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Electrical Conductivity of a Superconductor*
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A model is proposed which describes the dc electrical conductivity of a superconductor both above and
below the classical critical point. The approach is to include in the calculation of superfluid density and the
electrical conductivity, the effect of the fourth-order term of the Ginzburg-Landau theory, which represents
the interaction between superQuid excitations. The resulting expression for the conductivity simplifies to the
Aslamazov-Larkin result above T, and yields, for "two-dimensional" samples, an exponential dependence
of the superAuid conductivity on d T (= T.—T} below T,. Calculated results for the one- and three-dimen-
sional cases are also given. Experimental studies of the electrical conductivity of "two-dimensional" Al
films were made to test the model. Good agreement was obtained in the region below T„even when the
sample resistance was followed over five decades and sample mean free paths were varied over two decades.

I. INTRODUCTION

1' "NYIL rather recently it was generally accepted
that it would be virtually impossible to observe

thermodynamic fluctuations or critical-point eRects
in superconductors. This pessimism was generated in
part by (correct) estimates of the extremely narrow tem-
perature interval over which anomalous eRects in
equilibrium properties, such as specific heat, should be
observable in bulk superconductors. ' The outlook was
brightened by Little's' discussion of the feasibility of
observing the eRect of thermodynamic fluctuations on
the behavior of superconducting microgeometries. The
first experiments'4 which provided at least qualitative
evidence for fluctuation eRects in superconductors were
reported shortly thereafter. These experiments and sub-
sequent related work ' focused on the critical current
behavior of "one-dimensional" samples in the classical'
region below T,. These experiments were particularly
dificult because of sample preparation problems and
the smallness of the measured eRects. '

More recently, attention has shifted to the problem
above T, as a result of the paper by Glover" which
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Samples for which two dimensions are smaller than the tem-
perature-dependent coherence length g(T}.

OFor a discussion of the critical and classical regions, see
K. Maki, Progr. Theoret. Phys. (Kyoto) 40, 193 (1968); B. I.
Halperin and P. C. Hohenberg, Phys. Rev. 177, 952 (1969)."R. D. Parks, in Proceedings of the Conference on Ftuctuations
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reported the sizable broadening for the resistive transi-
tion in thin amorphous Bi films, and the interpreting
of these results by Ferrell and Schmidt" as arising from
thermodynamic fluctuations. The theory was presented
by Aslamazov and Larkin, '3 by use of a microscopic
approach. Later, Abrahams and %oo" and Schmid"
obtained essentially the same result from the linearized
time-dependent Ginzburg-Landau (GL) theory. Further
discussion has been given by KadanoR and Laramore. "
The main result of these studies is the prediction that
thermodynamic fluctuations of the order parameter
above T, lead to an excess conductivity 0.' in the normal
state, given by a'=o„ra/e, where Tp=e'/16dh 0 d is
the film thickness, O.„ is the normal conductivity, and
c= (T T.)/T. . Thi—s result is valid only in the two-
dimensional regime Ld& $(T)), in the dirty limit

(l«$0, where $0 is the BCS coherence length and l the
mean free path), and in the classical temperature region
where the mean-field theory is expected to be a valid
approximation. The last constraint requires that e(&T
and ~)&2ro, where 2~0 approximately defines the width
of the critical region. '3 The one- and three-dimensional
regimes, which are less accessible experimentally
because of sample preparation difhculties in the first
case and the smallness of the eRect in the second, have
also been treated. '~i5

Glover's results on amorphous Bi films" and subse-
quent results by Strongin et al."on Pb and Al films and
by Smith et al."on Pb films are alI. in reasonable accord
with the predictions of the Aslamazov-Larkin theory.

The purpose of the present work was to extend both
the theory and experiments to include the entire transi-

~ R. A. Ferrell and H. Schmidt, Phys. Letters 25A, S44 (1967)."L. G. Aslamazov and A, I. Larkin, Fiz. Tverd. Tela 10,
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(1968).
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tion region. "Extending the theory from the classical
region above T, towards T, requires the inclusion of the
interaction between superfluid excitations, which be-

comes important as the density of excitations increases.
Such interactions are represented by the fourth-order
term of the GL free-energy functional. The model pre-
sented in the following section consists of including this
term, in Hartree approximation, in the calculation of
electrical conductivity. Detailed calculations for the
two-dimensional case are presented in Sec. II, and the
results for the one- and three-dimensional cases are
given in Appendix A. Preliminary results on the calcula-
tion of specific heat within the spirit of the model are
presented in Appendix B. The remainder of the paper
reports new experimental results on Al 6lms and com-
pares these results with the predictions of the model.

parameter field, ' nI, is given by

nq = (expI (a+bk'+b &1/1'&)/k~T] —1)—', (5)

and the average value of the superfluid density follows

in a self-consistent way,

Using the same approximation in the time-dependent
GL equation, one obtains

4(~/~f)4=a4+4&141'&+b~V (7)

where y I =nb/8k~TP(0)] is calculated in Ref. 21.
Assuming the usual relaxation form for the solution

fI, (x——)e '~ I, we obtain for the lifetime

II. THEORY

For the reason of simplicity, we work with the
Ginzburg-Landau formulation of the theory of super-
conductivity. In the transition region, this approach is
equivalent to the BCS formulation and leads to the
same results. The free-energy density for a given con-
figuration of the order paranieter is

f(AT) =a141'+l b
I + I'+b

I ~+ I'
where the phenomenological constants a, b, and 8 are
defined in Sec. V A. If we introduce tb=Pqnqe'~' and
integrate over r, the free energy becomes (we consider
unit volume)

F(P,T) =Q (a+bk')n~ ng 2b Q rlk~o rig o nkng . (2)
k,k', Q

In the quantized version of the theory gkt, qk may be
regarded as creation and annihilation operators for
superfluid excitations. The fourth-order term in its
original form makes impossible the exact calculation of
the partition function and correspondingly all other
thermodynamic quantities. For any general state
described by occupation numbers n& the expectation
value of the fourth-order term is

.
gn, gn, ,I b Q q-g~o'q); o'rl), rlj, . I ng, ng, )

k,k', Q

=b P ng Pnp . (3)
k k'

At this point, we invoke a Hartree-like approximation
by replacing the sum over v~ by its average value,

Q ng' Q ng n Q ng = (I& I
'& Q ng. (4)

k' k k k

If we further assume the Bose character of the order-

"Preliminary reports of this work are given in {a) S. Marcelja,
Phys. Letters 2SA, 180 {1968);(b) S.Marcelja, K. E. Masker, and
R. D. Parks, Phys. Rev. Letters 22, 124 (1969).

8ksTP(0) a+bk'+b(1/1'&

The superfluid conductivity o'= (e'/m)Pk n~r~ is then

me'hb

8m@(0) ~ (a+bk'+b(I/I'&)'

together with Eq. (6) for (1/1'&. In the equation for
a', we have used the linearized form of Eq. (5) in order
to simplify the algebra. For any real situation, this is
an extremely good approximation. Equation (9) reduces
to the Aslamazov-Larkin result" in the classical region
above T,

The above results are easily reproduced within the
microscopic theory. However, a number of theoretical
objections can be raised against the proposed approxi-
mation scheme. To begin, the Hartree approximation
which we use in Eqs. (5) and (7) is a self-consistent
treatment of the first order in the perturbation theory
and will no longer be sufhcient at high superfluid
densities. In three dimensions the approximation is not
good close to the new (renormalized) critical tempera-
ture. In one and two dimensions, the present approxi-
mation gives no exact phase transition, but nevertheless,
one expects the first-order theory to be a poor approxi-
mation when the Cooper pair density becomes quite
large. This raises the more general question of the exis-
tence of an exact superconducting phase transition in
one and two dimensions. At the moment, the theoretical
situation on this equation is open" and only a number
of plausibility arguments can be invoked for either of the
two possible answers. The last objection which we men-
tion is the use of Bose statistics to describe a non-
equilibrium system of Cooper pairs. As well as the
previous assumptions, this approximation will become
worse at higher pair densities.

~ For a discussion, see M. Revzen, Phys. Rev. 185, 337 (1969)."A. Schmid, Physik Kondensierten Materie 5, 302 (1966).
"See, e.g. , K. D. Grobman, Phys. Rev. 182, 297 (1969),

and references therein.
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In the reniaining part. of this paper we shall conipare
the presented model with the experimental results on
thin films. The good agreement which is obtained
supports our belief that the model has significantly
extended the calculations of Aslamazov and Larkin, "
describing the electrical conductivity throughout the
superconducting phase transition.

In the present work, we are interested in the solutions
of the preceding equations applicable to thin films.
Equations (6) and (9) become

a+5(k2+k, r)+b(~ij ~')
exp —1, (10)

kgT

Ze2A8

8m@ (0)«

e.g. , Ref. 19(b)],

2(= [b/(a+b(1(4 I('))j"' (14)

which describes the range of the order in the system.
%ith decreasing temperature R becomes larger. To find
the temperature dependence of R below T„we express
Eq. (10) as

a+b((bead)')+bQ'=kd)T[ln(ebo""er e'«6 (&—(""22 )

ln(1 e
—4«6((p(')/)62)F) j (13)

Below T„(~jb~') is large and approximately equal to
a/b —In di. rty or moderately dirty metals bQ'/ksT»1

and one obtains

a+b(~ p ~

2) k Te+4 6o()b)dT6 (16)

The correction for film thickness is now similar to the
one introduced earlier"; the only difference is that the
range of the order comes in place of the coherence
length $(T). If we introduce the notation

(e( (12k

(11)
[a+b(

~
lk

~

')+b(k'+k, ') j'
1

G(x) = P — =- 1+—coth-
n=o j.+n2x2 2 x x

(17)

e2

0
16k« P(0) .-. a+b(~ik~r)+6k, r

(12)
a+b ( t

bead( 2)+b/p(0) +bk, r

The boundary condition is that the derivative of P
should vanish at the surface. Both the real and imaginary
parts of f can be expressed as Fourier series in cos(k r).
This leads to the possible k, values

k, = rrrr/d, (13)

where n is a positive integer (including zero).
The correction for finite film thickness takes a par-

ticularly simple form if we introduce the length [see,
~ P. G. de Gennes, Superconductivity of Meats and A/loys

(W. 2(t. Benjamin, Inc. , New York, 1966), Chap. 7.

where the film is assumed to be in the xy plane. Contrary
to previous work, " "we have also introduced the cutoff
momentum Q in the integrations. The justification for
this is that the GL theory contains only first-order
derivatives in the expression for free energy and is not
valid for very high q values. For superconductors the
highest value of q follows from the microscopic deriva-
tion of the GL theory, and is of order 1/$(0).00 The
introduction of the momentum cutoff Q= 1/$(0) in
Eq. (11) does not affect the result close to T, (6&0.1),
but acts to reduce the superHuid conductivity far above
the transition. The approach, however, is superQuous
for sufficiently large e (i.e. , e 1), where the GL expan-
sion itself is no longer a good approximation. After
integration, (11) becomes

Eq. (12) may be written

e2 7' 1
I

16bd r(0)( +b((0~')) ( d ) 1+20/2'(0)

e2 h' 47rbdc
0' exp

16bd 2mb Tb'(0) bb T) (19)

This form is correct in the limit bQ'»1; for bQ'&(1 the
factor Ar/2mksTP(0) would be absent,

2~ H. &chml. dt, Z. Phys)Ik 216, 336 (1968),

7r

XG—( (18)
«[(a+b(14 I'))/b+I/5'(0) j'"/—

For convenience we did not stop the summation over
k, at the maximum value Q. This introduces negligible
error, as long as «((T), since the first few terms in
the sum are by far the most important; for d&(f. (T) the
term in brackets may be replaced by unity. It can be
readily seen that the correction for finite film thickness
will have negligible e6ect on the result below T,. The
reason for this is apparent: The contribution to o-'

comes only from low k values and only the first term in
the k. sum is important as the range of order becomes
much larger than the film thickness. In computing the
value of o' from Eqs. (10) and (16), we can also neglect
the summation over k, in Eq. (10). The correction to
( ~ j~ i)2becomes important only for T) T„when
a»b(~b(d ~'), and then it does not change the result for
dr' in Eq. (11) or Eq. (18).

Finally, we give the asymptotic form of the conduc-
tivity for T«'1„
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TAsz.E I. Sample parameters. The method used to determine
~, and T, is discussed in Sec. V A.

Sample

I
II
III
IV
V
VI
VII
VIII
IX

Thickness fg

(L)

200
160
120
190
190
170
170
130
170

Oa

(0/sq)

107
203
350

1070
1444
4454
4741
5106
6010

Tc
('K)

2.155
2.188
2.325
2.174
2.123
1.817
1.900
1.775
1.980

10'ee

0.381
0.817
1.32
4.04
4.86

22.9
21.7
15.4
25.2

The analogs of Eqs. (6), (9), and (19) for the one-
and three-dimensional cases are given in Appendix A.

III. SAMPLE PREPARATION

The system chosen to experimentally challenge the
preceding model was that of thin, short mean-free-path
Al films. This system is particularly attractive because
of the ease and reproducibility with which films of
widely varying resistivities can be made. The films
were prepared according to the procedure of Abeles
et c/. ,

2' wherein Al is evaporated in the presence of
oxygen. Such films have been shown to be composed of
very small crystallites with dimensions & 100 A."
It has been shown theoretically by Parmenter" and
by Abeles, Cohen, and StowelP' that hypothetical
granular systems can be described by an eGective mean
free path, even though the resistance is dominated by
the tunneling barrier resistance between grains (or
crystallites). The effective transport mean free path is
given by t,« dt/(1 t), w——here d i—s the grain size and t

the transmission coeScient between grains, and is
related to the resistivity, as in ordinary metallic con-
duction, by (in the free-electron theory)

(pl, ii) '=-', E(0)ape', (2o)

where p is the resistivity, 1V(0) is the density of states
at the Fermi surface, and ep is the Fermi velocity.
While this result is strictly valid, within the approxi-
mations of the model, only for pp/, «)&1, where p p is the
momentum at the Fermi surface, critical magnetic field
measurements made on granular Al films" imply that
the effective mean-free-path representation is a good
approximation even when pp/, ff 1. In particular, it
was shown empirically that $=()ol,«)"2 even when

p p/ ff~ 1, a relation that is known to be valid when the
mean free path is determined by impurity scattering.
Therefore, when discussing the experimental results,
we shall assume that all of the samples studied can be
described by an eA'ective mean free path given by
p /, ff —const, and that the role of /, ff in terms of its

~' B.Abeles, R. W. Cohen, and G. W. Cullin, Phys. Rev. Letters
17, 632 (1966).' R. H. Parmenter, Phys. Rev. 154, 353 (1967).

~'B. Abeles, R. %. Cohen, and R. W. Stowell, Phys. Rev.
Letters 18, 902 {1967).

effect on superconducting properties is the same whether
its origin lies in impurity scattering or tunneling resist-
ance. We admit that this method is open to challenge
when p F/, ff (1;yet, as will be shown, the results appear
to be consistent with this assumption even for
Ppl. ii 0.1.

In the present study, thin films were evaporated
from aluminum-wetted tungsten wire sources onto room-
temperature glass substrates at oxygen pressures of
10 4 to 10 ' Torr. Evaporation rates were of the order
of 100 A/sec. The resistivity of the sample could be
controlled by the amount of Al evaporated, the oxygen
pressure, and the speed of evaporation. It was found
that for thin films (150 A or less) the resistance per
square could be increased appreciably by merely expos-
ing the sample to air for a period of days (or weeks). 's

Films prepared in this manner for the present study
ranged in resistance from 100 to 6000 0/sq.

After deposition the film was cut into a rectangular
zigzag pattern with a sharp tungsten needle mounted
on a precision micromanipulator. This provided a
sample with a large length to width ratio and corre-
spondingly a large, easily measurable resistance. In
general, the samples were constrained to areas smaller
than 1 cm square in order to reduce the possibility of
thickness variations due to evaporation source asym-
metry or other causes. (For some of the "cleaner"
samples, larger areas were required in order to provide
enough sample resistance for accurate measurement at
low currents. ) An auxiliary benefit of the trimming
operation was the presumed elimination of tapered
edges, which always result from using evaporation
masks to define geometries.

Film thicknesses which ranged 100—200 A were
measured with a Tolansky interferometer to an accuracy
of &20 A. More accurate film thickness measurements
were unnecessary since the film thickness does not enter
the theory except through a small corrective term Lthe
quantity G in Eq. (16)j, this term being completely
unimportant in the region of interest T& T,.

IV. EXPERIMENTAL METHOD

The resistance of the Al samples was measured in the
temperature range 4.2—1.07'K by measuring the voltage
across the sample in the presence of a constant measur-
ing current. In the range 10 pV—2 V, the voltage was
measured to within 0.1 pV with a Leeds and Northrup
K-5 potentiometer. Lower voltages (0.05—10 yV) were
measured with a Keithley 1508 microvoltmeter. A
heavy-duty 12-V automobile battery provided a mea-
suring current which was constant to within one part in
105. The measuring current densities ranged2 —20A/cm2.
It was found that within this range (typically 0.5—5 tiA,
depending on the sample and temperature) the resist-

~ This method of achieving higher resistances has also been
used by Strongin and co-workers, e.g., Ref. 17, and M. Strongin,
O. F. Kammerer, and A. Paskin, Phys. Rev. Letters 14, 949
(1965).
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ance of the sample was ohmic and the result inde-

pendent of measuring current; the measuring currents
were, nonetheless, large enough to avoid the possible
influence from noise currents generated by room-

temperature circuitry. All measurements were made
inside a copper-screened room to eliminate possible
noise problems from external sources.

The temperature of the samples, which were im-

mersed in liquid helium, was determined from a carbon
resistance thermometer placed in close proximity to the
sample. The carbon thermometer was calibrated in

each run against the vapor pressure of the helium bath.
The temperature was controlled with a planar dia-

phragm manostat which was inserted in the pumping
line to the Dewar. Regulated in this manner, the tem-
perature was stable to approximately five parts in 10'
in the normal helium range and one part in 10' in the
superfluid range.

Since, as will be shown below, small magnetic fields
were found to influence the sample behavior, it was
necessary to provide magnetic shielding. The samples
were mounted on a Formica insert and kept at least
10 in. away from the nearest metal support. The glass
Dewar itself was placed inside a 4)&10-in. cylindrical
magnetic shield which reduced the earth's field to less
than 10 ' Oe. A copper solenoid magnet shrouded the
Dewar inside the shield and could be used to provide
small fields longitudinal to the Dewar's axis. The
magnetic field inside the Dewar was measured before
each run with a Hewlett Packard model 4283 milliam-
meter equipped with a Model 3529A magnetometer
probe. The field longitudinal to the Dewar axis could
be reduced to less than 2X10 4 Oe by applying small
currents through the magnet.

The samples were mounted with the sample surface
normal to the Dewar axis. Perpendicular magnetic fields
could be applied with the solenoid in order to study the
effect of field on the measured resistivity. Because of the
small sample area, field uniformity was not a problem.
The applied fields were kept deliberately small (less
than 10 Oe) to avoid inducing a magnetic moment in
the shield.

In order to fix the value of normal resistance and to
examine the "semiconducting" behavior exhibited by
the samples above T, (see Sec. V C), resistance measure-
ments were taken in the range 4.2—20 K for some of the
samples. In these instances the samples were run inside
a copper vacuum can immersed in liquid helium. An
Advance wire heater was used to raise the sample tem-
perature to 20'K. The temperature measurement in
this range was provided by a carbon resistance thermom-
eter which was calibrated in the liquid-helium range
against the vapor pressure of helium and at approxi-
mately 20'K against the boiling point of liquid hydro-
gen. Temperatures between 4 and 20'K were deter-
mined using a standard-resistance —versus —temperature
relation known to hold for the type of resistor used.

K

Q -8t-
R,"= 4454Q/o

-IO—

-l2—

-l4-

L4 1.6 l.8 2.0 2.2 2.4 2.6 2.8 30
T ('K)

FIG. 1. Natural logarithm of resistance versus temperature for
sample VI. Solid line: plot of Eq. (18) (which simplihes to Eq.
(19) for T«T,j, with Rp" =4454 0/sq and T,= 1.817'K.

Nine Al samples, prepared in the manner discussed
in Sec. III and having the parameters listed in
Table I, were used in the study. As seen from the Table
the T,'s of the films varied and were always larger than
the T, of bulk Al. This is not a new result; the enhance-
ment of T, in such granular (or amorphous) films has
been discussed extensively. "This provides no problem
in the present study, if we assume, as we shall below,
that the BCS law of corresponding states holds for the
hlms, which allows one to scale the relevant parameters
according to T..

A. T & T,

In order to test the model presented in Sec. II, in
particular, Eqs. (10) and (11), the full resistive transi-
tions of the samples were measured. The results for two
extremely short mean-free-path samples are shown in
Fig. 1 and Fig. 2, and those for a relatively clean sample
in Fig. 3. The log plots tend to deemphasize the
Aslamazov-Larkin (AL) region (T)&T,) in favor of the
region T& T„which is the region. of particular interest
in the present study.

The solid curves are plots of Eq. (11) Lsolved to-
gether with Eq. (10)$. The thickness correction is

~ See, e.g. , Refs. 25, 26, 28; R. Hilsch, Eon-Crystalline Solids,
edited by V. D. Freschette (John %'iley & Sons, Inc. , New York,
1958); M. Strongin, O. F. Kammerer, J. E. Crow, R. D. Parks,
D. H. Douglass, Jr., and M. A. Jensen, Phys. Rev. Letters 21,
1320 (1968); J. W. Garland, K. H. Bennemann, and F. M,
Mueller, Phys. Rev. Letters 21, 1315 (1968),

A check on this procedure was obtained by comparing
the resistor with a germanium thermometer in the
range 4—10'K.

7. EXPERIMENTAL RESULTS
AND DISCUSSION
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-2—

-4—

-6—

-8—
M= IQ2

D

-IO

I

12
I 0 Oe

-14-
CI k

below T,. The values of e, for the nine samples studied,
which were extracted from theoretical fits to the data
such as those shown in Figs. 1—3, are listed in Table I
and plotted as a function of R~" in Fig. 4. The fact
that the straight-line fit to the data has a slope of
unity confirms the predicted linear dependence of e,
on R~". The equation of the line corresponds to

=0.40/ 10 ' R&". The parameter &, can be expressed
using the microscopic values for the constants in the
GL free energy expansion. 's Introducing b = ttt'/2m,

a =b(T—T.)/T. e(0),
$(0) =0.8&(tel tt)' and b=1 02A.: /lkkrl, tt'm, where llr is
the electron density, gives

4I
I

OIO 0

1.2 1.4 1.6 1.8 2.0 22
T ('K)

2.4 26 2.8 3.0 32

I'I(:. 2. Resistive transition for sample VIII measured in
"zero" magnetic field I &2 /10 4 Oe] and in applied perpendicular
fields. Solid line: plot of Eq. (18) with Rz"=5106 f)/sq and
T,=0.1775'K.

mvk (1.04X10 ')

Xe'l, fg($

Finally, using LEq. (20)],

(23)

(24)

negligibly small for T& T, and Eq. (17) is adequate to
treat the classical region, corresPonding to In(Rtj/Rck")
& —3 (Rck is the resistance per square and n refers to
the normal state), which spans a sizable fraction of the
measured curves. Equation (19) can be expressed in the
more useful form

e'-' cTc
(T' ==—— exp

lkkk2 k,rk'(tl), T)
(21)

where e„=ebkkkT, , /4trbkla

Two adjustable parameters were used in fitting the
theoretical curves in Figs. 1—3 (and the corresponding
curves for the other samples). These were T, and e., .

which were chosen to give the best agreement in the
exponential region. Changing T. has the effect of trans-
lating the entire curve horizontally, while changing
e, has the effect of changing the slope of the curve in
the exponential region. The T, s determined in this
manner were in reasonable agreement with those
determined by fitting the data to the theory in the
Aslamazov-Larkin region above T, (see Sec. V C).

The crucial test of the theory in the region T(T,
below T, reduces to that of demonstrating that the
absolute magnitude of ~, and the functional dependence
of e, on R~" are consistent with the theoretical pre-
dictions LEq. (21)]. For a'))o we have o'=1/p, so
that we may write
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one obtains ~,=1.04X10 'R~", which is about 2.6
times the value determined from experiment. In view
of this discrepancy, it should be noted that the ex-
pression for e. below T,

l Eq. (23)] contains a number of
material constants, in contrast to the expression above
T. (o.'=e'/16hd). We have eliminated the constants by
use of Eq. (24), which might not be a good approxima-
tion for the amorphous Al films. A similar difficulty was
encountered in the study by Abeles et al. ,

27 in which the
value of pl, ff determined from upper critical magnetic
field measurements on granular Al fi]ms was at least a

ecT

d on (Ro/Rck") ] T.

dT
(22)

FIG. 3. Resistive transition for sample II measured in zero tkeld
and in applied perpendicular fields. Solid line: plot of Eq. (18)
with Rg"= 202.6 0/sq and T,=2.188'K.

which gives the slope of the resistance tail in the region "See, e.g. , A. I.. Fetter and P. C. Hohenberg, in Superconduc-well below T.. The measurement of this sloPe Provides /ivi~y, edited by R. D. parks (Marcel Degker, Inc. , New borg,
@ t.-onvenient test of the theory in the classical region 1969),~p. 872,
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factor of 2 greater than the value determined from
Eq. (24)"

In summarizing the above results, we note that the
experimental results below T, are in excellent agree-
rnent with the model in terms of confirming the pre-
dicted temperature dependence of 0-' and the functional
dependence of 0' on sample parameters. There remains
the discrepancy in the absolute magnitude of e, (see
Xote added in proof)

As seen in Figs. 1 and 3, the presence of a sma, ll

perpendicular magnetic field leads to a severe distor-
tion of the resistive tail. It was determined that the
magnetoresistance is ohmic and, at temperatures for
which R~)R (i.e., where the magnetoresistive tail is
well separated from the zero-field tail in Fig. 1 or
3), linear with field. These properties of the magneto-
resistance suggest that it results from current-induced
vortex low."In addition, it was found that for currents
much larger than those used in the experiment a
V~12 component appeared in the voltage (in the
absence of field), which is expected in the flux flow state,
when it is the field associated with the current, which
produces the vortex state. The fact that flux flow is
observed for perpendicular magnetic fields as small as
1 Oe and current densities as small as 10 At'cm' in such
samples is not surprising. The field at which vortices
enter (H, i) is expected to be vanishingly small in such
thin, short mean-free-path samples"; the small depin-
ning currents result presumably from the fact that
the scale of the inhomogeneities which act as pinning
sites is small compared to the size of the vortex core"

&(T), the size of the region over which the order
parameter is depressedj. This is distinctly different
than the situation in clean films or bulk materials, where
the crystallite size is usually much larger than &(T).
A more complete report on Aux-flow phenomena in. such
granular systems will be published elsewhere. '4 These
observations are relevant to the present study only in
that they document the need for canceling the earth' s
magnetic field in the experiments.

Sample inhomogeneity can also lead to anomalous
tail broadening, which appears, in plots like those of
Figs. 1 or 3, very much like the field-induced anomalies
(e.g. , Fig. 1 of Ref. 19b), except that it is relatively
insensitive to magnetic field and does not vanish in the
absence of field. While magnetoresistance (for
H & 2&(10 4 Oe) and sample inhomogeneity posed no

"Note that there is an error in the value of /, ff used in Ref. 27,
which reflects the same error in earlier sources (e.g. , Ref. 13 of
Ref. 27). The value of pl, ff for Al, based upon the measured values
of the electronic specific-heat constant t N. E. Phillips, Phys. Rev.
114, 676 (1959)j, and the Fermi velocity from anomalous skin
effect measurements |E. Fawcett, in The Eer~ni Surface, edited by
W. A. Harrison and M. B. Webb (John Wiley 8z Sons. , Inc. ,
New York, 1961), p. 197j, is pl, @=0.42X10 " 0 cm2, approxi-
mately four times smaller than the value used in Ref. 27."For a review of flux flow in superconductors, see Y. B. Kim
and M. J. Stephen, in Superconductivity, edited by R. D. Parks
(Marcel Dekker, Inc. , New York, 1969), p. 1107.~ See, e.g. , Ref. 30, p. 845."P.Horn, K. E. Masker, and R. D. Parks {tobe published).
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FH:. 4. Circles: Rg" versus the parameter e, for the nine samples
whose parameters are listed in Table I; the values of ~, are ex-
tracted from the best theoretical 6ts to the R-versus-T data
t e.g. , see Figs. 1—3].Solid line: best straight-line fit to the data.

problems, in the study of the sampl. es reported in
Table I, they represented serious obstacles in the study
of cleaner samples (e.g. , Ro"&10 fi/sq), because of the
extremely rapid drop oR of resistance in such samples.
The resistive transitions in such samples were com-
pletely dominated by these deleterious eRects.

C. T & T,
(Aslamazov-Larkin Regime)

The experimental investigation of the Al. regime
poses special problems not encountered in. the T&T,
studies. The most serious of these is the extreme sensi-
tivity of the excess conductivity on the normal resist-
ance. A complicating aspect encountered in granular
Al films (or amorphous films prepared at cryogenic
temperatures) is the semiconducting behavior exhibited
by such samples. For example, all of the samples used
in the present study (Table I) exhibited small negative
coeScients of resistance above T,. This, which is not a
new result, " arises presumably from the temperature-
dependent electron tunneling between Al grains sepa-
rated by oxide."This behavior is shown in Fig. 5, where
the temperature dependence up to 20'K is shown for

"See, e.g. , O. F. Kammerer, D. H. Douglass, and M. Strongin,
Bull. Am. Phys. Soc. 12, 417 (1967).

g6 See, e.g. , Neubauer and R. H. Wilson, in Basic Problefns in
Thin Flm Physics, edited by R. Neidermayer and H. Mayer
(Vandenhoeck R Ruprecht, Gottingen, 1966), p. 579.

B. T T,

%hile the agreement between the model and experi-
rnent is remarkably good in the region below T„ it is
clear from Figs. 1—3 that the agreement is less good in
the immediate vicinity of T,. The mismatch between
experiment and theory in the critical region seems to
diRer somewhat from sample to sample even though
the sample parameters are quite similar (e.g. , Figs. 1
and 2), thus suggesting that at least. part of the problem
might lie in the experiment.
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l200 TABLE II. Illustration of semiconducting behavior above T, for
three representative samples.

IOOO—

800—

CD

Tc = 2.174 K

R~ - l07'OQ&a

Sample

II
IV
VIII

E.o"(T,)
(0//sq)

203
1070
5106

o"(10')—Eo"(20')
&o"(10 )

0.000452
0.0109
0.0355

6 8 iO

T~)

FIG. 5. Plot of resistance versus temperature for a representative
sample, which reveals semiconducting behavior above T,. Solid
line: best 6t to the data.

sample IV, which has an intermediate value of Eo".
The dependence of this semiconductivity on the mean
free path is illustrated in Table II, where the diff'erence
between Ro"(20') and Ro"(10') is shown for three
samples which span a large range of Eo". Despite the
semiconducting behavior, it is possible to choose a
value of Ro" which is correct to within 1 or 2%%uo.

This uncertainty is inconsequential in the theory for
T&T. or in plots such as those in Figs. 1—3 which
deemphasize the AL region, but is of crucial importance
when determining a' for T»T, .

Taking the lead of other investigators "' ' we
could force the data into the Curie-Weiss fit predicted
by AL, i.e.,

a'=a a„=r—oT,/(T T,), —(25)

by treating both T. and a„as arbitrary (constant)
parameters, and then determine if Tp 1' =Tp .' Doing
this we obtain, as did Strongin and co-workers, "reason-
able agreement with the AL theory for Al films with
R&"&3000 0/sq. For cleaner Al samples the excess
conductivity, determined in this way, is larger than that
predicted by AL, the discrepancy growing with increas-
ing mean free path (e.g. , for Ro"——100 0/sq, ro'*~'

4ro"L). These results would seem to indicate (1)
the breakdown of the AL theory for clean Al, or (2)
sample inhomogeneity. The fact that our results on
clean Al films have been corroborated in a second
laboratory, ' and that the behavior of the cleaner
samples used in the above study agrees with theory in
the classical region below T„but not in the AL region,
tends to support the former hypothesis. Since the
T&)T, study requires further experimental work be-
cause of the special problems associated with the AL
region, as well as being not directly relevant to the main
theme of this paper, a full report on it will be published
separately.
"It is possible to test the temperature dependence predicted

by Aslamozov-Larkin only if T, or Eo", or both, can be accurately
measured.

'8 J. E. Crow and M. Strongin (private communication).

VI. SUMMARY

The theory of conductivity in superconductors has
been extended from the classical region above T,
(AL region) to include the complete transition region.
The approach was to calculate the superfluid density
and excitation lifetime within the GL formalism, in-
cluding the fourth-order term, which represents an
interaction between superfluid excitations. The result
for conductivity simplifies to the AL result for T)&T,
and gives strikingly diferent results for diferent dimen-
sionalities in the classical region below T, : for one-
dimension, 0.'~ —e', for two-dimensions, 0-'~e '~'",
where e=(T T,)/T, —and e, is a sample-dependent
parameter; and for infinite three-dimensional samples,
a

' = ~ for T& T,* (thermodynamic fluctuations are
manifested only as a small shift in T, to a lower value
T,*).

Experimental results on the electrical conductivity
of short, mean-free-path two-dimensional Al films which
span a large range of resistivities are in reasonable agree-
ment with the model in the region below T,. Experi-
mental results on extremely short mean-free-path Al
films in the region above T, are in reasonable agreement
with the AL (or present) theory; however, the excess
conductivity exhibited by moderately clean Al films
is larger than expected. Further work on long mean-
free-path films is in progress.

iVote added in proof We have .recently become aware
of the size-effect work of I. Holwech and J. Jeppesen
/Phil. Mag. 15, 217 (1967)$ which leads to the value
pl=0.82X10 "0 cm' for Al at 4.2'K, which is approxi-
mately twice the value determined from a free-electron
calculation. If the parameters a and b in Eq. (21) are
evaluated in terms of the thermodynamic critical field
and the (l-dependent) coherence length of bulk Al,
instead of free-electron parameters, and if l is elimi-
nated in favor of p (or Ro") by using the Holwech and
Jeppesen result above, this leads to e, =0.43&(10 ' Ro"
instead of ~,=1.04X10 ' Eo" and the factor of 2.6
discrepancy between experiment and theory discussed
in Sec. V A is reduced to 1.1. This, rather than closing
the question of a possible discrepancy, elucidates the
fact that the value of e, is sensitive to ma, terial
constants.
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APPENDIX A: ELECTRICAL CONDUCTIVITY IN
ONE AND THREE DIMENSIONS

In this Appendix we list the results for superfIuid

density and superQuid conductivity in one and three
dimensions. " In one dimension the solutions corre-

sponding to Eqs. (6), (9), and (17) are straightforward
and read as follows:

kpT

~1:b(&+b&141')))'"

bQ2 I /2

)&tan ' (Ai)
+b&l~l'&

bQ2 1/2-

stan ' (A4)
o+b &141')

This equation has a solution with a+b& I&I'& different

from zero only if T is larger than the new critical tern-

perature T,*. When T= T,*, a+b&I PI'& =0; this is
the point of Bose-Einstein condensation and below this
point the superfluid density has the same form as in the
mean-field theory without fluctuations. The shift in
the critical point is given by

k/r Tb& (0)
AT, =T,—T,*=T,

47r'8

me'PI'

16AA p(0) (/s+b(lip I'))"'

The conductivity is infinite below the new critical
(A2) point and above the critical point is given by

or, below T„ I

328(0) L2~(~+b&141'))3"'
(A6)

tre'bsl al' 1.71X10' eL '
0 (A3)

2AAP(0)b'k Tess AP(0)

where A is the cross-sectional area of the sample, L is
the length, and R" is the normal resistance in ohms.
The results are insensitive to the value of the momentum
cutofI' and the form of the theory for high q values, and
are expected to be a very good approximation. The
resistanc e-producing mechanism described here is
entirely different from and independent of the one
proposed for one-dimensional systems by I.anger and
Ambegaokar, ' which leads to an exponential rather
than cubic dependence of fT' on ~.~

The situation is more complicated in three dimensions.
First we have to distinguish between two qualitatively
different situations: an infinite 3-D system and a
3-D system of finite size. In the latter case, one may not
replace the summation over k by integration. For the
infinite 3-D case the first-order correction is insufFicient
close to T,. Nevertheless, we give the results since they

'9 Throughout this paper the dimensionality of the quantities
( ~f ls) and b changes according to the number oi dimensions of the
system. The 3-D numerical value for b must be divided by the
sample thickness for the two-dimensional case or the sample cross
section in the case of one dimension.

We believe that for temperatures close to T, where the long-
range order is incomplete, the present model is applicable. It is
possible that at sufliciently low temperatures long-range order
prevails and the mechanism proposed by I.anger and Ambegaokar
is the dominant loss mechanism in one dimension. However,
whether exact long-range order appears at any temperature in
one- or two-dimensional systems is an open question, and one that
is intimately related to the discussion of the validity of the
approximations used in the present model, given in Sec. II.

Experimentally, this situation is indistinguishable from
the result of the linearized theory. " "

In the case when one, two, or three dimensions are
finite, we must retain the summation over k. In this
case the superQuid conductivity below the transition
is no longer perfect. For example, if the sample is a
cube of side L, we have

(A7)

~e'h, l
(AS)

S~ts(0)Ls a L~+bk'+b&I41'&jr

ol
Ls(a+b & I

i'll

s&)

(I+I') = a/b k//T/L'r/, — —

(A9)

(A10)

and for —e((e, (retaining only the first term in the
summation),

kgT

alld

01
S e(0)L'(+b(lal'))-'

~e'h5 a'L'

SmP(0) b'k 'Ts

In the dirty limit the last equation reduces to

a' =0.7 2 (m'Lsk//Tt///ks) o „.

(A11)

(A12)

(A13)
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APPENDIX B: SPECIFIC HEAT AT THE
SUPERCONDUCTING TRANSITION
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The central result is then this en t e partition function
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