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Coherent Resonance Fluorescence Excited by Short Light Pulses
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Assuming in6nite relaxation times and negligible pulse attenuation, we calculate the ringing produced
when a resonant light pulse passes through a medium. These assumptions imply that each atom of the
medium is excited identically and will therefore radiate coherently. Two models are used for the atoms of
the medium: the classical harmonic oscillator and the two-level quantum-mechanical atom. The validity
of the various approximations is discussed in detail ~

We first discuss the assumptions of our calculation
and show how they lead to simple boundary conditions
for our problem. We simultaneously solve Maxwell's
equations and the harmonic oscillator equation for these
boundary conditions and obtain a single analytical
solution. The harmonic oscillator is then generalized to
a two-level quantum-mechanical atom, and a family of
solutions depending on one excitation parameter is ob-
tained. The limitations of the assumptions leading to
our solutions are treated in detail. Finally, possible ex-
perimental implications of this work are discussed.

INTRODUCTION

~HE advent of picosecond light pulses from mode-
locked lasers offers the possibility of investigat-

ing phenomena which have previously been hidden by
short relaxation times. In this paper we will calculate
the result of passing a resonant light pulse through a
medium under the assumption of infinite relaxation
times and negligible absorption of the incident pulse.
The induced coherent fluorescence produces a ringing
after the original pu1se (illustrated in Fig. 1). Our cal-
culation examines a limiting case with an analytical
solution for the general problem of a light pulse inter-
acting with a resonant medium. We neglect any modifi-
cation of the incident pulse by the medium, as is con-
sidered in work on self-induced transparency' and co-
herence effects in laser amplifiers. ' Ke also study effects
occurring only after the exciting pulse and do not con-
sider the precursers4 which occur before the main pulse
in a dispersive medium. Dicke' has considered the
problem discussed in this paper; he calcul. ated the
radiation rate immediately after the pulse passes but
did not follow the decay of the atomic excitation. Lynch
el al. ' have studied a problem related to ours, namely,
the ringing produced by resonant filtering of naturally
decaying p rays. They fit their experimental data with
a theory based on a harmonic oscillator medium. Our
theory differs from theirs in that we assume a 8-function
incident pulse, while they considered a pulse which rises
abruptly and decays exponentially.

ASSUMPTIONS

The following five assumptions, often made in calcu-
lations of this t~pe, are not independent, although their
relationships are not trivially obvious. Actually, the
first two assumptions are sufhcient to define our
problem.

1. Long Relaxation Times
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FIG. 1. Ringing produced by interaction of a pulse
with the medium.
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Our calculation considers only times short compared
to the characteristic decay times T~, T2, and T2~ of the
medium. For an individual atom, T~ describes the decay
of excited-state population and T2 the decay of radiat-
ing dipole moment. T» is equal to or shorter than the
lifetime for spontaneous radiation; since the ringing we
will calculate is due to stimulated emission, our calcula-
tion will require stimulated radiation to completely
dominate spontaneous radiation for times of interest.
An ensemble of independent atoms can have a more
rapid decay of dipole moment than T~ because of a
spread in frequency for different atoms. An additional
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decay time T2* inversely proportional to this spread
occurs for inhomogeneously broadened solids and for
Doppler-broadened gases. We ignore any differences
between these two kinds of broadening.

2. Small Attenuation

We assume that the medium is short enough that the
exciting pulse is essentially unattenuated and thus
appears identical to each atom in the sample.

3. Maxwell's Equations

We use a macroscopic polarization in Maxwell's
equations to treat the radiative effects of the atoms.
When the density of randomly positioned atoms is not
large enough to reconstruct the incident wavefront,
this approximation fails and the atoms will radiate in
all directions (Rayleigh scattering), not just the forward
direction. Rayleigh scattering is dominated by spon-
taneous emission from the atoms and, therefore, is
negligible under the conditions of our problem where
stimulated emission dominates spontaneous emission
(assumption 1). In other words, if the fluorescent ring-

ing can be observed, the atomic density will be high
enough to neglect Rayleigh scattering. Additional dis-
cussion appears later.

4. No Baclmrard Wave

We assume that the effect of any backward-traveling
wave is negligible. If the sample is much thicker than a
wavelength, any backward wave radiated by the bulk
medium will be small compared to the forward wave,
because contributions from different. portions of the
medium are out of phase and therefore cancel. In addi-
tion, the discontinuity of the refractive index at the
boundaries of the medium must be small in order to
prevent significant reflections at the boundaries. We
neglect the small broadband reflection which occurs at
the boundary of a dense medium; its lowest-order eGect
is to produce a slight reduction in the incident and trans-
mitted intensities. However, the refractive index asso-
ciated with the resonant levels can become very large.
Neglecting this reflection is justified under the assump-
tion of long Tr (assumption 1), as is discussed later.

5. Slowly Varying Envelope

We assume that the envelope of the radiated field and
the atomic polarization varies slowly not only compared
to an oscillation period, but also compared to the length
of the exciting pulse r„.The latter assumption will be
shown to be equivalent to assuming small attenuation
(assumption 2).

Boundary Conditions

We assume that the medium is semi-infinite in the
+z direction and that the exciting pulse travels in the

+z direction, just passing position z=0 at time t=0
(see Fig. 1). Since each ground-state atom sees the
same pulse (assumption 2) and does not radiate while
the pulse is applied (assumption 4), the final electronic
displacement X(t,s) of each atom is the same (both
phase and amplitude) immediately after the pulse
passes. This boundary condition is

X(t = zjc, z) = Xo,

where c is the velocity of light (we assume that the
index of refraction of the host medium is unity). AVe

note that Eq. (1) says nothing directly about the fre-
quency, shape or magnitude of the exciting pulse.
Because of our assumptions, all such information is
condensed to a single parameter Xo. However, as is
shown later, Xo will be zero unless the pulse contains
frequency components close to resonance with the
atomic system.

An additional boundary condition arises because we
have neglected backward waves. After the exciting
pulse passes the beginning of the medium (z=O), the
electric field there is zero:

E(t)0, s=O) =0.

O'X (t,s) tlX (t,z) ef"
+q- +~;-X(t,:)= I;(t,s), (.I)

BP m

where y=1(Tr is the energy damping rate, I; is the
linearly polarized electric field, f is the oscillator
strength, e is the electronic charge, and m is the elec-
tronic mass. Maxwell's equations couple the electric
field to the electronic polarization which is equal to
Xf'"eX, where N is the atomic density.

8 18 (8 18—+—— ————A/z =
47rf'"eX ct'X(t, s)

(4)
c'

Dispersion Relation

A plane-wave solution for coupling the harmonic
oscillator to Maxwell's equations leads to a dispersion
relation between the wavelength P and frequency ~ of
light, i.e., a dispersion in the index of refraction
n(&o) = 2zc/rdli(co). For a linear medium, the solution for
a light pulse can be obtained by summing plane-wa~ e
solutions; with the proper approximations this pro-
cedure leads to our harmonic oscillator solution LEqs.

HARMONIC OSCILLATOR MEDIUM

Equations of Motion

We assume that the atoms of the medium can be
represented as harmonic oscillators of frequency col, .
The harmonic oscillator is a good approximation to a
two-level quantum-mechanical atom for small excita-
tion, as will be discussed later. The equation of motion
for the electronic displacement is
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(18) and (19)j. Since we will generalize to the non-

linear two-level atom, we will usually work in the time
rather than the frequency domain.

We write Eq. (3) in the frequency domain:

X((u) = (ef' ~'/m) E(co) (cop'+ipry (a'—)-',

where we have defined the Fourier transforms

If we neglect appropriate derivatives of the slowly

varying amplitudes X and 8, we obtain the following
forms for Eqs. (3) and (4):

ct X(t,z) if—"e
-h(t, z),

2SEM p

dtX(t)e

(8 18
i
—+——h(t, z) =

Iaz c at

i2x f—'IPXeppp
—X(t,s). (12)

dtF(t)e

Equation (5) leads to the dispersion relation in the
usual fashion (neglecting local field corrections):

~2 —1+~ 2(~ 2 ~2+~~~)—1

where we have defined the plasma frequency

pp '= 47r fe' ~Y/m.

(7)

Near resonance where co—cop, the index of refraction can
become very large or very small (or even imaginarv,
i.e., totally reflecting). Any of these possibilities will

produce a large index discontinuity and hence a large
reflection at the boundaries of our sample. The strict
assumption of small reflection therefore requires

a&p ((rap up/Tx. ——

The plasma frequency must be much less than the
geometrical mean of the oscillator frequency and its
spontaneous decay width.

Condition (9) can be relaxed without affecting our
calculation. Unless the density is extremely high, the
spectral width for which reflection will be large is of
order p. Totally reflecting a spectral band of width p
from the incident pulse will produce a "ringing" follow-

ing the pulse for a time ~y '= Ti. The ratio of the
amplitude of this ringing to the incident amplitude is of
order r~/Tq. Since the amplitude ratio for our calcu-
lated bulk ringing is r~/rs PEq. (20b)j with rs((T~
(Eq. (42)j, the surface ringing can be neglected.

Let us change our time variable to r= t s/c—, the time
after the end of the exciting pulse (see Fig. 1). The
boundary condition of Eq. (1) becomes X(r =0, s) =Xp
and the derivatives in Eqs. (11) and (12) become

8 8 8 18 8——+ — +
Bt Bv Bz c Bt Bz

Equations (11) and (12) can then be combined to give

8 X (T,z) ld gp

X(r,z) = —QX(r,z),
Bz87- 4c

(13)

X(t, z=o) = X(r, z=o) =X,. (14)

These boundary conditions are consistent with a solu-
tion of the form

X(r,z) = F(q), (15)

where we have defined q= 2(Qrz)'IP. The dependence of
X on the product 7.z becomes apparent if one integrates
Eqs. (11) and (12) to give an integral form

where the plasma frequency was defined by (8). The
reason for the occurrence of the plasma frequency here
is that we are calculating the exchange of energy be-
tween the radiation field and the atomic system. All the
electrons oscillate coherently with respect to their posi-
tive ion cores just as in a longitudinal plasma oscillation.

The two boundary conditions (1) and (2) for our
problem can be put into a form which is symmetrical
between r and z. By integrating the differential equa-
tion (11)with h(t, s=O) =0 (assumption 2), one obts. ins

Time Domain Solution
z

X(r,s) =Xp—Q dz' dr'X(r', z'), (16)
The solution we are seeking must satisfy the two dif-

ferential Eqs. (3) (with &=0 from assumption 1) and
(4) and the boundary conditions Eqs. (1) and (2). We
assume a slowly varying amplitude for E and X:

E(t,s) = expLicuo(t —z/c) j8(t,s), (10a)

X(l,z) =exp$irap(t z/c) jX(t,s). — (10b}

Equations (10) assume that only the wave propagating
in the forward direction is important. The Appendix
treats the case of a slab much thinner than a wavelength
where the backward wave is equally important.

Y"+Y'/q+ V=0, (17)

which is Bessel's equation of zero order. The boundary
conditions become Y(0)= Xp and I"(0)=0. The solu-

which can be iterated to give a po~er series in rz. This
7z dependence also occurred in the resonant filtering
calculations of Lynch et c$.6

With the change of variable (15), the partial dif-
ferentia, l of Eq. (13) is reduced to an ordinary differ-
ential equation:
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As long as s&)X, only the product Es v g ' character-
izes the ringing produced by the medium. The single
parameter of the solution in Eq. (18) is proportional
to (iVzr)'", the square root of the number of atoms ex-
cited times the time they have had to radiate. As the
effective sample thickness As increases, the oscillations
become more rapid. Our calculated functional de-
pendence on the product rs breaks down in the region
s&X where both forward and backward waves are re-
quired as in the Appendix.

0 IO 20r~
FIG. 2. Electric field and electronic displacement versus time

delay after the exciting pulse. The time and amplitude normal-
izations are discussed in the text. The atoms are treated as har-
monic oscillators.

tion for the electronic displacement envelope is

K(r,z) = XoJo(oi, (rz/c)"), (18)

where Jf) is the zero-order Bessel's function. The elec-
tric field envelope, according to Eq. (11), is just the
derivative of the displacement:

8(r,z) = i (rao—ooX oo /of'i'e) (z/rc)"'Ji(oo„(rz/c)"')
(19)

where we have used the relationship Ji= —J0'. These
solutions can be put in a normalized form for the values
of 8 and X at the end of a sample of length Z:

(20a)

$(v') = —SiJi(2(r/ra)' )/(r/ra)'~ (20b)

where we have defined a radiation time

Ta = 4c/oo& Z

and have used Eq. (33) to give

hi= @or„/r, .

(21)

The two curves of Eqs. (20) are shown in Fig. 2 for
7g ——1 with the normalizations Xo= Bi= 1 which give
unity at ~= 0 and J'dr 6"(r) = 1. At time r = ra, 62%%uo

of the energy stored in the sample has been radiated.
Most of the energy (84%) is lost before the first zero in
8. Since oscillations of the Bessel functions in Eq. (20)
are approximately periodic in their arguments, the
oscillation periods in Fig. 2 increase as ~' '. The oscilla-
tions are caused by the exchange of energy between the
radiation field and the medium. The rate for interchange
is proportional to the product hX and thus decreases
as energy is lost from the sample. A consequence of this
rate decrease is that the electric field (representing
power h' flowing out of the sample) decreases more
rapidly than the electronic displacement (representing
energy X' stored in the sample).

&(&~)g(&~)e* - =X,G(r), (23)

where Aoo=oo ooo and g(ho—o) is the spectral line shape.
%e can define the dephasing time from the autocorrela-
tion function G(r) as the time for the polarization to
decay to half its initial value: G(T,*)= o. The radiated
field becomes

h(r, z) = i 2z f"'cYeoooXo—G(r)z/c (24)

by integration of Eq. (11). This second limit where
radiation damping is neglected is assumed in treatments
of photon echoi ' (which do not necessarilp assume
ro«Too as we do here) where sending a second pulse a

7 P. D. Abella, X. A. Krunit, and S. R. Hartman, Phys. Rev.
141, 391 (1966).' M. Scully, M. J. Stephen, and D. C. Burnham, Phys. Rev.'

171, 213 (1968).

Doppler ESect

In many cases (e.g. , low-pressure gases) the first re-
laxation process which limits the validity of our result
is Doppler or inhomogeneous broadening which causes
the radiating dipole movements to get out of phase. A
complete treatment of this process is complex because
broadening affects both the absorption and the emis-
sion of radiation in the ringing following the initial pulse.
However, two limiting cases are easily analyzed.

The first case where the dephasing time T2* is long,
is just the case we have analyzed in the previous sec-
tions. The solutions of Eqs. (18) and (19) are approxi-
mately valid for 7 (T~ . As 7. exceeds this limit, the de-
phasing e8ect destroys the macroscopic polarization
and thereby decouples the electronic displacement of
each atom from the radiation field. Thus, the radiated
field dies away and the displacement becomes fixed.
The energy left in the atoms is then lost by the much
slower process of incoherent spontaneous radiation (Ti).

In the second limiting case (rs))To*) the dephasing
eGect dominates the coherent fluorescence, and the
macroscopic polarization is damped before the ringing
of Eq. (18) can develop. In this case the displacement
is approximately fixed at its initial magnitude Xo
(r 0 in Fig. 2), and the macroscopic polarization
decay s only because of dephasing:
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time T later through a two-level system causes a re-
covery of macroscopic polarization at time 2T.

Bh—(r,z) ~ P sin8(r, z),
t9z

(25)

where the excitation angle H depends on time and posi-
tion. In the rotating coordinate system, the electric
field drives the angle H directly instead of X and the
atomic equation (11) becomes

TWO-LEVEL MEDIUM

Equations of Motion

The equations of motion for two-level atoms inter-
acting with a radiation field have been derived by many
authors. "Instead of a formal derivation, we will show
how our previous equations become modified by the
properties of two-level systems. All possible states of a
two-level system can be represented by a vector P of
fixed length' (the electric dipole moment for the tran-
sition is p= f'I'eP) as illustrated in Fig. 3. We define
the angle of excitation H as the angle between P and the
ground state Pb which points in the +z direction. The
projection of P on the z axis is related to the energy 8'
stored in the atom: W= ~ztppp(cos8 1). The—electronic
displacement is the projection of P on the xy plane
where the azimuthal angle gives the phase of the dis-
placement. Khen the applied field is on resonance with
the atom, only one component of the displacement
couples to the field. In our transformation to slowly
varying amplitudes (10) we effectively went to a rotat-
ing coordinate system where P is fixed in the xz plane.
Kith the two-level replacement for the electronic dis-
placement X=P sin8, the field equation (12) becomes

I.P p (o)
pe ) . eo .997rr

eo .90 TT

e, 0

. -. !tIl ', ry' '.~
0.2 - f I ]% /!-0.4 - gl /

I

e, a o
o.4-~

ti eoP.90Tf
0.3-

0.2 )

P. Io-J
lan Q p
UJ ~-O. I

-0.2 I i ! i I i I
' 0 20 40 60 80 Ipp

NORMALIZED DELAY TIME (T.)

1'zc. 4. Excitation angle (a) and electric 6eld amplitude (b)
versus time delay (rg= 1) after the exciting pulse for three values
of initial excitation Hp. The 6eld 5 has been normalized to give
J'd7 8'{r)=1 so that 8' represents the fraction of the energy
radiated per unit time. The curve for Hp=0 extends to 8=1 at
r =0 as in Fig. 2.

phenomena:
8'8(r, z) pp„'

sin8(r, z) .
Or&z 4c

(27)

Solution

The boundary condition X (O,z) = Xp now becomes
8(O,z) =8p ——sin '(Xp/P), where 8p, the initial excitation
angle, is an additional parameter which will character-
ize the solutions for a two-level system.

8X(r,z) 88(r, z)~P ~ b(r z).
ter ter

(26)

The same transformation which led to Bessel's equa-
tion (17) before now gives

F"+F'/q+ sin F=0,
We note that for small excitation (8—sin8) these equa-
tions reduce to the previous ones for harmonic oscilla-
tors. Equation (13) becomes the well-known' nonlinear
equation for the interaction of two-level atoms with a
resonant fieM in the absence of all relaxation

with the boundary conditions F(0)=8p and F'(0) =0.
The relevant range for the initial conditions is 0&Hp& x.
The desired solutions for Eq. (28) are functions F(q,8p)
which approach Bessel's functions for small Ho.

F(q8p) '8&p(0)' F'(08p) ' 8pJ1(V) (29)—8~ 8g-%

EXCITED' STATE I e&

Fr@. 3. Diagram of the vector
model for a two-level atom.

Pq

Pb

\

z' --—X
I
I
I

I
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GROUND ' STATE I b &

'R. P. Feynman, F. 1.. Vernon, Jr., and R. YV. Hellwarth, J.
Appl. Phys. 28, 49 (1957). 8( )I8o=FL2( I «)" 8.j/8o (30)

The functions F have been computed using a second
order Runge-Kutta method to integrate Eq. (28). For
8p ——0.01, the result for 0.01 F (q,0.01) agreed with tabu-
lated values of Jp to the fourth decimal place. F(q,8p)
was particularly simple to integrate because its quasi-
periodic oscillation Lsee Fig. 5(b) which shows the zeros
of F(q,8p) versus Hp) allowed a fixed-grid spacing. Solving
directly for 8(r) would be considerably more difficult.

Figure 4(a) shows three different solutions for the
excitation angle in the normalized form:
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decay, the energy radiated into the dipole pattern is
significantly reduced. The missing energy appears in
the forward direction where the radiated field interferes
constructively with the stimulating field.

If one considers a collection of X randomly posi-
tioned oscillators excited coherently, the ratio R of the
power radiated in the forward direction (where the elec-
tric fields from each oscillator add in phase) to the power
in other directions can be shown to be roughly

e.= —,', X(),/D)o, (38)

where we have defined a cutoff time T& T~ which limits
the integral to times where our Bessel function solution
(18) is valid. In addition, we will consider correctly
only those atoms which have coherently radiated away
most of their energy in time T, i.e., we adopt the asymp-
totic expression for Bessel's functions:

J.(s) = (2/mrs)'" cosLs ', s (n+—',-)7-
We use the integral relationship J'Jo'(s) s ds =

o so

XLJo'(s)+Jio(s)7 and obtain the following result for
the energy radiated incoherently:

Wz= (32/3')'~o(&VM ) '~ (T/Ti)'t'LoAZmcoooX (0)7.
(40)

where D is the transverse dimension of the collection.
The condition for the coherent forward radiation to
dominate ((R)&1) requires many atoms in each cross
section of area X~ through the sample. In other words, in
order for the atoms to reconstruct the exciting wave
front, one must be able to see many atoms per square
wavelength. When the coherent radiation dominates
($»1) the atoms radiate much faster than by in-
coherent spontaneous emission. The reason for this in-
creased radiation rate is that the atoms stimulate each
other to radiate. Thus again we see that stimulated
emission produces radiation in the forward direction.

Instead of assuming uniform atomic excitation as
above, we can use our solution to the ringing problem
(18) to integrate the total spontaneous energy decay
from a sample of unit cross sectional area, using Eq. (37)
for the spontaneous decay rate:

T 2

W, =y dr iVd)s-', mo&o'X'(r, s),

Let us compare condition (41) with assumption (1)
for observing the Ruorescent ringing:

TR((T1 ) (42)

i.e., ringing must occur in a time short compared to T~.
Equation (42) can be rewritten as a density condition

EZ) '&)8ir/3. (43)

Thus this condition for seeing ringing is sufhcient to
insure negligible Rayleigh scattering, especially if one
is interested in times considerably shorter than lq.

Resonant Excitation

In this section we show that the exciting pulse must
be close to resonance in order to leave the atomic
system excited after the pulse passes.

Harmonic osci LLutor

Using Eqs. (5) and (6), the excitation of a harmonic
oscillator by an incident electric field pulse ending at
time (=0 can be shown to be

Xo= X(0)= (if"e/2mcoo) E(ooo) (44)

in the limit y ~ 0. Thus only the resonant part of the
incident pulse produces excitation which remains after
the pulse passes.

Two-Level System

One might suspect that a very intense o6-resonant
pulse (E(oio)=07 could excite a two-level atom by
power broadening. In the rotating coordinate system
(Fig. 3), the effective field which acts on the atom is
Q=L(hoo)'+(tib/h)o7i", where Doi is the distance off
resonance, E is the applied held along the x axis, and p
is the electric dipole moment Lti'= (e'fh/2moio)7. This
field fI makes an angle /=tan '(tib/hanoi) with the s
axis. A very intense electric field pulse will change f
from zero to ~x and then back to zero. We consider a
smooth pulse envelope {e.g. , Gaussian $(t)= bo exp
Xf—(t/rP)'7) in order to minimize the spectral width
of E(cv){8(hem) oo ho exp( —(decor~)o7 for our Gaussian
pulse).

The atom will not remain excited after the pulse
passes unless the adiabatic condition P((Q has been
violated. Thus for significant excitation we require

The factor in brackets in (40) is the total energy stored
in the sample. In order for our use of the macroscopic
Maxwell's equations to be justified, the energy in (40)
must be much less than the stored energy:

1 df

0 dt
(45)

XZ) '»(33/3~) (T/T, ) . (41)

We again obtain the result that the number of atoms
per square wavelength E2X' must be much greater than
a number or order unity, the exact value of which
depends on how long one wishes to observe the ringing
from the sample.

Let us assume a, general pulse form b= bof(t). If we
maximize the left-hand side of Eq. (45) with respect to
$0 we obtain

(46)

with bo Itttoi/v2tif(t) I——f we are far . off resonance
(r~hco&&1), then Eq. (46) is true only for large logarith-
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TAar. K I. Density limits.

A]&proximation

Strict small reflection
Small attenuation
Small Rayleigh scattering
Small spontaneous decay

Condition

iVZ)P« (27''/3) (s/X)
EZ&2«(8 /3) (T,/, }
EZZ2&&(32/3~) (T/T, )
EZ)P&&8~/3

Equation

(9)
(35)
(41)
(43)

DISCUSSION OF RESULTS

Experimental Values

Let us consider the conditions for the experimental
observation of fluorescent ringing. The first requirement
for the validity of our calculations is the existence of an
effective two-level system, " i.e., the coupling of only
two levels to the field or the coupling of pairs of levels
with identical matrix elements (see the discussion of
Ref. 12). Our solution is valid for times r in the range
r„&r&T;„,where T„„„is the minimum time among
Tj, T2, and T2*. In order for our solution to have a sig-
nificant range of experimental validity one must have
r„&&T;„.In addition, we have upper and lower limits
on the density cV because of various approximations
(see Table I).

We will consider the case of Na vapor in detail
(Ti= Ti 10 ' sec, ceo=3——.2X10" sec '). Since T2* for
room-temperature Na vapor is 2X10 ' sec, one might
obtain the exciting pulse from a mode-locked laser with
r„=2X10 '2 sec. In this case our solution would be
valid for times one hundred times longer than the ex-
citing pulse, if one neglects the fine structure of the Na
D lines (which would produce some additional ringing
and a more stringent restriction on r~). For the values
f= 1 and Z= 10 cm, the small attenuation approxima-
tion (35) produces an upper limit on the density,

cVr, = cm/irfe'r~= 2X10"cm ', (48)

which corresponds to a pressure of 5X10 ' Torr and.V~l7iX10'. This value is less than Z/X= 1.6X10'

"The harmonic oscillator result will hold for any set of energy
levels as long as the response is linear.

'~ C. K. Phodes, A. Szoke, and A. Javan, Phys. Rev. Letters 21,
1151 (1968).

mic slopes r= r„f'(t)/f(t)»1 In t.he case of a Gaussian
pulse, one has r=t/r„and h«hp holds for r»1. The
peak field value required to satisfy Eq. (46) is

ho ——(Shee/V2p) expL(27/4)(hear„)'j. (47)

As d,co becomes significantly larger than the spectral
width of the pulse, the intensity required for excitation
increases drastically. The functional dependence (47)
on D~r„ is essentially the same as that for the value of
$0 required to achieve a given va, lue of E(coo) Las in
Eq. (44)$. Thus we see that off-resonant excitation is
no more possible with the nonlinearities of the two-level
atom than with the harmonic oscillator.

so that the small reRection condition is satisfied. At
5X10 ' Torr, a cell of volume 10 cm' excited to tjo ——~m

has a stored energy of about 2X 10 ' J. The radiation
time rrt for the first 62% of this energy is

rrt= ( t'r/ &')r„=20X10 "sec. (49)

The initial radiated power is therefore about 6)&10'%.
The rest of the ringing takes place at considerably
smaller power levels. The experimental observation of
these power levels in the presence of the stronger exciting
pulse will be dificult.

rg&&T~*. (5o)

If the exciting pulse (assumed to be unattenuated
r„«rrt) is significantly shorter than Ti, the conditions
for the calculated ringing can be satisfied and one can
have the radiation damped case

r„&rg& T2*, (51)

where the photon echo will be much smaller than ex-
pected. ' The condition (50) can alwavs be achieved by
shortening the sample length, since ra (XZ) '.

Amplifying Medium

In our treatment of a two-level system, we assumed
that the system started in the ground state and then was
excited to angle Ho by the incident pulse. However, the
same situation can be produced by starting with all
atoms in the excited state (an amplifier) and deexciting
them by an angle (w —eo) by means of the incident
pulse. Thus the same ringing can result from a thin
amplifier as from a thin attenuator. It is unlikely that
such an experiment could be performed using the same
material as an oscillator to produce the incident pulse
and as the thin amplifier. An oscillator generally can-
not produce a pulse much shorter than its inverse band-
width, and we have assumed that the incident pulse is
much shorter than the inverse bandwidth. Variations
in host (e.g. , Nd' ' ' in glass or YAG) or temperature
(as in ruby) could perhaps allow large enough band-
width differences for such an experiment to work.

ACKNOWLEDGMENTS

We have had useful discussions with E. Hahn who
(with S. McCall) has independently derived the solu-
tions discussed in this paper. One of the authors
(RYC) would like to acknowledge helpful discussions
with C. H. Townes and A. Szoke.

Photon Echo

As mentioned in the section on Doppler eEect, the
usual discussion ' of photon echo ignores radiative
damping effects. The energy radiated when the atoms
are in phase is assumed to be much less than the stored
energy. This assumption implies
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APPENDIX

We wish to treat the case of a thin slab (M((P.) of
excited harmonic oscillators. The surface density of
oscillators is f7=.VM. The displacement can be repre-
sented in terms of a slowly varying envelope:

X(t,z) = exp(icoot)8(z) X(t), (A1)

where 8(z) is the Dirac 8 function. We require a solution
that is symmetric in the forward and backward direc-
tions. Once can verify that such a solution for Eqs. (4)
and (A1) is

I'(t, z) = ix—ef"'cubic '(8(z) exp(icoo(t —sjc)j
+8(—s) exp/1(do(t+zjc)$), (A2)

where derivatives of X(t) have been dropped and 8(s)
is the step function. The harmonic oscillator equation

(3) for y=0 becomes

d X(t) = ——',r X(t), (A3)

with I'= s fisoajmc', where we have kept only erst de-

rivatives of X(t). Equation (A3) leads to exponential
decay of the stored energy kV:

W(t) = fV(0)e "'. (A4)

The decay rate I' is proportional to the number of oscil-
lators, as is characteristic of a coherent process.
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The fine structure of the optical fluorescence spectrum arising from the fourth-nearest-neighbor chromiunl
ion pair system in ruby is studied using high-resolution optical spectroscopy, ordinary electron-spin reso-
nance, and optically detected electron-spin resonance. The ground-state energy levels of this system are
found to be describable by a simple spin Hamiltonian of the form

3'.= gp H S+J/2I S(S+1)—15/2 j+Dg$S.'—3S(S+1)7+E,gjS~'—S '7

where the directions of the symmetry axes, D8, and I.'z each depend on the spin S in a predictable way,
requiring only two adjustable parameters: D, (the usual second-order crystal-field term of axial symmetry)
and DE (a similar term arising from the anisotropic exchange interaction). The value of D, is found to be
—0.191&0.005 cm ', which is equal to that for the isolated ion. The value of Dg is found to be —0.021
&0.005 cm '. A phonon-assisted energy-transfer mechanism is postulated to account for the existence of
the optically detected spin-resonance spectrum.

I. INTRODUCTION

A SUBSTAXTIAI. amount of attention has been
given to the subject of chromium ion pairs in

ruby (n —Al&O&. Cr' ) over the past several years. In
particular, experimental work on the optical spectrum, '
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t Based on part of the Ph.D. dissertation of M. J. Berggren,
Stanford University, 1969 (unpublished).
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(1968); and references therein.

and on the paramagnetic resonance spectrum, ' ' as
well as theoretical work on systems of such pairs of
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