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Effect of Spin Waves on the Phonon Energy Spectrum of a Heisenberg Ferromagnet
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The magnon-phonon interaction is derived via modulation of an isotropic exchange, and it is shown that
the lowest-order contribution to the phonon lifetime at low temperatures comes from processes whereby
the phonon emits and later reabsorbs two magnons. Interactions between the intermediate magnons can
significantly inhuence the intermediate state, so we have retained the full magnon-magnon interaction
(via the two-spin-wave t matrix) in our calculation of the phonon self-energy. We find that the phonon
self-energy has singularities at the two-spin-wave bound states and resonances at the resonant two-spin-
wave states. One may understand the anomalously large phonon linewidth in these regions in terms of a
strong interaction {binding together) of the intermediate magnons. The rapid variation of the phonon
energy shift may intuitively be explained via the large "repulsion" encountered in simple perturbation
theory when two energy levels approach each other. An interesting result is that, because of the trans-
formational properties of the bound states for q along the $1111 direction, longitudinal phonons couple
only to the singly degenerate (s-wave) bound state, and the transverse phonons couple only to the doubly
degenerate (d-wave) bound state. It is pointed out that use of an external magnetic field would make
experimental observation of this effect easier.

I. INTRODUCTION
' 'T has been shown both theoretically and experi-
~ ~ mentally that the magnetic and elastic properties of
magnetic solids have a mutual influence on each other.
For example, a static manifestation of this magneto-
elastic coupling is the phenomenon of magnetostriction,
whereby a crystal may come to equilibrium in a strained
configuration via the creation of an easy axis for the
magnetization. "We have investigated the dynamics
of the magnon-phonon system and, in particular, its
effect on the phonon excitation spectrum (energy and
lifetime) of a Heisenberg ferromagnet. A preliminary
account of this work has previously been given. ' The
purpose of this paper is to give a more detailed account
of the theory and report some more recent results.

We obtain the magnon-phonon interaction from the
variation of exchange between nearest-neighbor spins
with local distortions of the lattice in Sec. II. As we
shall see, the analysis leads to scattering processes,
whereby .'

(a) One phonon is annihilated (created) and one spin
wave is created (annihilated).

(b) A spin wave and a phonon are annihilated and a
spin wave is created.

(c) A spin wave is annihilated and a spin wave and a
phonon are created.

(d) A phonon is annihilated (created) while emitting
(absorbing) two spin waves.

The processes described in (a) cause mixing of the
excitations, and have been shown by previous authors' '
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to give rise to magnetoelastic waves near the region of
intersection of the Tnagnon and phonon dispersion rela-
tions. The contributions of processes (b) and (c) vanish
at zero temperature since both involve destruction of a
spin wave. Process (d), however, does not vanish in this
limit, since a phonon mai. emit and later reabsorb two
spin waves even at zero temperature. In addition, the
processes in (a) do not introduce damping, so that the

lowest order contr-ibution to the phonon lifetime comes from
one-phonon —two-magnon processes.

Ke will demonstrate below that the phonon has a
finite lifetime at zero temperature even if the inter-
actions between the intermediate magnons are
neglected. Moreover, because of the attractive nature of
these magnon-magnon interactions, one must consider
the possibility of the intermediate Inagnons binding
together. ' "Such processes will significantly affect the
phonon excitation spectrum in regions of momentum
space where the phonon and two-spin-wave bound state
have nearly the same energy. We show how this comes
about in Sec. III and present in Sec. IV numerical
calculations of the phonon self-energy to lowest order
in the density of spin waves (exact at zero temperature).
In Sec. V, we draw some conclusions from our
calculations.

II. MAGNETOELASTIC COUPLING

We treat a simple cubic Heisenberg ferromagnet
described by the Hamiltonian

X= ——g p J e(x;—x,)5 (x;)Se(x,), (1)
X&, X7 aP=x, y, g
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where we assume an isotropic nearest-neighbor ex-
change interaction, so that

treat the magnetoelastic interaction as a perturbation
which mixes the spin and phonon systems. These
expressions areJ e(x;—x,)= Jb e, x, =x~+8

= 0, otherwise (2) S~+=(2S)'"a", S; =(2S)'"a;, S*= S+—a;ta;, (6)

where 8 is a vector from a lattice site to one of its nearest
neighbors, in the positive or negative x, y, or s direction,
but 6 p is the Kronecker b. To obtain the coupling of
magnons to lattice vibrations, we expand the exchange
integral in a Taylor series about the equilibrium lattice
sites:

J e((x;+Ax;) —(x,+Ax, ))
=J e(x,—x,)+(Ax;—Ax, ) V„, „,J e(x;—x,), (3)

where terms of order (Ax)-' and higher are neglected.
In Eq. (3), components of the gradient will determine
the magnitude of the magnetoelastic coupling. This
form of coupling has been discussed by Pp.tte, " who
has calculated the contribution to the phonon energy
spectrum from processes involving simultaneous
creation and destruction of spin waves. (This contribu-
tion vanishes at zero temperature. ) In our calculation,
we consider simultaneous creation of two spin waves, a
process allowed even at zero temperature.

Ke note that the gradient of J ~ is not necessarily
proportional to 8 g, since the lattice displacements may
cause internal distortions which can lower the symmetry
of the system and allow off-diagonal elements. "Also,
since J p must be an even function of x;—x, , its gradient
is odd. In addition, we make two assumptions concern-
ing the behavior of VJ. First, we assume that
VJ e(x;—x,) vanishes except for ij nea, rest neighbors.
Second, we assume the following fornax:

where a, and a;~ annihilate and create, respectively,
bosons at site x;. Finally, for this isotropic system, we

expect that a e and b e in Eq. (4) will have only two
unique components, corresponding to n= P and eWP.

From the above considerations and Eqs. (3)—(6), we
find that the interaction terms in 3C through which a
phonon may create or destroy tzeo magnons are given by

and

g — g
tk' xig .

g/X ~

g(kqX) =-,'S P {(2pfl,&) "-'eq&& sin —', q„

)(cos(k„——g„)[ab„„+b(1—b„„)j) . (9)

In Eq. (9), a and b are the values of a e and b e for
n/P, and the lattice constant has been taken to be
unity. For a phonon with q along the L111j direction,
the polarization vectors may be taken as

st = (1/v3) (1, 1, 1),

e„=(1/+6)(1, 1, —2),

.-,,= (I/~2)(I, —1, 0),

(10a)

(10b)

(10c)

I' '„1f p — ——Q g(kqX) rp~&, (a& aq & a kap q) (7)
kqX

where

lr&/BX„)LJ e(b,)]=a eb„„+b e(1 —b„,), (4) so that the coupling constants are «iven from Eq. (9) by

where X=—x;—x, . This assumpt, ion is equivalent to the
statement that the variation in exchange caused by a
distortion along a given direction is different for a spin
pair along that direction than for one perpendicular
to it.

The lattice displacement operators map be written
in terms of phonon Geld operators pq), = bq)+b q),

~ and
polarization vectors ~q), in the usual manner";

bx;=Q (2pflq), ) "'e,gp, ge 'q-
qX

where p is the density of the system and Qq~ is the
energ& of a phonon of momentum q and polarization X.
For the spin operators in the VJ term of Eq. (3), we use
the siniple spin-wave expressions, " since we intend to

"E. Pytt. e, A.nn. E'hys. {N. Y.'I 32, 377 (1'&65).
"KVe are grateful to Professor H. H. (..'allen for liointil&g out.

this fact to us."R. E. Peierls, Quantum Theory oj Solids (Clarendon Press,
Oxford, England, 1955)."T. Holstein and H. PrimakoA, Phys. Rev. 58, 1098 41940}.

g(kq~) = (C.t/v3) (a+2b)
X (cosK,+cosK„+cosK.), (11a)

g(kqt~) = (C. ,/«) (a—b)

&((cosK.,+cosK„—2 cosK', ), (11b)

g(kqt2) = (C„,/ v2)(a b)(c'osK, —cosK ), —

where
(S sin-', q)

C'q) =
2(2pfl, &,) '"

K=k ——,'q.

(11c)

(12a)

(12b)

Here K is the relative ni.omentuni of the spin-wave pair
which couples to the phonon. Xote that g(kqP) is even
in the co~nponcnts of K;md v rnishes for q=—0. Thus thc
coupling does not. depend upon the sign of the relative
ni.omentuni. of the spin-wave pair and vanishes for a
uniform displacement of the lattice Lsuch a displace-
ment does not change J(x;—x,)j.
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(a) (b) {c)

FIG. 1. Possible magnon-phonon vertices, along with a typical
contribution each makes to the phonon self-energy.

III. CALCULATION OF PHONON
ENERGY SPECTRUM

We assume a Hamiltonian for the magnon-phonon
system given by

Heis+P + ~M—P q (13)

where XP&" represents noninteracting phonons, but
ÃH„, allows the magnons to interact fully with each
other. V~ P, which causes the mixing, is the full mag-
netoelastic interaction Ldetermined by the second term
on the right-hand side of Eq. (3)7.However, we shall see
that at low temperatures one may replace V~ P with

Vssr i given by Eq. (7).
We will use diagrammatic Green's-function theory to

calculate the phonon energy spectrum, so that we must
calculate the irreducible phonon self-energy Z,z(co)."
As is well known, if this function is slowly varying near
co=Q~q, where Q~q is the unperturbed energy of a
phonon with momentum q and polarization X, its real
part at co=0~) gives the phonon energy shift, while its
imaginary part gives the inverse of the phonon lifetime.
Zsi, (e&) is the sum of the internal parts of all irreducible
diagrams" in which a phonon of momentum q and
energy cu both enters and leaves, undergoing all possible
intermediate (magnon-phonon) interactions allowed
by Vsr i .Substituting the expressions for hx; and 5 (x;),
Eqs. (5) and (6), into Eqs. (1) and (3), we find that the
intermediate magnon-phonon vertices are of three
types. First, from the S S' and $&S' terms, there are
one-magnon —one-phonon vertices. Second, from the
S S and S&S&terms, there are one-phonon —two-magnon
vertices at which a spin wave is created and another is
annihilated. Finally, from the S S& terms, there are
one-phonon —two-magnon vertices at which both spin
waves are either created or annihilated. These are the
terms included in Vssr i given by Eq. (7). In Fig. 1, the

~ A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii,
Quantum Infield Theoretical Methods in Statistical Physics (Perga-
mon Press, Inc. , New York, 1965), 2nd ed.

1 cosk; cosk,.
D;,(q,x) = (14a)

X s 3(x—1)+Pin), coskg+ie

cosk;j.
D*(q,*)=—Z (14b)

& s 3(x—1)+Piny coski+i»

A;, (q,e&) = —(1/45) PD;, (q,(u) n,D;(q,ei)], (14c—)
"J.M. Luttinger, Phys. Rev. 121, 942 (1961).' I. E. Dzyaloshinski, Zh. Eksperim. i Teor. Fiz. 42, 1126

(1962) /English transl. :Soviet Phys. —JETP 15 778 (1962)j.
's G. Baym and A. M. Sessler, Phys. Rev. 131,2345 119&i.

three types of vertices are indicated, along with a
typical contribution each makes to Zsi(co).

In our calculation, we shall neglect the mixing of

magnons and phonons caused by the vertices shown

in Fig. 1(a). This will be a good approximation far

away from any crossover of the magnon and phonon

dispersion curves. Moreover, in the neighborhood of
such a crossover, these terms may be included without

great difhculty. ' Also, as we have noted earlier, these
interactions introduce no damping and so by themselves
make no contribution to the phonon lifetime. At low

temperatures, one may utilize the diagrammatic
density expansion'~" in which each backward magnon
line gives a factor of the density of magnons. Thus, the
contributions of Fig. 1(b) are of higher order in the
density of spin waves than those of Fig. 1(c), since the
former have one backward magnon line while the latter
have none. We will include in our calculation of Zsi(cv)
all diagrams having no backward magnon lines, i.e., the
leading term in the magnon density expansion. Since
the density of magnons vanishes at zero temperature,
the calculation is exact in that limit. We will also
calculate to leading order in the magnon-phonon
coupling constant, which in this case is to order ~g~ .
Then the only magnon-phonon vertices which con-
tribute are those in Fig. 1(c), and we may use as our
potential V,sr z given by Eq. (7).

The contribution to Zsi(co) shown in Fig. 1(c) would
be the full contribution of order

~ g~
' to lowest order in

(n),„ if the magnons did not interact. However, the
Hamiltonian LEq. (13)7 includes the full magnon-
magnon interaction, and there is an additional class of
diagrams with spin-wave interactions which are of the
same order in ~g~s and (n), as those in Fig. 1(c). In
fact, the full contribution to Z, &, (ei) is obtained from
the diagrams shown in Fig. 2, where the box labeled t
represents the sum of all magnon-magnon ladder
diagrams or the two-spin-wave t matrix. The diagrams
shown in Fig. 2 are all irreducible phonon self-energy
diagrams with two magnon-phonon vertices and no
backward magnon lines, neglecting one-magnon —one-
phonon processes. One could include the one-magnon-
one-phonon processes by dressing the lines in Fig. 2,
but we mill not do so.

The contributions of the diagrams shown in Fig. 2
may be written in terms of the following lattice sums:
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0')t= cos&gy,1

re = re//12 JS,
(15a) + ~ ~ ~

and &~0+. In terms of the above, the two-spin-wave
t matrix is given by'

t(ktk. Itce) = —2J P (cos(kt 6)
b, b'=s, y, z

XLcos(kr 6') —cos(srq 5')j

(0}

FIG. 2. Set of diagrams included in calculating the phono&
self-energy. These are of lowest order in both ) g ~

r and the density
of spin waves.

XLI—2A(q, re)1 's r}, (16)

where the label "8,6'= x,y,s" means that the summation
is to be taken over the three nearest neighbors with
positive coordinates, and where for q along the L111]
direction we have'

C,'(a —b) '
~» "'(Q.) = LD"(V,Q») —D* (V,Q»)j,

4J5

Cq'(a+2b)'
Zqt&r&(Q») =- + M;,'(1—2A)-';, ,

SJS'

(21b)

(21c)

1
(1—2A)—' = 1

.1
3(1—2A;; —4A;, )

Cq'(a —b)'
&q~'r'(Qq) = — P M;,'(1—2A)—',;,

8JS2
(21d)

2

+ —1

,—1

—1

2 —1
—1 2.

where me have assumed Q~g= 0« for convenience, C, is

3(1 2A +2A ) (17)
given by Eq. (12), and where

M'= -'(D "+2D. )

&,~(Q»)) =&,x"'(Q,x)+~»a"'(Qq&),

where
gs(kqh)rt' 1

Zq), &"(Qq), ) =
~

— d'k, (19a)
(2w Qq)t 6q/2+ Ic 6 q/2 —It:+$6

1
Zq), &'~(Q»), ) = — d'k, d'k g(k, q) )g(k, q/ )

X t(ktksIIQ»x) (Qq), —eq/r+s, —eq/r s,+r b)-"

X(Q»$ eq/2+k» eq/r sr+i') ' (19b)

es ——6JS(1—-', P cosk&, ) (2o)

is the simple spin-wave energy. Now, using Eqs. (11),
(14), and (16), we obtain for a phonon with momentum
along the L111]direction

C,'(a+2b) '
Z t"'(Q, ) = (D, ;(It,Q,)+2D,, (q,Q,)j, (21a)

4JQ

In Eq. (16), kr and ks are the relative mornenta into
and out of the t matrix, and q and co are the total
momentum and energy. The denominators in Eq. (17)
vanish at the tmo-spin-wave bound states, ' " the
former at the s-wave state, and the latter at the d-wave
state. It is shown in Ref. 9 that the basis which diagonal-
izes 1—2A is et, e„, and e&, of Eq. (10), where er corre-
sponds to the s-wave state. Thus, we may anticipate
from Eqs. (10) and (17) a longitudinal-s-wave and
transverse-d-wave coupling, which me will now derive.

From Fig. 2, we find that

1

X (D;;+2D,, 3»r/D~) —1 1 1, (22a)
.1

1 1
Mn = —,'(D;;—D;,)' 1 1

2 2

—2
2 (22b)

—1 0
M"=-,'(D;;—D;,)' —1 1 0

0 0 0.
(22c)

Note that the product of M~ and the d'-wave part of
(1—2A) ' vanishes, as does the product of M' and the
s-wave part of (1—2A) '. Thus longitudinal $111]
phonons mill couple only to the s-wave two-spin-wave
bound state and transverse phonons only to the d-wave
state.

Using the expressions for M and (1—2A) ' given in
Eqs. (17) and (22), we obtain finally

IV. EVALUATION OF PHONON
ENERGY SPECTRUM

Comparing Eqs. (23) and (16), we see that Z has the
same singularities as the two-spin-wave t matrix. These

D;,+2D;,—3n,D;
Z,,=Z,&&) 1-

2S(1—2A;, —4A;, )

D;;—D;;
Z„=Z„&" 1—,(23b)

2S(1—2A;,+2A;,)

where Zqtt ~ and Zq, & & are given by Eq. (21), and all
functions are evaluated at (q,Q»).
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Fro. 3. Manifold of two-spin-wave states. There are bound or
resonant states only in region B. See also Figs. 4, 9, and 10 of
Ref. 10.
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FlG. 4. Manifold of two-spin-wave states and the
dispersion relations for four different phonons.

singularities occur at the two-spin-wave bound states, "
but, as is evident from the denominators in Eq. (23),
the longitudinal self-energy is singular only at the
s-wave bound state, while the transverse self-energy is
singular only at the d-wave bound state. In addition,
since the lattice sums given in Eq. (14) are real except
within the two-spin-wave band, Z and Z&" are also real
outside this region. Thus, the phonon lifetime is infinite
unless a spin-wave pair of total momentum q and
energy 0~ is either within the two-spin-wave band or at
one of the two-spin-wave bound states. The interpre-
tation of this result is clear. A phonon may relax by
emitting two spin waves only if there are energy states

-02—

FIG. 5. Transverse phonon self-energy versus phonon momen-
tum for a phonon in region A. q=d degrees means q a=q„a=q, a
=dm-/180 and Z, f

——X«L8pC/S'(a —b) 'j

available to the spin waves, i.e., if q and 0, are within
the two-spin-wave band or at one of the bound states.

In Fig. 3, we have indicated the two-spin-wave states
for total momentum q= q(1,1,1) and spin 2, both the
two-spin-wave band and the bound states. "The dashed
line within the band represents the resonant d-wave
state first described in Ref. 9. Since the structure of Z, ),

will depend very much on the proximity of the phonon
and two-spin-wave energies, we have divided Fig. 3 into
three regions. Phonons in regions A and C will not have
their dispersion curves cross any of the two-spin-wave
bound or resonant states, while those in region B will.
Thus, we expect to find a more dramatic, resonant-type
behavior of the phonon self-energy in region B. Also,
since in region C the phonon energy will rarely, if ever,
be within the band, we expect smaller eA'ects from. the
interactions there than in regions A or B. In order to
investigate the structure of the phonon energy and
lifetime, we have numerically evaluated Eq. (23) for
the four phonons whose dispersion curves are shown
in Fig. 4. The evaluation of the lattice sums is described
in Ref. 10. Here we have taken 0,= cq, where c~= 2/~,
c2 ——2/3~, c~ = 21/24m, and c4= 5/4~. Note that
cj++region A, c2~region C, and c3, c4~region B.
Also, phonon four crosses the resonant d-wave state,
while phonon three crosses the true bound states. In
the following, recall that the renormalized phonon
energy and phonon lifetime are obtained from Z~z(Q~&)
via the equations (valid if Z is slowly varying near

"See also Figs. 4, 9, and 10 of Ref. 10.
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Cd= Qgg),
(24a)

(24b)
1.2

0.2— (~q= 3 q)

O. I

Im Xc

In Fig. 5, we show Z«(Q, ) for Q, =c~q versus q
(region A). The longitudinal self-energy has similar
structure. Note the peaked nature of ImZ("&, which
corresponds to noninteracting magnons. This merely
rejects the density of states for two free spin waves.
The effect of spin-wave interactions is to shift the peak
to lower q", but, as the spin increases, the effect of the
interactions diminishes, as is illustrated by the spin--,
result. The real part of the self-energy changes sign,
so that Q, (T) is smaller than Q, for small q and larger
than Q~ for large q. This renormalization sign change
also occurs in the noninteracting case.

Figure 6 shows the behavior of Z,g(Q, ) for Q, =c2q
(region C) and spin 1. As expected, the self-energy is
small and is changed only slightly by spin-wave
interactions. Contrast this behavior with that illustrated
by Fig. 7, in which we have plotted —ImZ~c(Q~) versus

q for Q~=c3q (region 3). Z'd' has very little structure,
but the introduction of spin-wave interactions in the
intermediate state leads to a large peak at the band
edge and a 6 function at q= 168' (q„„.= 180'). The peak
rejects the imminent emergence of the s-wave bound
state, which causes the denominator in Eq. (23a) to
become very small near the band edge. The 8 function
in ImZg is due to the crossover of the phonon and s-wave
two-spin-wave bound-state dispersion curves outside

I.O

0.8

E
0.6

I

' -Im Xt

AMPLITUDE
.05I

0.2

0
0 60

l i I

90 I 20 I 50 I 80

«I (DEGREES)

Fro. 7. Imaginary part of the longitudinal phonon self-energy
versus phonon momentum for a phonon in region B.

the band and would be thermally broadened in the real
system into a resonance. For the phonons discussed in
Figs. 6 and 7, the transverse self-energy is quite small,
although Z«(Q, ) has a pole at q=171' for Q, =c,q,
where the phonon and d-wave bound state cross.

The last of the four phonons that we have chosen to
discuss has Q, =c4q= (5/4~)q. This case is particularly
interesting, since Q~ crosses the resonant d-wave state
and also stays within the two-spin-wave band for ex-
tremely large q. The numerical results have some very
interesting features. First, as is shown in Figs. 8 and 9,
the longitudinal self-energy is not aHected by a crossover
with the d-wave bound state, since it couples only to
the s-wave states. However, the transverse self-energy
shows a resonance near the crossover (q=110'), its
imaginary part (inverse lifetime) becoming very large
and its real part (energy shift) varying rapidly and

0 ~ I

20 40
I I I I

I I I I I

80 100 120 140 160 180

q{DEGREES)
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{s=—,)

{Q,q= 4„q)
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Re X,

/~ Re Xc

~' ti

l

0.6

E
(f)

0.4
i

0,2

30 90 I 20

g{DEGREES)

I 50 I80

FIG. 6. Longitudinal phonon self-energy versus phonon momentum
for a phonon in region C, E,g=Z, gL8pC/S'(a+2b)'j.

FIG. 8. Imaginary part of the phonon self-energy versus phonon
momentum for a phonon in region 8 which intersects the resonant
two-spin-wave bound state.
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Fro. 9. Real part of the phonon self-energy versus phonon
momentum for the phonon of Fig. 8.
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FIG, 10. Imaginary part of the transverse phonon self-energy
versus momentum for the phonon of Figs. 8 and 9.

changing sign. Finally, as is shown in Fig. 10, Z&&" is

anomalously large in the high momentum region, even
for spin —,'. This means that the full spin-wave inter-
actions must be included in a calculation of the energy
and lifetime of a phonon in this region, even for large
spin.

V. SUMMARY AND CONCLUSIONS

We have shown that at low temperatures the lowest-
order contribution to the phonon lifetime comes from
processes whereby the phonon emits and later reabsorbs
two magnons. As we have seen, the contributions of
such processes are extremely sensitive to interactions
between the intermediate magnons. In particular, if the
energy of the phonon is near that of one of the two-spin-
wave bound states, then the intermediate magnons may
interact very strongly (bind together), and this causes
the phonon lifetime to become extremely short. Thus a
plot of linewidth versus momentum shows the resonant
behavior illustrated in Fig. 8. Physically, this comes
about because there is a decay mechanism for the
phonon (via the two-spin-wave bound state) which is
operative only in the small region of momentum space
where there is close proximity between the phonon and
two-spin-wave bound-state dispersion curves. The
phonon energy shift in this region may also be under-
stood intuitively via the repulsion of energy levels one
encounters in simple perturbation theory. For at low g

the phonon energy is below that of the bound states,
while at high q it is above. Hence, one expects the
energy-level repulsion to first cause a downward
(negative) shift and then an upward (positive) one.
This result also follows more formally from the sum
rules on the phonon spectral-weight function, or the
Kramers-Kronig relations for Z, &,(co).

In the vicinity of the resonances described above, one
must include all the spin-wave interaction terms
displayed in Fig. 2. In addition, we have found that for
large momentum and near the center of the two-spin-

wave band, Z ( ~ is a very bad approximation, and here,
too, one must use the full two-magnon t matrix (for
example, see Fig. 10).There a first Born approximation
to the t matrix does not substantially alter the Z&"

result. Finally, even far away from any resonant or
nonperturbative efI'ects, the inclusion of interactions
between the intermediate spin waves can substantially
alter the phonon self-energy, as shown in Fig. 5.

The variation of phonon energy and lifetime de-
scribed in this paper would be most easily observable
via the use of an external magnetic field. Since the field
will raise the energy of the two-spin-wave states by
2gp~H but not shift the phonon energy, it will have the
effect of moving the phonon from region A to 8 to C
in Fig. 3. Since we find resonances only in region B,
moderate effects in region A, and very small effects in

region C, this would make observation much easier.
For example, for a phonon with cq=2/~, the zero-field
self-energy would be given by Fig. 5. As the field was
increased, one would find a resonance, such as in

Figs. 8 and 9, and then increasing the field still further
would yield a behavior similar to Fig. 6. Finally, for a
large enough field, one would simply find the non-
interacting phonon energy and no lifetime effects from
the spin waves. An added benefit of the magnetic field
is that it also separates the single magnon and phonon
crossover from the two-magnon bound state and phonon
crossover, since the single-magnon state is raised by
only gp, &H. The eGects described above would most
easily be observable via inelastic neutron scattering,
since they occur at rather large momenta.
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