that probability is conserved
for times such that yt» 1, it is necessary to
carry out a full WW calculation, including a quan-
tized radiation interaction, sums over photons,
etc." We expect to find that for sufficiently large
I VI, the 2P-1s exponential decay mill be modu-
lated by both the 2p-2s and 2p-1s quantum oscilla-
tions. As a first step in understanding this addi-
tional modulation, we are led to consider the two-
level (H+ V) problem indicated in Fig. 2. The P
and s states here resemble the 2p and 1s states
of the three-level (H+ V) problem in Fig. 1; note,
however, that now these states are simultaneously
coupled by H and V, a feature which is missing
in the problem of Fig. 1.

In this paper, we shall solve the two-level prob-
lem of Fig. 2, whenneither H nor V is zero. The
solution of this problem must reduce to the quan-
tum oscillation (QO) solution' when H-O, and to
the WW solution" when V-0; these separate solu-
tions are well-known exercises in the elementary
quantum mechanics of a two-level system. We
shall solve the two-level (H+ V) problem by carry-
ing out a WW-type calculation in which the exter-
nal perturbation V is treated classically, and the
radiation interaction H is quantized (as in the or-

I

p state: ampi. A;

cufcn P (a),—~—ur fp.

V

s state:ampl 8;

caifcti g(x), eg~gy Es.

FIG. 2. Hypothetical two-level system. The p and
s levels here (energy separation Scop are analogous to
the 2p and 1s levels in Fig. 1. However, now they are
simultaneously coupled by the external perturbation V
and radiation interaction H. Separately, V gives a
quantum oscillation between p and s, while H gives an
exponential decay of the upper state, at decay rate y.

dinary WW theory) We d. o this not only as a peda-
gogical extension of the elementary quantum-
mechanical solutions, but also as a first step in
understanding the modulated exponential decay
of the three-level problem, which is of practical
interest. The calculation is straightforward, but
rather involved. The results show a new type of
modulation factor, which suggests that important
modifications to the standard, phenomenological
solutions of the three-level problem may result
when it is treated by a complete WW calculation.

II. ELEMENTARY SOLUTIONS

In this section, we review the standard solutions to the elementary two-level prob'. ems, namely,
(A) H=0 but Ve 0, which gives the (QO) solution, and (B) Hx 0, but V=O, which —by means of the
WW calculation —gives the WW solution, i.e. , an exponential decay of the upper state. In both cases,
we assume that an interaction U, either V or H, effects a superposition of states:

e(x, f)=A(f) q (x)exp(- is f/a)+B(f)y (x)exp(-iZ i/e),
p p S S

where the Pn(x) are orthonormal eigenfunctions of the Hamiltonian X which binds the two-level system,
3Cg„= E„g.„, and the time-dependent amplitudes A and 8 are to be found from the Schrodinger equation,
jh(S@/8t)=(R+U)4'. Inboth cases, we shall choose the initial conditions: A=1, B=O, at i=0 (i.e. , the
system is initially in the upper state). The notation defined here will be used later in solving the com-
bined (H+ V) problem.

A. QO Solution

For the case where the radiation interaction H = 0, but the unquantized, external perturbation V WO, the
amplitude equations are

ih A = V B exp(+ ku f),ps
iÃB= V* A exp(-i&u t),ps

where u& -=(B —B )/Ii and V = V =0. We write V =(g
~

V~/ ) = Vexp(-ip)0 p s pp ss ps p s

where V is real and time-independent (by assumption), and p is an arbitrary phase. It is convenient to
define the dimensionless quantities
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Q=[1+ (2V/5~, )']"',
where p=[(Q —1)/(Q+1)]"'= V/her„as V-O.

The parameter p measures the strength of V relative to the binding interaction.

1. Exact Solution in Terms of the Eigenfuncti'ons of X

The solutions to Eq. (3), subject to the initial conditions A = 1, B= 0, at t = 0 are exactly

(4)

A(t) exp(-iE t/tt) = (1/W} [e + g e ], B(t)exp( iE-t/8) = (p e'+/ ) [e e'-],
where P and S are the perturbed eigenfrequencies,

P=(E +&)/h, S=(E —&)/5, and 4=-,'(Q —1)S'~ =V'/(E —E ), as V-O.
p s 0 p s '

The state populations, as functions of time, are therefore exactly

+(t)= ~A(t)~'=1 —(4g'/lV') sin'(-,'(u't),

S(t) =
I
B(t)I'= (4V'/&') stn'('&'t}

(8)

where &o' =P-S=Q~, is the perturbed frequency difference. Probability is conserved, since 5'+ 8= l,
for all time.

2. Exact Solution in Terms of the Eigenfunctions of (X+ V}

In addition to the above solution, it will be useful later to have the solution expressed in terms of the

eigenfunctions of (X+ V). We diagonalize the problem (X+ V) Pn=E'nP„, where E'n =En+n. are -the per-
turbed energies. The complete eigenfunctions are

4 (x, t)=y (x)e
p ' p

where y (x)=—[y ( x) +pe' y (x)], (8)

It should be noted that in this diagonalization process initial conditions have not been specified, as they

previously were. However, linear combinations of 4& and 4s can be formed which do correspond to the

system being entirely in the p state or the s state at &0:

4 = (4 —g4),
p s

4 = —(pC +4 ),1
p s

for pure g at S=O,

for pure g at t = 0 .
S

The Cn, and the Pn, are orthonormal if the gn are normalized. Later, in solving the (H+ V) problem,
we shall use

4'(x, t) = a(t) @',(x, t)+b(t) @ (x, t),

as the general superposition of eigenstates of the V problem, which is then perturbed by H wO.

(10)

3. ComParison of the Ttco Solutions

By substituting Eqs. (9) and (8) into Eq. (10), we can show that the superposition of Eq. (10) is identical
to that of Eq. (2) if the gn and 4n amplitudes are related by

A(t) exp(-iE t/5)= (1/N')[(a+ p, b) e +g(ga —b}e ],
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B(t)exp(-iE t/tt)= (e /N') [ p(a+ pb)e —(pa —b}e ] .
S

Comparing this with Eq. (5) shows that the QO solution, with the system initially in the upper state, cor-
responds to the choice a=1, b=0 for all time.

8. ~ Method

(i2)

where k, =&a,/e, k=&u/c= photonwave number, and

Z =Z f dn„ f dkw(k} .

For the case where the unquantized, external perturbation V= 0, but the quantized radiation interaction
H 40, the amplitude equations are"

aA=Q H* (T X)B " ' ' aB=H (k ~)A
k, X

s SP

The sum over photons (wave vector k and polarization X) involves an integration over solid angles as
well as integration over the photon density of states, w(k), which is nk'/(2w)' for photons quantized in a
box of volume e. The sum occurs in the first amplitude equation, but not in the second, as the absorption
s -p can result from a variety of photons in the radiation field, while the emission P -s gives rise to only
a single photon.

The VVV calculation proceeds by assuming that the upper state decays exponentially, so that the ampli-
tude A may be given by A(t) = exp(- —,'y, t), where y, is a time-independent decay constant to be found. We
write ( IIs IH I gp) ~Hsp ~H exp(+ i e), where H is real and time-independent, and e is an arbitrary phase.
Putting this Ansatz into Eqs. (12}gives

B(t)=(He /n)», [i-e ' ] yo=(2t/ti ) Z K»o [e 0 —1],
k, X

where», =-(k-k, )c+ —,'iy, .
The integral equation for y, can be solved approximately by assuming: (i) y is smail with respect to

A«c, i.e. , the radiation interaction is weak compared to the binding energy; then y«may be neglected in
the integrand. (ii) H and w(k) vary slowly with k compared to the sharp resonance at k, exhibited by the
exponential terms. Then H and w(k} may be evaluated at k = k, and taken outside the k integral. The re-
sult for the decay rate, for time such that A«ct»1, is

y (2v/tf'e) Q f d& H'(k, i}w(k}k

The population of the lower state can be found by summing over all photons which can cause this state
to be populated. Using the approximation(ii}, but not neglecting y, in the integrand, gives

s(t)= Z ~B(t)~ ~Q f dQ [H(k, A)/}I]'w(k) x f dk~z '(1-e )~X 4, k ' kk««0
t

(15)

Carrying out the integration, again for k«ct » 1, gives the state populations

S(t) = 1-exp(- y, t), 0 (t) = IA (t) I' = exp(- y,t) .

As in the QO case, probability la conserved, since 8+ 8= 1, for all time.
For future reference, we note that the quantization of the radiation field is accounted for, without using

direct product states, by associating"

SP P sZ e with the absorption (s P) matrix element, H =(P IHlg ),
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and
+ikct

e with the emission (p-s) matrix element, H =&0 IHIP' ) .
sP s P

These rules, the exponential Ansatz, the approximations (i) and (ii) given above, and the imposition of a
time scale by k,ct »1 comprise the WW method which we apply to the combined {H+V) problem in Sec. III.

III. TWO-LEVEL (8 + V) PROBLEM

In this section, we solve the two-level (H+ V)
problem shown in Fig. 2, using the methods and
notation outlined in Sec. II. We carry out a WW-
type calculation, using the state superposition of
Eq. (10). This superposition and the WW ansatz
a(t) = e-Ai/2 stipulate that the system is in an
eigenstate of ($C+ V) when H is turned on. As in
the previous section, X is the binding interaction,
V is the external perturbation, and H is the radi-
ation interaction. We later remove this arbitrary
time-ordering by averaging over an assumed ran-
dom phase between H and V. As it must, the solu-
tion for H = 0, and to the WW solution for V= 0.
When neither H nor V vanishes, the solution shows
a new type of modulation factor, in addition to the
expected QO modulation of the exponential decay. 'y'

We make several approximations during the
calculation. First, we consider single-photon
processes only. Next, assuming both V and H
are weak compared to X, we carry terms of or-
der V'H, and no higher, in the amplitude equa-
tions. We also assume that the perturbed decay
rate F is not much different than yo, except for
having a slight time-dependence. Then, just as
in the H problem, the upper level decays approxi-
mately exponentially. We solve the problem for
a time scale F t» 1 and "near resonance" for the
photons involved in the P —s transitions. Finally,
we pass to the "isolated atom, "by letting the pho-
ton quantization volume v -~. All of these approx-
imations are reasonable in typical physical situa-
tions.

A. Differential Equations

N &
C',

~
H~ C,&=e H(e +2p')e

+2p, e Q H(l —cost@'t)e2 -i5 -i@et

k, A.

where g = V/%u„N'= I+2@,',

and ~ = Qm, —-(1+2p'}k,c .

(20}

We make the WW Ansatz by assuming that the
amplitude of the "upper state" @„canbe repre-
sented by a(t) = exp(- ,'At). The—realpart of A
mill be the perturbed decay rate and mill approach
yo as V-0. Putting this Ansatz and the expres-
sions for the matrix elements into the second of
Eqs. (19) gives the equation to be solved for b(t).
As a convenience in solving for b(t), we write

b(f) = (1/N ) bo(f)f(t),

where b, (t) =- (He /k)z (1 —e ),-I zzt
(21)

z = (k —Qko)c+ —,'iA .

The function b, (t) is analogous to the unperturbed
WW amplitude B(t) of Eq. (13); it is obtained by
letting g -0 in the equation for b(f) and solving it
with the assumption that z is independent of time.
With this assumption, the equation for b(t) can be
converted into an equation for f(t). After rewrit-
ing one term, we find

and (9), the notation of Sec. II, and the rules of
Eq. (IV). If we define 5=—8 —y as the phase dif-
ference between H and V, and keep terms of order
V'H and no higher, me obtain, for example,

Using the state superposition of Eq. (10) in the
Schrodinger equation

[. ~8(I nu't) ikct]-
= [exp(- —.

'
Af)/h, (f) ]{ (22)

84'
in „=[(X+V)+H]C (18) where v = gH/N4g . —

gives the amplitude equations to be solved for the
time-dependent coefficients a and b,

~as =&@,~H~C, &*b+&C,~H~C, &a,

ikk= &C, [H) C,&a+& e, )H) C,& k.

Here, the caret over H indicates that the
photon sums are to be included in accordance
with Eq. (17). The matrix elements can be calcu-
lated in a straightforward manner, using Eqs. (8)

The braces on the right-hand side contain compli-
cated terms of order V, H, and V'H. Fortunately,
we can ignore the entire right-hand side for times
such that y,t» 1; thus we can solve Eq. (22)"ex-
actly. " Using f(i=0) =1, evaluating the resulting
expression at resonance, k = Qk„and ignoring a
term of order v/&u' «I, we get

f(t)=exp(-ivte ) .i5

This, with Eq. (21), is the solution for b(f).
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The next step is to substitute b(t) and the WW

Ansatz into the first of Eqs. (19) to get an equation
for A. Using the convenient notation

We can solve for F exactly. Imposing the initial
condition, F= 0 at 7' = 0, gives

T =~'t, —G =-AT /2~',

i5r=ee-, where & -=v/&u'= pH/N'h&o',

F(T)= y,
-ir T

1 —e 1
-i 1+

i(1+r)

y =(Q'/N') y, = (I+ 2q') y, , (24)
—0, 1 [s'nT — (1 —cDBT)])

yT 2p
2(d T

allowing A to be time-dependent, and evaluating
the first two terms at resonance (k = Qk, ), gives

-=F (T)u —0 y, ,a 2(d
(2S)

dG y 2 -i& -ir7 2 . 2
dY 2(d , (I+2p, e )e +4e sin

2

T
(

G
1) i(1 —r)T . (I i~'t) -ikct

G

g, (I aT) ikct-
k, A.

(25)

B. Perturbed Decay Rate

The first two terms on the right-hand side of
Eq. (25) are the dominant ones, as both exhibit
factors which grow exponentially with time. We
shall ignore the last two terms on the right-hand
side which are small by comparison. " Of the re-
maining two terms, the second is small by com-
parison with the first in the limit of an isolated
atom, that is, when we let the photon quantization
volume v become infinite. This can be seen with
the help of Eq. (14), by which we estimate the
value of the radiation interaction matrix element
H to be H2 -ft'cyo/vko . Then the parameter e
defined in Eq. (24) vanishes when v- ~, as

The solution for G will give the desired A, which
is analogous to the WW decay rate in the unper-
turbed (p=0) case. The approximations made in
obtaining Eq. (25) are mainly that y,t»1, and that
the various terms are evaluated near resonance,
A = Qko.

where the useful approximate forms are for
r -0 and p, -0. To solve for the relatively small
term g, we approximate G =E on the right-hand
side of the g equation; in fact, we use the final
approximate form of F. Imposing g= 0 at 7' = 0
gives

yT 2QP

g(T)= —& &
&

(e —1)e (1 —e ) dx,x -px iQx 2

(29)

. -i6
where n -=2&v'/y» 1, P = 2ie (v/y) .

After performing the indicated integrations, we
use the facts that P -0 as v —~ (isolated atom
limit), and n» 1, to obtain the approximate re-
sult

2 2 -1 T/u
g(T) =e a (p —e ). (30)

G(T) =F (T) ——,
' (&y/2(u') T'i e —&'o. e (31)a

The second term on the right-hand side comes
from expanding the exact solution for E; it van-
ishes in the limit c -0. The last term is the dom-
inant exponential term in Eq. (30) for g, which
also vanishes as e -0.

We have now obtained approximate solutions of
the amplitude Eqs. (19). The solution for b(t) is,
from Eqs. (21) and (23),

Combining the solutions for E and g give the approx-
imate solution to Eq. (25)

e = IrI = pH/N'h~' -(p/~, ')(c'y, /v)"'-o.

Therefore, we can consider the term in E' in Eq.
(25) to be a perturbation on the solution for G.
We set G=E+ g, where E and g satisfy

b(t)= (He /N h)z (1 —e )exp(-ivte ). (32)

The solution for a(t) is, from Eqs. (24) and (31),

a(t) = exp[- G(t)t

(A,/2)t, , 2. i5 2 2 (y 2)t=e exp( , &yet ie +e n e—),
dF y

(
2 iT) irT--

dE. 42 . 2 y 7' G
1&

i 1 —rv
27

where A =yll ~ 2rr*"(, )
1 —cos(d t

(33)
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with g~ V/II~, , ~™(I+2W')&, ,

and y ™(1+2p') y, .

Aa is the desired expression for the (complex)
perturbed WW decay rate of the "upper state"
4„ in the superposition of Eq. (10). We can see
this by noting that when e -0 (isolated atom limit),
the C, amplitude becomes a(t)~ exp(- —,'Aat}. The
approximations involved in these solutions are:
(i) matrix elements are evaluated to order V'H;
(ii} the time scale is fixed by y,t» 1; (iii) only

resonance photons occur, i.e. , (d = &' = QA, c;
and (iv) the parameter e «1. We have yet to
pass to the limit e 0-(v v )

' -0 and to average
over the relative phase 5 .

C. Average State Pop+4~0+s

We now return to Eqs. (11)which give the

((IIp, ps) state amplitudes A and 8 in terms of the

(4„Q) amplitudes a and b. By substituting the
solutions for a and b into Eqs. (11}, we shall de-
rive expressions for the p and s state populations
+ = IAI' and. S= IBI'. %e shall average these ex-
pressions over the phase 5, pass to the isolated
atom limit f -0, and sum over the photons which
can cause the lower state to be populated. In this
way, we shall derive expressions for the time de-
pendence of the transitions P s when neither the

radiation interaction H nor external perturbation
V is zero.

Taking the absolute value of both sides in Egs.
(11) and summing over photons, we find (to order
w')

N 4IA I
= (I+ 2gecos&o't) I a I

2

+ 2g'(I —cost@'t}I b I'+ 2g Rey,

&'
I H I'= (1+ 2p, ' cos~'t) I b I'

+ 2p'(I —cos(o't) I a I' —spacey,
~ j

where x(t) = (1 —e ) a (t)b(t) .

I& I'+ I 8 I'= I a I'+
I a I' . (35)

The probabilities are, from Eqs. (32) and (33),

la I = e exp(2e a e —
z ey(u't sin5),

-rt 2 2 (y/2)t

where I'=-ReA =y 1+2', sin~'t
a (o't (s6)

The tilde over 6 indicates that the photon sum is to
be done. The various parameters (i.e. , p, N, ~')
are to be approximated to order V', as in Eq. (20) .
%'e note that if probability is conserved in one rep-
resentation, then it is conserved in the other, as,
to order p.',

izt
I b I = Q (H/N 5} exp(sent sin5),

kg

where z = (k —Qk, ) c+ ,'iI' . — (37)

We approximate A= I' in Eq. (21) for z; this is correct as e -0. The phase-dependent factors in the
cross term in Eqs. (34) are

y ~ e expI- e~'t[( ,'yt —1)sin5+i ( —,'y t+ —1)cos5]}. (36)

Now we average each of the expressions in Eqs. (36)-(38) over the relative phase 5. We do this by oper-
ating with (I/2v)fd5 x, where the integration extends from 0 to 2v. The phase averages in both Eqs. (36)
and (3't) involve integrals of the form

f exp(C sin5) d5 =I,(C),
i 2m

o
(s9)

where C is a constant ~e, and I, is the modified Bessel function of order zero. " Since I,(0)= 1, we
readily obtain, in the limit e -0,

la I' =—lim
2 f la I'd5= exp(- I' t)
1 27r (40}

Carrying out the phase average, and a photon sum in the same fashion as in Eqs. (15) and (16), we also
get

I b I
' = 1-exp(- I t}= 1 —

I a I
av av (41)
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At this point, we have shown that probability is conserved in the context of this calculation. Finally, by

integrating the right-hand side of Eq. (38), we find

,'-f-(yt)"' lim JI're~'t(yt}'") =0,
av e-0

(42)

where J, is the ordinary Bessel function of order one.
By putting the results given by Eqs. (40}-(42) into Eq. (34}, using the definition (36) of I', and retaining

terms of order p, ', we obtain the populations of the P and s states

6 (t) = [A(t)[' s(f) -=]B(t)[' =1 —s'(t)
yav ' av

. , (u't Ky„/2
and g(t) =-4g' sin', p -=4

2 S(do

with y, = V/k&u„&o' = (1+2g') ra, , and y= (1+2g') y„as before, We call P(t) a "QO function", as it ap-
pears in the QO solution of Eq. (7). The parameters p and p measure, respectively, the strength of the
external perturbation V and radiation interaction H with respect to the unperturbed binding energy 8 (d,.
Finally, ~' and y are the perturbed counterparts of the P-s state separation ~, and the p-state decay rate
yo. We can easily see that when H-O, we get the QO solution of Eq. (7), namely, (P= 1-Z, while, when
V'-0, we get the WW solution of Eq. (16), namely, 6' = exp( —p, f).

IV. CONCLUSIONS
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FIG. 3. Average 5'ractional) level populations for the
problem shown in I ig. 2. The functions + and & are
derived in the text. At early times, the exponential
decay of the upper level is modulated by two quantum
oscillation factors. Later, the levels exhibit a charac-
teristic quantum oscillation of amplitude 4p, at
(angular) frequency co' —{1+2p ) ufo.

The expressions we have derived for the state
populations in the two-level (H+ V) problem show
the combined effects of aquantum oscillation super-
imposed on an exponential decay. The over-all de-
pendence on time is indicated in Fig. 3. These solu-
tions are valid so long as the effects of the coup-
ling due to both the external perturbation V and
the radiation interaction H are small compared
to the level separation S~„ i.e. , the parameters
y, and p in Eq. (43) are small. Thus, our solu-
tion is not valid near a level crossing point. On
the other hand, the solutions are valid for V either

large or small compared to —,'(Ky, ).
Our results for the two-level P-s system (Fig. 2)

cannot be compared directly with previous re-
sults'y '0 for the three-level 2s-2P-1s system
(Fig. 1}. There are two reasons for this. First,
the three-level calculations are done in the con-
text of the phenomenological theory discussed in
Sec. I, rather than the full WW formalism we have
used. Second, in the three-level calculations, no
allowance is made for any pair of levels to be
simultaneously coupled by H and V. We can spec-
ulate that the second difference here might lead
to different factors of order V' appearing in the
results. For example, if the three-level problem
were done by a WW-type calculation, including
the 2p-1s quantum oscillation (at frequency v, )
as well as the 2s-2p quantum oscillation (at fre-
quency 5), one might expect to see QO functions
a (f, ~,) as well as g(t, 5) occurring as factors.

On the other hand, the first difference here —a
difference in method of calculation —might well
lead to the appearance of entirely different terms
of order V'y. This is indicated by the observa-
tion that in a phenomenological description such
as Eqs. (1), an implicit choice has been made with
regard to the relative phase of V and H (the latter
being represented by its associated decay rate yo
only); consequently, the cross terms are likely
to be different.

Series" has solved Eqs. (1) for the three-level
problem in Fig. 1. If we let the unperturbed
2p-2s separation be co, rather than —6, so as to
draw an analogy with the P-s problem in Fig. 2,
Series's result for the population of the upper
evel may be quoted as'e



90 O. A. KE L LER AND R. T. ROBISCOE 188

[g [' = (1 —2p, ') exp(- y, t) —Q(t)exp(--, y,t)

+ 2p, '(1 —2p sin~ t)exp(-2y, t ), (44)

in the same notation, and to the same degree of ap-
proximation, as in Eq. (43). We observe that this
expression properly reduces to the QO solution for
yo -0, and to the %%' solution for V 0, just as in
Eq. (43). In the intermediate case, however, it is
clear that the terms in Eq. (43) are qualitatively
different from those of Eq. (44), particularly in
the appearance of the term in exp(- p p,

' sine't).
While this comparison cannot be valid for times
such that y,t» 1," it does suggest a new type of
modulation of the exponential decay of the upper
level. This new modulation factor is of order V'y;
presumably, it will persist when the three-level
problem is done by a complete WW calculation.
We note also that there is no "threshold condition"

for this modulation to occur, as in the calculation
by Wangsness '8

These remarks are speculative in lieu of a de-
tailed treatment of the three-level (H+ V) by the
WW method. It is clear, however, that this prob-
lem should be investigated, since experiments on
this system can be done to high accuracy —in mea-
surements of WW (Lorentzian) line shapes for the
transitions involved'y' and of details of the modu-
lated exponential decay. ' If the modulation char-
acteristics of the two-level problem persist, they
might well be detected in such experiments.
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