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Thermal conductivity measurements are reported for both the normal and superconducting states of
pure Th and Th-Gd alloys. The pure Th results show significant deviations from the Bardeen-Rickayzen-
Tewordt theory, but these deviations are consistent with the observed anisotropy of the energy gap. Mea-
surements for the Th-Gd alloys agree well with the theory of Ambegaokar and Griffin for paramagnetic-

impurity-doped superconductors.

INTRODUCTION

HE equilibrium properties of superconductors
containing magnetic impurities have been studied
in considerable detail,! but the transport properties
have received much less attention. Detailed theoretical
work on this problem has been carried out by
Ambegaokar and Griffin? and by Gruenberg,?® but as
vet the only experimental work has dealt with related
problems for thin films and surface phenomena. Experi-
ments by Mochel and Parks* and by Smith and
Ginsberg® confirmed the general features of the trans-
port theory for the case of nonmagnetic impurity-doped
thin films in an external field and another experiment
by Deutscher, Lindenfeld, and McConnell® confirmed
the theory for the proximity effect. Although these
problems differ from the magnetic impurity case in
some ways, there is a strong formal resemblance.” The
object of this work is to study the transport properties
of bulk superconductors doped with paramagnetic
impurities.

In this paper we report thermal conductivity mea-
surements as a function of temperature and impurity
concentration for superconducting Th doped with the
magnetic impurity Gd. This alloy system is especially
well suited for these studies because pure Th is a weak
coupling superconductor, the magnetic impurities are
paramagnetic, and the alloys are type-1 supercon-
ductors over most of the range of interest. In addi-
tion, the equilibrium properties have been studied in
detail.®

* Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission, Contribution No. 2536.
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EXPERIMENT
Sample Preparation

Both of the Th-Gd samples reported here are the
same samples used for the earlier critical-field work,?
and a detailed account of their preparation was given
in that publication. The pure-Th samples used for the
critical-field work, unfortunately, was not suitable for
these transport measurements because the resistivity
was so low that the scattering of electrons by phonons
would be an important factor. It is much easier to
unravel thermal conductivity results in metals if the
electrons are scattered predominantly by impurities.
Hence we selected a “nominally” pure Th sample with
sufficient nonmagnetic impurities to ensure that the
scattering of electrons by phonons would not be im-
portant. This sample was prepared in exactly the same
way as the Th-Gd alloys.

Thermometry

A temperature scale was established by calibrating a
Ge resistance thermometer in a separate experiment.
He* vapor pressures were used as the primary standard
in the region above 1.2°K, and below this temperature
the susceptibility of chrome methylamine alum was
used as the standard. Corrections to the Curie law for
the chrome methylamine alum were taken from the
theory of Hebb and Purcell as described previously.®
Precision in these temperature measurements is better
than 0.001°K but there may be larger systematic errors
due to the uncertainties in the corrections to the Curie
law for the salt susceptibility. The Ge resistor was then
used to calibrate the Speer C resistors on each thermal
conductivity run.

Experimental Equipment

Temperatures from 4.2 to 0.3°K were maintained
with a conventional He® refrigerator shown in Fig. 1.
A He! evaporator (A), a He?® evaporator (B), and the
thermal conductivity apparatus were all enclosed in a
common vacuum space which was submerged in a He*
bath at 4.2°K. Under ordinary operating conditions,

( ) Dj K. Finnemore and D. E. Mapother, Phys. Rev. 140, A507
1965).

723



724 R. L. CAPPELLETTI

Fi16. 1. Cryostat assembly. A is the He*
reservoir; B is the He? reservoir; C is the
epoxy seal; D is the cold sink; E is the
sample; F is the high-temperature thermom-
eter; G is the heater; H is the heat shield;
and J is the He! needle valve.

the He* evaporator was filled from the surrounding
bath through a needle valve (J) and the He? evaporator
was filled with approximately 1 liquid cm? of He® by
letting gas into the main pumping line. Once these
reservoirs were filled, the refrigerator was set for a full
day of operation. Temperature control was accom-
plished by throttling the He® pumping speed to give a
few uW of cooling power at the temperature desired
and this cooling power was then automatically balanced
by a thermometer controlled heater. Drifting thermal
emf’s were the main problem in temperature control,
but by packaging most of the low-level circuitry in an
adiabatic environment and by the use of continuous
leads and low-thermal solder, the drift rate was reduced
to 0.5 uV/h. Temperatures below 1°K could then be
controlled to 1075°K for periods up to 1 h.

Heat leaks into the sample region were reduced by a
number of precautions. Light traps were used to block
the radiation from room temperature. All electrical
leads passed directly through the He? bath and entered
the vacuum space through an epoxy seal. These leads
were then thermally anchored to the He! evaporator,
and the He® evaporator, and the sample clamps with
GE-7031 varnish. All leads between the last thermal
sink and the thermometers consisted of 5-in. lengths
of No. 44 Manganin wire. Calculations indicate that
the error in the thermal conductivity measurements
due to heat conduction and heat generated in the leads
was never greater than 0.19,. One voltage lead to the
sample heater was connected to the thermal sink end.
This arrangement accounts for the joule heating in the
lead wires to a few parts in 104,

The sample clamps (F) shown in Fig. 1 were made
from free-machining Te-Cu. A thin coat of Apiezon-N
grease was applied where contact was made to the
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sample. Each of the resistors was also greased and fitted
into a hole in the appropriate clamp. As a further
precaution, each electrical lead to the thermometers
was thermally anchored to the clamp by soldering the
leads to Cu sheets which were then glued, over elec-
trically insulating cigarette paper, to the clamp with
GE-7031 varnish. Such anchoring is especially im-
portant for the Ge thermometer because the encap-
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I16. 2. Thermal conductivity of a nominally-pure-Th sample
with a resistivity ratio of 26. Open circles are normal-state data,
and the solid circles are superconducting-state data.

sulating case is not in good thermal contact with the
Ge.

A Guildline potentiometer and galvanometer ampli-
fier with a sensitivity of 1078 V was used to measure
voltages. The thermometer measuring currents, usually
1 pA, were supplied by Hg cells. The precision in mea-
suring the temperature drop across the sample was
better than 0.19,.

Experimental Procedure

A steady-state method was used to measure the
thermal conductivity, K. Heater power P, was applied
at the lower end of the sample and the resulting tem-
perature gradient was measured by the Ge resistor GR
at the cold end and a Speer carbon resistor at the hot
end R;. Another Speer carbon resistor R,, which had
nearly the same resistance temperature curve as Ry,
was placed at the cold end to facilitate the temperature
gradient AT determination. In the course of a thermal-
conductivity measurement, GR and R, were held fixed
as P, was increased and the difference R.—Ry=AR
was measured directly by placing R, and R, in two
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arms of the Wheatstone bridge. This direct measure-
ment of AR gives much better precision than the
alternate method of measuring R. and R, separately
and subtracting these two quantities. Both methods
were tried; the former gave a precision four times
better. R, was then calibrated against GR with zero
heater power at each thermal conductivity point and
this calibration was then fit to a function of the form

n==6
InT=Y Qnln(Ry)™".

n=1

1)

The fit to this equation is good to 3 mdeg over the
entire range. The temperature of the cold end T, was
determined from GR. The temperature increment AT
was determined from the measured value of AR and
the smooth curve, Eq. (1) ; and the average temperature
of the sample T, was taken to be

Ty=Tnt+3AT.

The length / and cross-sectional area 4 of the sample
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F1c. 3. Ratio of the superconducting to normal-state electronic
thermal conductivity of thorium. Triangles, raw data, assume no
phonon contribution. Open circles assume a dislocation scattering-
limited phonon contribution, and the solid circles assume both
dislocation and electron scattering of the phonons.

were determined with a traveling microscope and
micrometer. The thermal conductivity is then given by

K(T.)=(l/A)P,/AT.

AT was kept small enough in each measurement
(AT/T~0.05), so that this equation is estimated to
represent the thermal conductivity to within 0.5%,.

To measure the magnetic-field dependence of the
thermal conductivity, P, is adjusted to maintain
constant AT during the superconducting to normal
phase transition. K(H)/K(0) is then given by the
ratio of the respective heater powers, and errors in
determining AT cancel. Hence, the ratio of the super-
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conducting thermal conductivity K, to the normal
thermal conductivity K, is more accurately measured

than either K, or K ,.

RESULTS AND DISCUSSION
Pure Th

Figure 2 shows the thermal conductivity data for
pure Th in both the superconducting (solid circles)
and normal (open circles) states. At low temperatures,
the normal-state conductivity has nearly a linear tem-
perature dependence, as would be expected if the
electrons were the dominant heat carrier and the
electronic mean free path were limited by impurity
scattering. The Lorenz number derived from these
data, and the measured electrical resistivity p=0.625
u cm is 2.3X107% W Q/K?, in good agreement with
the elementary theory. Uncertainty in this number
arises primarily in the determination of the length-to-
area ratio for the sample. Above 1.6°K, K, data show
a slight upward curvature, indicating a small phonon
contribution, but these data do not cover a wide enough
temperature range to clearly establish the temperature
dependence of the phonon term. Thermal conductivity
measurements on similar Th samples at higher tem-
peratures'® also confirm that the lattice term should be
small. For this particular specimen, the sample size
(0.1 mm) and the grain size (0.01 mm) are large, so
we have assumed that dislocations and normal electrons
are the dominant scattering centers for phonons. Both
of these mechanisms are expected!! to give phonon
conductivities which vary as 72, so the K, data have
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Fi16. 4. Thermal conductivity of Th 0.1 at.9%, Gd. The solid
line is the Wiedemann-Franz law for a Lorenz number of 2.5X 108
WK™
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been fit Lo an equation of the form
K.=AT+BT?,

where 4 and B are constants. AT is then interpreted
as the normal electronic conductivity (K..) and BT?
is interpreted as the normal lattice conductivity (K ).
A least-squares fit to the data gives 4=36.57 mW/cm
K? and B=0.514 mW/cm K3 so it appears that K.,
dominates for temperatures below 1.4°K.

Transitions from the normal to the superconducting
state are sharp and agree with the magnetization mea-
surements of Decker.® All the normal-state data
reported here were taken in fields of 200 Oe or less, so
that there would be no difficulty from the magneto-
resistance of the C and Ge resistors. The transition
temperature of 1.360°K, which was determined from
the measured resistivity and a curve of the depression
of T.,? is in good agreement with the extrapolation of
the thermal conductivity data.

A comparison of the superconducting-state data with
the theory is somewhat complicated because the phonon
conductivity K, is not necessarily as small as it is in
the normal state. If dislocation scattering completely
dominates the lattice conductivity, then the phonon
term will be the same in both the superconducting and
normal states. If, however, electron scattering of
phonons is also important, then this contribution to
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Fic. 5. Thermal conductivity of Th 0.2 at.9, Gd. The solid
line is the Wiedemann-Franz law for a Lorenz number of 2.6 <1078
WQ K2
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the conductivity is expected to be larger by the R,
factor given by the theory of Bardeen, Rickayzen, and
Tewordt (BRT).! There is no way to reliably separate
these contributions, so a unique analysis of the results
is impossible. Hence the procedure adopted here is to
analyze the data for two extreme cases in order to desig-
nate the region where the electronic conductivity lies.

An upper bound on the superconducting electronic
conductivity K., would be set by the assumption that
the phonon conductivity is completely dominated by
dislocation scattering. For this case, K =K o= BT?
and the superconducting electronic conductivity can
be obtained by the subtraction

K.=K,—BT".

A plot of the resulting data in the form K./K., is
shown by the open circles of Fig. 3. For this sample, the
phonon conductivity is so small that its subtraction
makes very little difference. We have K o;/K ;n=K /K »
to an accuracy of better than 19,. The K,/K , data are
shown as the open triangles for comparison. These
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F16. 6. Comparison of pure Th with the Th-Gd alloys. At high
temperatures the alloy data lie below pure Th, and at low tem-
peratures they lie above the pure-Th data.

data all lie well above the BRT predictions,® but this
sort of behavior is to be expected for a superconductor
with an anisotropic energy gap. At present, the values
of the energy gap in various directions are not known,
but recent measurements!? of the depression of 7. in
Th-C alloys indicate a mean-square-gap anisotropy of
0.021. This means that the gap varies from about 3.0
to 4.0kT. for different directions in the crystal. As was
discussed by Burkbuchler, Markowitz, and Reynolds,"

13 J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113,
982 (1959).

4 F. V. Burkbuchler, D. Markowitz, and C. A. Reynolds, Phys.
Rey. 175, 556 (1968).
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those portions of the Fermi surface with small gap
tend to dominate the thermal conductivity at low
temperatures, so one would expect K ,,/K ., to lie above
the BRT curve. To make a qualitative comparison
with the data, we have scaled the BCS energy gap by
various constant factors and have calculated a family
of thermal conductivity curves within the BRT frame-
work. The best fit, shown by the dashed line of Fig. 3,
occurs for 2A,(0)=3.15kT .. This isotropic-gap descrip-
tion overestimates the thermal conductivity at high
reduced temperatures and underestimates it at low
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F16. 7. Comparison of Th 0.1 at.9; Gd data with AG theory.

temperatures. Such behavior is not surprising since gap
anisotropy would be expected to produce a stronger
effect at low temperatures where regions of small gap
are relatively more heavily populated with thermal
excitations. A more detailed analysis must await direct
measurements of the gap anisotropy.

A lower bound for K, at low temperature is probably
set by the BRT thermal conductivity.!® Ordinarily, a
superconductor with an average energy gap of 3.53kT. 8
and a mean-squares anisotropy of 0.021 would be
expected to have an electronic conductivity somewhat
larger than the theory.® To gain further insight into
these results, we have made several assumptions about
the various contributions to the conductivity and have
calculated a lower bound curve shown by the solid dots
of Fig. 3. The assumptions are: (1) The phonon con-
ductivity limited by dislocation scattering is the same
in the superconducting and normal states. (2) The
phonon conductivity limited by electron scattering in
the superconducting state is related to that in the
normal state by the BRT factor R,. (3) The two-phonon
resistivity terms are additive. With these assumptions,
one can force the K, data to fit BRT at one temperature
and then calculate K, for all other temperatures. The
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F16. 8. Comparison of Th 0.2 at.9; Gd data with AG theory.

solid data of Fig. 3 represent such a calculation where
the data have been forced to fit BRT at the lowest
temperature 7=0.367°K. At all other temperatures
the fit to BRT is rather good, although the data lie
somewhat above the theory. The important point here
is that the K,.,/K .. data lie above the BRT theory for
reasonable assumptions about the phonon contribution.

Th-Gd Alloys

Figures 4 and 5 show the superconducting and
normal-state data for Th 0.10 at.9, Gd and Th 0.20
at.9% Gd. The solid lines on each of these figures
represent the Wiedemann-Franz law contributions for
Lorenz numbers of 2.5X 1078 and 2.6X 1078 W Q K2
respectively. Again, the uncertainties arise primarily
from the determination of the length-to-area ratio.

The small upward deviations from linear behavior
indicate that the phonon contribution is about the same
size as in the pure-Th sample. In the analysis of these
alloy data we have used the pure-Th results as a guide
to proper handling of the phonon terms. The upper
bound curve of Fig. 3 (open circles) which assumes no
phonon contribution seems to agree with the measured
anisotropy of the energy gap,”* so we have analyzed
the alloy data with this assumption. The K,/K, data
differ from the upper bound K../K .. data by less than
1%, so the data are all cast as K,/K ,. For each of the
alloy samples, 7. was taken from the critical-field work
of Decker.?

K./K, data presented in Fig. 6 show qualitative
agreement with the main features of the Ambegaokar-
Griffin (AG)? theory. Near T, the data for the alloy
samples lie below the pure-metal (Th-26) curve, and at
lower temperatures the curves cross over and the alloy
data show a higher thermal conductivity. This agree-
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ment is not too surprising for this particular alloy
system because the magnetic scattering time (107! sec)
is much longer than the nonmagnetic scattering time
(107" sec), and we know from susceptibility measure-
ments that the Gd ions are paramagnetic. These are
exactly the conditions for the application of the AG
theory. No attempt is made to compare with the
Gruenberg theory,® because the spin-scattering time
is too long.

In order to make a direct quantitative comparison
with the theory, we used the measured value of the
alloy transition temperature 7', and the pure-metal
transition temperature T, in conjunction with the
theory to calculate the lifetime broadening, the order
parameter, and the thermal conductivity. Details of
this sort of calculation are given elsewhere.? Results
for both the theory (solid line) and experiment (open
circle) are shown in Figs. 7 and 8. This must be con-
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sidered to be very good agreement providing one can
assume that the addition of magnetic impurity does
not change the phonon contribution.

CONCLUSION

From this work and the earlier equilibrium measure-
ments® we conclude that the Abrikosov-Gorkov
theory!> (and its extension to transport properties
by Ambegaokar and Griffin) of superconductors con-
taining paramagnetic impurities describes both the
equilibrium and transport properties of Th-Gd alloys
to a very high accuracy. Not only is the theory quali-
tatively correct, but it is quantitatively correct to a
few percent.

18 A. A. Abrikcsov and L. P. Gorkov, Zh. Eksperim. i Teor. Fiz.
39, 178 (1960) [English transl.: Soviet Phys.—JETP 12, 1243
(1961)7.
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The magnetic field dependence of Young’s modulus of type-I and type-II superconductors is used to study
the properties of the intermediate and mixed states. The density and separation of vortices in the mixed
state are computed from the observed field dependence of the elasticity by use of a model which allows
the vortex to expand. A residual stiffness associated with trapped flux is observed to decrease at lower
temperatures as a result of reduced pinning forces acting on the vortices. The pinning forces appear to be
associated with more than elastic coupling done to the imperfections. The largest total change in stiffness
due to the superconducting transition is associated with the longest normal-electron mean free path. Shield-
ing of the lattice initeractions in the superconductng state appears to be more effective the longer the co-
herence of the superconducting pairs between scatterings. Use of elastic measurements as a means of de-
termining bulk characteristics of the superconductor is found to be quite accurate for materials with low

acoustic losses. Anisotropies in the bulk critical fields of niobium are determined simultaneously with the
magnetization.

INTRODUCTION

HE elastic properties of solids are modified by

the transition to the superconducting state. An

early success of the Bardeen-Cooper-Schriefer theory
of superconductivity resulted from its ability to predict
the temperature dependence of the ultrasonic attenua-
tion, which has since become a standard technique to
determine energy gaps of superconducting solids.
Changes in the stiffness of a solid entering the super-
conducting state are much smaller than those of the
attenuation. Experimental techniques of high accuracy
are needed to observe the transition. Observations of

1 Work supported by the National Science Foundation.
* Submitted in partial fulfillment of requirements for the
Ph.D. degree at the Oklahoma State University.

these elastic changes were first made in tin.'-3 Ensuing
work by Alers and Waldorf*5 also considered type-II
superconductors. Recent investigations by Kramer
and Bauer have determined both the temperature® and
magnetic field” dependence of the elasticity in super-
conducting Nb.
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(1969).

4 G.) A. Alers and D. L. Waldorf, Phys. Rev. Letters 6, 677
(1961).

5 G.) A. Alers and D. L. Waldorf, IBM J. Res. Develop. 6, 89
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