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The orientation dependence of the nuclear-magnetic-resonance linewidth in a single crystal of isotopically
pure Sn'® has been interpreted in terms of the radial dependence of the pseudodipolar interaction. Lorent-
zian lines have been observed which are consistent with the existence of exchange narrowing and which,
together with supplementary measurements of the second moment of the Sn'¥ resonance in tin of natural
isotopic abundance, lead to an estimate of 1121 kHz for the strength of the scalar exchange interaction.

INTRODUCTION

HE study of the anisotropic properties of the

nuclear magnetic resonance in single crystals
of metals enables an accurate direct measurement of
quantities not readily obtainable from an analysis of
data from powdered specimens. To date, studies have
been made of the second moments of the resonance line
in aluminum,! the Knight-shift parameters in tin??
cadmium,®# thallium,® mercury,® gallium,” and mag-
nesium,® and the quadrupole interactions in magne-
sium® and gallium.® Relaxation-time studies have been
made in tin!® and in copper and aluminum,!! oscillations
in the Knight shift with magnetic field have been
studied in tin,”® and the existence of diamagnetic
domains has been established in silver.”® The present
work is concerned with an analysis of the orientation
dependence of the resonance line parameters in an
isotopically pure single crystal of Sn''®) together with
some additional measurements upon a specimen of
natural isotopic abundance.
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THEORY

As is well known," the nuclear-magnetic-resonance
line-shape parameters are determined by the interaction
between the nuclei in the specimen. These comprise not
only the direct dipolar interaction, but also the indirect
interaction which arises from the coupling of nuclei
to the electrons through the hyperfine interaction. The
latter is separable into two contributions of differing
symmetry whose relative strength depends upon the
electron wave functions, namely, the scalar-indirect-
exchange interaction of Ruderman and Kittel,'> which
has the form J;I;-1;, where J;; is the scalar-exchange-
constant coupling the nuclear spins I; and I;, and the
pseudodipolar interaction postulated by Bloembergen
and Rowland,'® which has the form B,;;(1—3 cos%;;)
X I;- I, where B;;is the pseudodipolar coupling constant
and 6;; is the angle between the direction of the applied
magnetic field and 7,;, the vector joining the two nuclear
sites.

The general expression for the second moment of the
resonance line from an isotope of abundance f; in a
specimen containing a second isotope having the same
nuclear spin and an abundance f, is'®

(D) =3 I+ D2 f1 2 (Bt Iy ri7)?
+(4/9) f2 22 (Bij+nyryorii)?](3 cos®di;—1)?
UV 2T =3 U+DA 230 T3
X (Bij+ h2’71')’271'j—3) (3 COSZOij‘—‘ 1) . (1)

The summation is taken over all nuclear sites, and v,
and v, are the gyromagnetic ratios of the two different
isotopes.

For the special case of a specimen containing only
one isotope with a nuclear spin the expression reduces
to

(86?) =1 I+ DI T (Bigyihirs )
x (3 COS20,']"— 1)2. (2)
4 J. H. VanVleck, Phys. Rev. 74, 1168 (1968).

15 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
18 N. Bloembergen and T. J. Rowland, Phys. 97, 1679 (1955).
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F16. 1. Isotopically pure Sn'*® resonance signal in the [001] direction together with theoretical fit corresponding to the derivative
of x"'+4bx’, where x'’ is a Lorentzian absorption mode of linewidth 1.45 kHz, x’ is the dispersion mode, and =0.68. The abscissa is

marked at intervals of 1 kHz.

It is convenient to rewrite the expression in the form

(Aa) =3 (I+ Dk f X (Bif+1)?
X (3 cos?i;—1)ri%, (3)

where B;/=Biy:*/y*h? is now the ratio between the
pseudodipolar and normal dipolar interactions between
the given nuclei. As shown in the Appendix, this expres-
sion may be analyzed to show that the most general
angular variation of the second moment in isotopically
pure tin is described by four independent parameters:

(Aw?)= (4 cos4®+ B) sin'®@+C cos?® sin?0O
+D(3 cos?’@—1)2, (4)

where © and @ specify the orientation of the applied
magnetic field with respect to the crystallographic
axes.

One of the striking characteristics of the above equa-
tions for isotopically pure tin is their independence of
the scalar exchange coefficient. This, however, does
affect the line shape through its contribution to the
fourth and higher moments, and in the particular case
of a strong scalar exchange interaction, the model of
Anderson and Weiss!'” predicts an “‘exchange-narrowed”
Lorentzian line shape having a cutoff of the order of the
exchange frequency away from the resonance frequency
and resulting in a second moment which is proportional
to the linewidth (8w) (defined as the peak separation of
the derivative)

(Aw?)= (V3/m)J (dw) , ©)

where J is a suitably averaged scalar exchange constant.

EXPERIMENTAL DETAILS

The measurements were made with a Pound-Knight
spectrometer upon the isotopically pure Sn'? single
crystal described by Schone and Olson.!8 It consisted of
a thin-walled hollow cylindrical crystal surrounding a
solid copper cylindrical core, and was mounted within
the coil of the spectrometer, and oriented with respect
to the magnetic field with the aid of x-ray photographs.
The measurements were carried out in a 10-kG mag-
netic field produced by a high homogeneity Varian
electromagnet and performed at a temperature of
1.2°K to obtain the largest signals. The natural tin

" P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269
(1953).

18 H. E. Schone and P. W. Olson, Rev. Sci. Instr. 36, 843 (1965).

single crystal was in the form of a cylinder § in. diam
and 1 in. length of stated purity 99.9999, prepared by
Metals Research Ltd., Cambridge.

ISOTOPICALLY PURE TIN RESULTS

A typical signal observed with phase-sensitive detec-
tion using a 1-sec time constant and magnetic field
modulation of amplitude one tenth of the linewidth is
shown in Fig. 1. As a consequence of the phase shifts
occurring during the penetration of the rf field into the
metal, the signal is a mixture of absorption and dis-
persion mode derivatives.'?

The signal is indistinguishable from a Lorentzian
derivative as far out as it is observable, in agreement
with free induction decay studies on the same sample!®
and implies that a determination of the second moment
from the results is not meaningful. A comparison with
the line shapes observed for Sn'* in a sample of natural
isotopic abundance suggests that exchange narrowing
is responsible for the Lorentzian lines. We would there-
fore expect the linewidth to show the angular variation
predicted for the second moment:

(bw) = (w/V3J){Duw?)= (A’ cosdd+ B’) sin*®
+C’ sin?@ cos’@+D' (3 cos’@—1)2.  (6)
Figures 2 and 3 show the angular variation of the ob-

served linewidth in two orthogonal crystal planes

[oo1] plane of rotation-
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F16. 2. Angular variation of the linewidth in a plane contain-
ing the [001] axis. The solid curve is the fitted theoretical
variation.

¥ A. C. Chapman, P. Rhodes, and E. F. W. Seymour, Proc.
Phys. Soc. (London) B70, 345 (1957); P. S. Allen and . F W.
Seymour, ibid. 82, 174 (1963).
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F16. 3. Angular variation of the linewidth in the basal plane. The
solid curve is the fitted theoretical variation.

together with the solid curve resulting from a computer
fit to the best values for the four parameters which are
A’=0.28 kHz, B'=0.60 kHz, C'=2.33 kHz, and
D'=0.36 kHz. It should be noted that it is not possible
to fit the square of the linewidth to the allowed form,
and it is concluded that the results justify the assump-
tion that the linewidth is proportional to the second
moment. Indeed this is taken as evidence of exchange
narrowing.

However, to determine the coefficients in Eq. (4) it
is necessary to relate the linewidth to the second
moment in at least one orientation. A number of efforts
were made in several orientations by increasing the
modulation amplitude to improve the signal-to-noise
ratio and thereby to allow the signal to be observed for
a further distance from the center frequency. A digital
voltmeter was used to monitor the output of the phase-
sensitive detector since the signal could not usefully
be contained on the chart recorder.

However, despite the fact that the signal under these
conditions was sufficiently strong to be observed without
phase-sensitive detection on the oscilloscope, we were
unable to detect any departure from a Lorentzian
shape within the limits of our experimental uncertainty.
The final limit here was the determination of the exact
position of the baseline and the observation of very

TasLE I. Contributions of various terms to the second moment
in natural tin assuming J =10 or 12 kHz. The powder linewidth
has been inferred from the orientation dependence in the single
crystal.

Line- Second Dipolar and
width moment pseudodipolar Exchange
Orientation (kHz) (kHz)? (kHz)? (kHz)2
10 12 10 12
10° from [001] 1.35 3.94+0.4 0.90 1.08 3.0 2.8
[100] 1.23 3.7+0.4 0.82 0.98 2.9 2.7
Powder 0.92 2.5+0.3 0.61 0.73 1.9 1.8
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TaBLE II. Relative contributions of neighboring shells of
nuclei to the coefficients 4, B, C, and D assuming only a direct
dipolar interaction.

Shell Number
number of atoms A B C D
1 4 0.802 0.802 0.955 0.129
2 2 0 0 0 0.302
3 4 0.088 0.088 0.948 0.002
4 8 —0.143 0.143 0.342 0.016
5 4 0.006 0.006 0.178 0.010
6 4 0.018 0.018 0 0.004
7 4 0.001 0.001 0.031 0.005
8 8 —0.004 0.004 0.088 0.003
Sum after 21 120 0.769 1.109 2.684 0.484

weak satelite lines indicating the presence of small
misoriented portions of the specimen. On the basis of
our observations we concluded that the signal is prob-
ably Lorentzian to at least 10 kHz from the center
frequency, and thus we have J > 10 kHz.

NATURAL TIN RESULTS

In an attempt to determine further the exchange
parameters, we have also studied the second moment of
the resonance line in a tin single crystal of natural
isotopic abundance. In this case the second moment is
given by the expression (1), which (since yi~~y,) may
be rewritten in the form

Aw?)=[f1+ (4/9) fs{Aw*) 150+ 5L (I+1) f2 2 T2
—%I (I+ l)h_lfz Z J,-,-(Bij-{-h"’yzrij‘a)
X (3 cos¥;;—1), (7)

where (Aw?)1so is the second moment for isotopically
pure tin given by Eqgs. (3) and (5). We may also note
that the term in (3 cos?#—1) is expected to be small for
symmetry reasons and is identically zero when a poly-
crystalline average is taken. Further, we assume the
value of J in the previous equations is equal to
(3iJi)'2. This is presumably correct in the weak
correlation limit.

Unfortunately, the rather weak signals obtained for
natural tin make an accurate determination of the
second moment difficult. We have included the two
results which we feel are the most reliable together with
the value for a powdered specimen determined by Alloul
and Deltour.®® In addition, these authors have made
spin-echo studies in tin alloys which have led them to
suggest that the scalar exchange interaction between
nearest neighbors J;=4.1 kHz. It is interesting to note
that if we assume this value for the six nearest neighbors
we obtain J =10 kHz and the term in }_; J,;? yields a
contribution to the natural tin second moment of
1.9 (kHz)%. In Table I are shown the experimental
results for natural tin together with the contributions
from the dipolar terms for /=10 and 12 kHz. The

% H. Alloul and R. Deltour, Phys. Rev. 183, 414 (1969).
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difference may be ascribed to the term in Y_; J;? which
is predicted to be 1.9 and 2.8 (kHz)? respectively. It
should be noted that the neglect of the cross term in
(3 cos?0—1) is justified experimentally by the similarity
between the values for the [001] and [100] orienta-
tions, since it can be shown to contribute with opposite
sign in the two cases. We therefore conclude from the
present results that J=1141kHz and }_; J ;2= 120420
(kHz)2.

INTERPRETATION

The coefficients A, B, C, and D may now be deter-
mined by use of the value /=11 kHz to obtain the
values 1.69, 3.64, 14.12, and 2.18 (kHz)?, respectively.
Whereas the absolute accuracy of these coefficients
depends upon the accuracy of J, we note that their
relative magnitude is independent of J. We now attempt
to relate these to the pseudodipolar coefficients coupling
various pairs of nuclei. In particular, it is relevant to
note that Eq. (3) contains a dependence upon 7;;75, so
that the summation is expected to converge rather
rapidly. To illustrate, we show in Table IT the contribu-
tions from the various shells of neighbors to the con-
stants 4, B, C, and D from the dipolar interaction alone
(all B;;=0), from which we may observe that the sum
over the first four shells is close to the final summation,
except in the case of the coefficient C where a 179, con-
tribution still remains. Since we have only four param-
eters at our disposal, we have considered two special
cases: (a) B;;#0 for the first four shells of neighbors
only; and (b) B,; is constant for all shells outside the
third shell, which is consistent with the theoretical form
of the interaction at large distances. Table III shows
the results for (1+ B;;)? obtained in the two cases.

As expected, the third coefficient is the most sensitive
to the choice made, since it is clear from Table II that
this coefficient makes a dominant contribution to
coefficient C. However, the very small difference between
the two cases is an encouraging indication of the rapid
convergence of the solution and its comparative inde-
pendence on contributions from neighbors correspond-
ing to 1> 4. Finally, we have evaluated the two possible
values of B;; from the results (Fig. 4) together with the
expected radial form predicted for a spherical Fermi
surface. The deviation is hardly surprising since it is
well known that the white-tin Fermi surface deviates
considerably from the free-electron sphere.2r We note
that the contributions to the pseudodipolar interaction
from the first four sets of neighbors represent contribu-
tions in four different directions, the [2017], [001],
[023], and [111] directions, respectively. Since the
interaction depends upon the Fermi wave vector kp,
the curvature of the Fermi surface, and the nature of
the electronic wave functions at extremal points of the
Fermi surface, a detailed calculation is necessary to
relate the different directions. Such a calculation has

2 J. E. Craven and R. W. Stark, Phys. Rev. 168, 849 (1968).
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F16. 4. Possible values of B;; compared with the free-electron
radial dependence for kr=1.647X10%. The theoretical curve
(solid line) has been normalized to the value at the first neighbor.
The dashed curve is the negative of the solid curve corresponding
to the other possible sign of the interaction, and the circles are
the experimental points.

recently been performed for lead,”? cesium,® and
potassium,® and in view of the present detailed
knowledge of white tin, could readily be carried out
here also. A cursory glance at the white-tin Fermi
surface in the fourth zone? reveals a hole surface with
fairly flat faces perpendicular to the [001] direction,
which should give rise to a strong interaction in the
direction of the second-nearest neighbors. The actual
magnitude will, of course, depend upon the electron
wave functions on this piece of surface. In this connec-
tion we mention that while the radial dependence of B
and J in a given direction is the same, the relative
magnitudes of these two quantities may vary according
to the electron wave functions which characterize the
important pieces of Fermi surface for each direction.
We cannot therefore infer the relative magnitudes of
Jir for the four shells of neighbors although we may
anticipate from the previous Fermi-surface considera-
tions that the coupling between second-nearest neighbors
may well be dominant, and it is likely that the coupling
of 4.1 kHz measured by Alloul and Deltour is attribut-
able to these.

TasLE IIT. Values of (14-B,;)? deduced from the experimental
results assuming two forms for the contributions from distant
neighbors.

(14+By)*  (1+B2)*  (14By)? (14B,)?
B;=B, 2.09 5.27 7.53 5.65
24
B;=0 2.08 5.23 7.38 5.58
i>4

% L. Tterlikkis, S. D. Mahanti, and T. P. Das, Phys. Rev.

Letters 21, 1796 (1968).
*S. D. Mahanti and T. P. Das, Phys. Rev. 170, 426 (1968).
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CONCLUSION Substituting (9) into (8) gives
The present work illustrates the detailed information . ‘ me=t2mi=t2
obtainable from single-crystal studies of nuclear- (AW)=K(@Em)*X ey 2 2 Von(0i,9i)
magnetic-resonance lines in metals. (Note added in I mmE =2
proof. A study of the pseudodipolar interaction for Nb XYV o (0:5°,0:) Y om* (O,8) ¥V 0 (O0,8).  (A3)

has recently been published by one of the authors.*)
Since the results are consistent with an interaction
having dipolar symmetry, the work is also an indirect
test of the validity of the pseudodipolar approximation.
Clearly, a more accurate determination of the natural
tin second moments is necessary, or possibly measure-
ments upon some other isotopic composition with a
more favorable signal strength. However, the present
results are sufficiently accurate to merit a detailed calcu-
lation and should prove to be a good test of the electron
wave functions in tin.
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APPENDIX

Equation (3) may be rewritten in the form

(Aw*) =K 3 a;[ Pa(coshi;) T, (A1)
i

where K=3h2'y4] (1+ 1), ;= (1+Bij/)2rij_61)2(c050[]‘)

may be expanded in terms of spherical harmonics

according to the equation

m=+2

Py(cosij) =%m 2° Vom(0:5,8i9)Von(0,®), (A2)

m=—2
where 6°, and ¢° represent the angles relating 7,; to
the crystallographic axes and ® and & represent the

angles relating the direction of the applied magnetic
field to the crystallographic axes.

% H. E. Schone, Phys. Rev. 183, 410 (1969).

This general expression may now be reduced according
to the symmetry of the crystal structure. For example,
if the crystal has reflection symmetry in the XZ and
YZ planes, then in general for a given a;; there will be
four atoms with the angular coordinates, (6:;%¢:;°),
(0:5%,— i), (0:5¢, 7—¢i;°), and (6,56, 7+¢i;¢). The sum
over j then involves the following term in ¢, for
arbitrary m and m’:

fmm/=ei(m+m')¢,-jc+efi(m+m’)4>,','c+ei(m+m’)1r
X [ei(m+rn’)¢ijv+ e-i(m+nl')¢iic:| ,
which is zero if (m+m') is odd.

Evaluating Eq. (10), retaining only terms with
(m+m’") even, gives

(Aw?y= (A" cosa®+ B'")[ Pay(©) P+C"[Prr(©) T
+ D[ Pso(©) 4 E/'[ Pay(®) [ P2(©) Jeos2

+F"[Py(0) ] cos2®, (A4)
where
A//=Z aij:l ij”,
j
and
A" = (37)2K[ P (6:;°) T cos(4:)%)
B"=3 ai;Bij",
B
and

B = (%7")221{[1)22(01:]‘6)]2, etc.

For tetragonal symmetry, the equation is further
reduced since no term in cos(2®) is allowed, and we
obtain Eq. (4).

Subsequent to deriving this result, the work of
O’Reilly and Tsang?® was brought to our attention,
which confirms the fact that four independent param-
eters are required to specify the most general allowed
angular variation of the second moment in the tin
crystal structure.

% D. E. O'Reilly and Tung Tsang, Phys. Rev. 128, 2639 (1962).



