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Three approximation schemes are discussed and compared with the exact solutions for a Hamiltonian
describing the interaction of a single-mode quantized radiation 6eld and X two-level "molecules, " each
resonant with the mode frequency. In particular, the approximation of treating the molecules as uncor-
related is found to be accurate when the system energy is several times larger than the cooperation number
of the molecular system.

I. INTRODUCTION
' 'N a previous publication, ' we presented the exact
~ - solution for a Hamiltonian describing ~V identical
two-level molecules (TLM) interacting with a single-
mode quantized radiation field. The model Hamiltonian
studied in Ref. 1 neglects "counter-rotating" interaction
terms, and the TLM's are at resonance with the electro-
magnetic field and are all at equivalent-mode positions
in the resonant cavity. In the present paper, we use
these exact solutions to this idealized system as a basis of
comparison with three different approximation schemes:
(1) The exact difference equation is approximated by a
differential equation, which is identical to the harmonic-
oscillator equation. This approximation is valid for all
values of the average system energy (the average system
energy also being the uncoupled molecules-plus-field
energy= e), but is only accurate for the ground and low-

lying excited states. (2) The TLM's are considered as
independent, in the sense that they interact with each
other only through an "averaged" field. This approach is
common and has been used, in essence, by Scully and
Lamb' in their quantized field theory of laser operation.
We find in what follows that this approach is appropriate
for all eigenstates when c ~r, where r is the "cooperation
number" analogous to the total angular momentum
quantum number of a spin system, and c is again the
average energy of the system (TLM plus field). This
approximation is appropriate only for e))1. (3) The
third approximation scheme is appropriate when the
system energy is highly negative, c= —r+~, where
(K(e(&r, and again gives accurate results in this regime
for all states and eigenvalues.

We have not been able to find a suitable approxi-
mation for all eigenvalues and eigenvectors for the
energy region 0&c&r.

II. REVIEW OF DIFFERENTIAL EQUATION
APPROXIMATION

mode frequency, is taken as

X=E3+ata —aaE+ —~*atE

where

(2.1)

R3lr, m) =ml» m) (2.3a)

Rj. l r, m) = e+' &&fr(r+ 1) (m—&m1)j'"
l r, m& 1), (2.3b)

aln)=one'& ln —1), (2.3c)

R'lr, m)=iR +I,'(R+R +R-R+)jlr, m)
= r(r+1) l r,m). (2.3d)

Here nz&r&-,'E, r, m integer or half integer, and lV is
the total number of molecules. Since the cooperation'
operator R' and the average energy operator E3+ata
both commute with the Hamiltonian (2.1), we label
the eigenstates of K by the eigenvalues r and c, the
eigenvalues of R' and E3+ata, respectively. An eigen-
state of X', is then

c+r
lr, e,j)=

n=max

A„&" '"ln)lr, c—n), (2.4a)

Air, c,j)=l&„,lr,cj).
The A ("'" satisfy the diA'erence equation

(2.4b)

—
l&&l e *~(v'n)C„. .A. &&' '&'+(c—X„,)A„&" '&&

—l«ie*4$&(n+1)jC„„„,A„+,&" ' &=0, (2.5a)
where

and
C„, „=&&r(r+1) (e n)(e n+1)$—«'.—(2.5—b)

The A „("' &) satisfy the boundary conditions

La,at)=1, LR+,R j=2R3, and «= l«l e*'&&. (2.2)

States of the noninteracting («=0) system are defined
such that

(r c j) A ( y y)
(r c J) —PIn this section, we begin by briefly reviewing the

notation of Ref. 1. The Hamiltonian, divided by the It is convenient to define 8 so that
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where

(qe *P)"8
c) r

L&(n!)jc„,c, , c, „

q= (c—})/2)«! .

(2.fb)

(2.6c)

if we let

lVB =8+p+8—„28+}—}—O'8„/dn' (2.10)

as well as drop the cubic term in the square bracket of
(2.8) expressed as a cubic polynomial in (r( np) —We.
have de6ned

The superscripts (subscripts) (r,c,j) are suppressed for
simplicity whenever this does not cause confusion; also
the subscript r is suppressed. in C„,„. The 8„'s then
satisfy the difference equation

q'8„+& 2q—'8„+nC, „'8 }=0. (2.7)

The details of the exact solution of (2.7) and (2.5a) are
given in Ref. 1.

Rewriting (2.7) as

8„„+8„,—28„+L(«„-,' —q')/q'jB. =0,
we can then approximate this difference equation by the
differential equation

(This is given incorrectly in Ref. 1 as (r'= np/

t 1+2(g(«p)r(p/qpg }.The dispersion in photon number is
in every case smaller than (or equal to) —,'np. When the
energy in the electromagnetic 6eld greatly exceeds the
maximum energy available to the molecular system, that
is, c))r, then the dispersion is much less than 2nD and
is

GI. AVERAGED FIELD APPROXIMATION

In this section, we discuss an approximate solution
to the Hamiltonian (2.1) in which the TLM's are treated
as uncorrelated in the sense that they interact with each
other only through an "averaged 6eld."This approxi-
mation is seen frequently in the literature, and its
validity is assumed in a recent quantum analysis of the
laser. This approximation is valid, as we show in this
section, in the region c&r; it is then not a priori clear
that this approximation will lead to correct results in
an analysis of the laser build up.

The averaged 6eld approach may be motivated by the
observation that as c becomes larger than r, the gn
term in the off-diagonal matrix element of K (2.1) may
be approximated as a constant = gnp, where n p is to be
determined self-consistently. This becomes clear when
one remembers that for a given c and r, n varies between
the value c+r and c—r.

Ke wish c and r to remain good quantum numbers,
so that the Hamiltonian becomes

2n Dec—no (2.11a,) Kf Rp+ a'a «——(Qnp) ZRi—«P(gnp) ZtR— , (3.1)

()(p = L3r(r+ 1)+c(c+1)+1j'(' (2.11b)

np= p(2c+1)+~it'3r(r+1)+c(c+1)+ lj'". (2.llc)
The solutions to (2.9) are the familiar Hermite poly-
nomials when the harmonic-oscillator boundary con-
ditions are used. The eigenvalues are given by

q}= —L&(op) jU+ p)+ &L(j+p)'op+ad(j,
j=0, 1, ",r. (2.12)

When this approximation is compared with exact
results, agreement is very good for all regions of c
and r where the continuum approximation (2.10) is
valid. The ground and 6rst few excited states are
reproduced well.

The dispersion in photon number in the ground state
(for given r and c), j=0, in the differential equation
approximation is

where we have introduced. photon raising and lowering
operators

Sin}=!n—1), n)1
=0, n&1

(3.2a)

z'in}=!n+1). (3.2b)

The matrix representation of Hi in the in)ir, m} bases
is essentially the same as shown in Figs. 1 and 2 of
Ref. 1 and differs only in the replacement of n by no in
the oH-diagonal terms. %e do not use the difference
equation approach to 6nd the exact solutions of (3.1)
as this is an unnecessarily complicated method here.
Instead, we make use of the independent molecule
nature of the approximation and write

a (a+83
Ki =Q — (v' .)z« '(g .)z«,), — —

(r =((I np) )=g—iA „p
i
p(n —rip) p/

where
(p}

t
p~~—(e—np v'e }/2qpp

(qp is the ground-state energy). Thus,

~' = qp/2v'~2.

(2.13a)

(2.13b)

(2.14)

(.i =total number of molecules) (3.3)

where R~«are the raising (lowering) operators for the
kth molecule. A more natural basis set now is the photon
states i!n} and the independent molecule "up" and
"down" states

i
't} and

i f},respectively. As an example,
the submatrix of IIf for a given c and .V= 2 is shown in
Flg. 1.

Now we note that if the photon states are ignored for
the moment, this matrix can be written as the sum of
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direct matrix products for independent molecules,

I.f = A,I, +I,A„
where

1

Al, ——

np K

np K

1
2C

1 0
4 =1,2.

0 1

To take advantage of this, w e introduce "pseudophoton"
states in such a way as to conserve energy by denoting
the basis of a single molecule-plus-field as

Hamiltonian describing, say, four rnolecules or two

molecules interacting with a field, one finds the same

states and eigenvalues for r= 1 for these two problems.
For convenience, then, in constructing states of Hy
which are eigenstates of r and c we choose r= 2E with-

out loss of generality. . Thus, we construct normalized

I
rcj)r states from the ground state by application of

the raising operator, ' i.e.,

lr, c,j&i=(L&2—2(.'(&+1)7 '"~ )'ll I
—

&
(3'f&

where
Ic—2) I T)k and fc+-,') fl&k, (3.5) where 8+ is the sum of individual pseudomolecule

raising operators, that is,

&
I
c+-', )= I

c '
& ~+k

I l) k =
I T&k

and c=c/iV. The eigenvalues and eigenstates for this
single molecule AI, are then

~+k I

—)k= I+)k.
%e can also express this as

(3.8)

!(+=c~(v'«) I«I (3.6a)

I

—&=(~» '(lc —2&IT&c"+ le+2&ll&) (36b)

I+&=(v2& '(lc —2&IT&+c" "le+2&ll)). (36c) 6 k=i k'=1
(3 9)

The eigenstates of Hr, denoted by fr, c,j)y, are now

constructed from the
I &) states by the observation that

the exact solution to (2.1) expressed as a linear combi-
nation of ln)lr, 222) states is independent of X, except
for the constraint r&-,'X. That is, if one considers a

where (P means a permutation between the I+) and
—) states, but not between the individual I+) or
—) states alone. Substituting into (3.9) from (3.6),

we find, after considerable rearrangement and care to
preserve the normalization of the

I
r,m) states.

c+r
frcj)I= P D„(» )I22)fr c—g) (3.10)

where

(2y) I l/2 I (2«) I I I2

(r, c,j) 2r ei (2r—j—L) (Ik

j!(2r —j)! L!(2r —L)!

Q c4 (I+I ' I »I I(2« —I ) I

L' ~ L22(L+L )7IL22(L —L )7II j—22(L+L')7lL2r —j——,'(L —L')7!

where The ground state is particularly simple, i.e.,
I.—= r —c+n,
d=—maxi —L, L+2j—4r7,
24=—minLL, 2j—L7,

1 (2r)!
D (r, c,p)

2" (r+C —22)!(r+22—C)!

—1/2

and the prime on the summation indicate that I ' ranges
over integer values such that the factorials are also
integers, that is, only every other value of L' starting
from I.'= d is taken in computing the sum.

From the expression for the eigenstates (3.9), we
easily obtain the eigenvalues as the sum of the eigen-
values (3.6a) of the

I && states, namely,

Z, (II = c—2(»—j) I. I
&no. (3.12)

Equations (3.10) and (3.12) are valid for general values
of r, and not only r= 2N.

and the probability for finding n photons in the ground
state is simply a binomial distribution with (n) =c. This
can be approximated for c))1 as a Gaussian centered
at n= c, with a dispersion 0'= ~r in agreement with the
di6erential equation approximation. The excited states
also have (n) = c and are very similar in appearance to
the eigenstates of the harmonic oscillator. By compari-
son with the exact solutions to (2.1),4 it is found that
for c)5r the eigenvalues (3.12) with «=c agree with

M. Tavis, thesis, University of California, Riverside, 1968
(unpublished).
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IC-i}lt)l» I c& l»l~& Ic& I»l» Ic+f&ll&ll&

C MfloK Wo K

bases, the off-diagonal elements have a magnitude
proportional to

bing[(r
—m) (r+ m+ 1)], where n

varies between zero and c+r for c&0. Since m= c—n,
m varies between c and r—D. efine r'= ', (c+r-), then
m'=r' —n varies between r' and —r'. Then

-~no K

C -~floK

-~()K -~A()K C

Ff&. 1. A submatrix of Fff for a given c and for 2 TLM's (V=2).

the exact eigenvalues to within three significant figures,
with correspondingly good agreement with the exact
average photon number and dispersion.

IV. AVERAGED TLM APPROXIMATION

In this section, we discuss an approximation to the
solution of (2.1) which is valid when c&0. The exact
results again yield a linear eigenvalue spectrum, as in
the region c&r. If we examine the matrix elements of
the interaction in the Hamiltonian (2.1) in the

I
n) I r,m)

&(j'( ' = c—(c+r 2j )+(2r)
I
j( I—

and
(4 3)

g[n(r —m)(r+m+1)]= g[(r' —m')]
&& Q( [2r—(r'+ m') )[r'+m'+ 1]}, (4.1)

and since r' ((r, we can approximate this as

Q[n(r —m) (r+ m+ 1)]
=Q[(r' —m') (2r) (r'+ m'+ 1)]. (4.2)

This has the same form as for the case discussed above,
c&r, with 2r replacing no of Sec. III. However, in this
case we cannot factor the resulting approximate Hamil-
tonian into a sum of direct products of individual
molecule matrices as was done in Sec. III. Instead we
take over directly the expressions for the eigenvalues
and eigenvectors of H~ by replacing r by r' in those
expressions (3.10) and (3.12), except n now runs between
zero and c+r instead of c—r —+c+r, and r is not
replaced b&. r' in the lr, m) states. Then,

where

!r,cj)„,= p F (" ' "ln)lr, c n), —
n=0

(4 4)

(c+r)!
&'.' ' "= (2'+"'"Q[(c+r)!jj '(c+r j)))—

kn!(c+r n)!—
e""+"' "n!(c+r—n')!

Xe ((e+r j ajy— ——
(4.5)~'-e [~(n+n'))![~ (n n')7![—j—

2 (n+n'))![c+r j (2n —n')]—!—
and

d=max[ —n, n —2(c+r —j)],
u= min[n, 2j n], —

and the definition of the prime on the summation is the
same as below (3.11).

The average value of photon number is (n) = ', (c+r)-

in the ground state, and the dispersion in photon
number (r'=-', (n). This agrees with the results of the
differential equation approximation of Sec. II. This
approximation for 5(c+r) & r is accurate to three
significant figures when compared with the exact
results for the eigenvalues, average values of photon
number, and dispersion.


