
densit~ reniains on the nickel. This seems to be an
unreasonably snsall an&ount, especially since the Xi"+
superhyperfine structure indicates only about 18%
density on the neighboring ligands. The greater the
positive charge of an ion, the greater should be its
participation in covalent bonding with the neighboring
anions.

The i%i+ g factor may be reduced also by the Jahn-
Teller effect. The theory in this case would be compli-
cated. The nickel l2 functions can interact v ith two t2

nornsal modes of the tetrahedral cluster and also with
the e mode. The spin-orbit coupling constant of Xi+

is rather large and lTlal be co111parable xvlth thc Jahn-
Teller interaction, so that the usual approximations"'
m l,de in treating such a problem would not be valid.
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Influence of Simultaneous Static and Time-Dependent Quadrupole
Interactions on Gamma-Gamma Angular Correlations*
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Ke derive the form of the perturbation factors for the angular correlation of two successive y rays when the
intermediate state is under the influence of an axially symmetric static electric field gradient plus a small
randomly fluctuating quadrupole perturbation. The Bloch-Kangness-Redfield theory of nuclear relaxa-
tion is applied to calculate the evolution of the density matrix, and the form of the perturbation factors is
calculated for several special cases in single-crystal and powder sources.

I. INTRODUCTION
'
M~fiRIXG the past several years the stud~. of nuclear

~ ~ hyperfine interactions by perturbed angular cor-
relation techniques has been shown to be a profitable
way of obtaining new information about solid- and
liquid-state problems. The great variety of experimental
information that can be obtained is illustrated in Refs.
1 and 2, and as experimental technique develops it is to
be expected that the field will become even broader.
One area of particular interest that can be studied by
these techniques seems to be the detection of nuclear
relaxation processes in solids.

Relaxation effects on angular correlations have pre-
viously been discussed for special cases by Abragam
and Pound, ' who treated the case of isotropic Auctua-
tions in liquids, by Micha4 for the case of magnetic
relaxation in solids, and by Tang and Osborn, ' who dis-
cussed relaxation due to crystalline vibrations.

* Work partially supported by Conselho Xacional de Pesquisas
(Brasil), Conselho de Psequisas (UFRGS), and U. S. Air Force
Ofhce of Scientific Research, Grant Xo. AF-AFOSR-1280-67,

'Perturbed Angular Correlations, edited by E. K.arlsson, E.
Matthias, and K. Sieghbahn (Forth-Holland Publishing Co. ,
Amsterdam, 1964).

2 Dyperfine Structure and nuclear Radiations, edited by E.
Matthias and D. A. Shirley (North-Holland Publishing Co. ,
Amsterdam, 1968).

"A. Abragarn and R. V. Pound, Phys. Rev. 92, 953 (19)3).
4 D, A. Micha, Phys. Rev. 156, 627 (1967).' I.. H. Tang and R. K. Osborn. Phys. Rev. 146, 695 (1966).

ln this paper we present an application of the Bloch-
AVangness-Redfield theory of nuclear relaxation to the
calculation of the perturbation factors for angular cor-
relations of successive y radiations in solids. In par-
ticular, we treat the case of an odd-.4 nucleus in the
presence of an axially symmetric electric field gradient
and a weak fluctuating perturbation; emphasis is given
to quadrupole relaxation effects as an example demon-
strating the effects to be expected from some typical
relaxation mechanisms in solids, such as molecular
torsion oscillations and planar and isotropic hindered
rotations. ' The extension to more general cases is dis-
cussed briefly.

In Sec. II, we develop the density matrix describing
the intermediate state as a result of the combined
static and fluctuating perturbations; in Sec. III, we
show the application of the resultant density matrix
elements to the calculation of the perturbation factor
for several different experimental situations, and in Sec.
IV a discussion of the results is presented.

II. EVOLUTION OF DENSITY MATMX

The angular correlation function of two successive y
radiations emitted in directions specified by the wave
vectors kl and k., respectively, and separated by a time

' A. Abragam, 2'/Ie Principles of nuclear Afagnetisn~ (Oxford
University Press, I.nndon, 1961), Chal~. X.
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interval t during which a perturbation acts on the inter-
mediate state can be v ritten as

W(k, ,k„t) =Tr(p(kt, t)p(k. ,0))

= 2 &ol p(kr, t) lo')&o'I p(k2, 0) lo), (2 1)

The most important of these conditions for our
purposes are:

(a) There exists a time r, such that for r))r, the
correlation function dehned as

a, a'

where p(k2, 0) is the density matrix of the second radia-
tion and has matrix elements

1 T

g(r) =-
2T -T

K(t)K(t r) tl—t

&a'
i
p(k, ,0) in) I
=(4)r)'/2P( —1) ~It.,

k1 Cl
I

is zero. 7., is called the correlation time.
(b) The perturbation E(t) is "small enough. "This is

(l ) (2 2) specKed by the req i e e t th t the e e ist tin es t

such that2 ~

~

~

~

~

Ih. "-Ir,t((1 and t))r,
and p(k{,0) is the density matrix describing the first
radiation with matrix elements

(..
I p(k„o) lo'&

I I kg
=(4~)'"Z( —1) 4{ I'/, „*(k)). (2.3)

/C'& Q O.'P,
The factors Art and Ar., appearing in Eqs. (2.1) and

(2.2) are the usual angular correlation coeKcients. '
During the time the nucleus is in the intermediate

state, interactions of extra nuclear fields with the elec-
tric quadrupole and magnetic dipole moments of the
nucleus will cause changes in the density matrix of the
intermediate state. If H is the Hamiltonian describing
this interaction, then the evolution of the density
matrix is governed by the differential equation

p= (—i/h)[II, p] (2.4)

with the boundary condition given by Eq. (2.3) above.
We are interested in the solution of Eq. (2.4) fo«he

special case where II is composed of a strong static field
Ep and a weak randomly fluctuating time-dependent
interaction E(t) We follow . the development given in
Refs. 6, 8, and 9. If

simultaneously.
(c) The function K'(t) is a stationary random function,

that is, the average of E(t) over time is equal to the
average over ensembles.

(d) It is assumed that the time avera, ge of the fluctua, t-
ing field is zero. However, if this is not the case the re-
quirement can be satisfied by a suitable redefinition of
the static perturbation Ep.

(e) Finally the solution of Eq. (2.9) above applies
only for times t larger than 7..

Equation (2.9) can be written in a matrix form as

p-*=2 ~- pp
p*' " '+'"ppp*«) (210)

PP'

In this expression the subscripts a and P refer to eigen-
states of the Hamiltonian Ep, while the symbols o. and
p appearing within the parentheses are abbreviated
notations for the angular frequencies tp = E /It of those
states. This standard notation will be used throughout.

The defini tion of the matrix E pp in terms of the
matrix elements of the Hamiltonian E(t) is given by

II= Ep+K&t), (2 a, +aa'PP'= [ atlaaP' 'P( o l) )+paPa P (o —/-:)
2A

we have
p= ( i/It)[Kp+E&t)

which has the immediate formal solution

p(t) —p
—{i/A) KPtpP(t) p {{/A)KPt

(2.6)

(2.7)

—t'- p & A.p7-h' /3) t-pZ 8—7«.—p (v t3')], (2.11)—

where the spectral densities pl(cp) are given by

where p"(t) is the solution of the differential equation

p*= (—i/tt) [E*(t),p*]. (2.8)

8- pp(~)= &( IK(t)l ')(P'IK« —)IP)).
Xp '"'dr, (2.12)

As is shown in Refs. 6, 8, and 9, Eq. (2.8) can be
written under certain conditions in the form where

& ), means an ensemble average. We restrict
ourselves to Harniltonians of the form

P [E*(t),[K"(t —r) p*(t)]]dt. (2.9) K(t) =Q f„p(t)[E„p+(K„p)*], (2.13)

VK. Alder and R. M. Steven, Ann. Rev. Nucl. Sci. 14, 403
(1%4).

8 C. P. Slichter, I'rincip/es of Magnetic Resonance (Harper and
Row Publishers, Inc. , New York, 1963},Chap. 5.

9 A. G. Red6eld, IBM J. Res. Develop. 1, 19 (1957}.

where the E„& are tensor operators of rank q, and the
f„p(t) are real random func, tions of time. We will be
especially interested in the case {I=2 (quadrupole
perturbations) .



A NQULAR CORRELATIO XS 573

pa a'ee' = P g„'(a&)(Ia'qpI Ia)(rpqpI Ip')

X— — —, (2 14)
2I+1

where the g„'(a&) are given by

g.'(~) = f„~(t)f„~(t r)e*"—dr (2.15)

and f„(t) and f„(t) are assumed to be uncorrelated.
In solving Kq. (2.10) above, it is usual to restrict

oneself to those matrix elements for which E —E ~

—Ep+ Ep.= 0, that is, to those terms for which
e'& a' e+&'&'=1. (The reasoning behind this approxi-
mation and its limitations are discussed in the refer-
ences, especially in Ref. 3.) The relaxation equation
(2.10) then becomes

p-'=Z &-ee pcs* ( —o')=(tf —&') (2 6)
pp'

These equations have the form of an eigenvalue
problem and, for given values of the matrix elements
R, can be solved using the standard techniques for such
problems.

If we assign an index v to each pair of levels ee', the
element p„~(t) of the density matrix can be written as

Ke further specialize to the case where the static
Hamiltonian Eo is axially symmetric, which allows the
labels a and P to be taken as magnetic quantum num-
bers. If this is the case, the spectral density functions
can be written using the %igner-Eckart theorem as

E =E, where n is the projection of the nuclear spin
on the symmetry axis of the 6eld gradient (Kramers
doublets). Further, no two energy separations between
diferent pairs of levels are equal.

In this case, it can be seen by inspection that an
important simplification can be made in the set of equa-
tions represented by Eq. (2.16). Namely, it can be seen
that there is no coupling between elements of the type
p

* and those of the type P *. The "diagonal" ele-
ments are uncoupled from the "oR-diagonal" elements.
Thus these two cases can be treated separately.

In the particular case of the oR-diagonal elements, the
fact that no two pairs of levels have the same energy
separation means that in the equation for the density
matrix element p .~(t) only four terms can contribute
in the right-hand side. These are R pp, R p p,
R p p, andR p p. Kith aHamiltonianof theform
of Eq. (2.13), only the first of these turns out to be non-
zero. Thus Kq. (2.16) for the off-diagonal elements has
the simple form

Paa' Raa'pp'Ppp'

and the solutions are

(2.21)

p. .*(t)=e ". 'Pep
—(0), (2.22)

paa =Z claeae(pee paa ) )
p

(2.23)

~ea' Rae'pp' ~

The equations for the diagonal elements do not have
such a simple structure. They can be rearranged and
written in the form

p *(t)=Q b e ""'p *"(0),
with the formal solution )see Eq. (2.19)]

(2.17)
*(t)=+( IG*(t) IPP)p *(0). (2.24)

where the p,*"(0) are the eigensolutions of Eq. (2.16)
and have the form

p„"(0)=Q c„„p„„*(0), (2.18)

p:(t)=Z( IG'(t)lp)p (0), (2.19)

and furthermore the matrix c„„ is the inverse of the
matrix b„„.

In the general case it is necessary to solve Eq. (2.16)
numerically to obtain values for the eigenvalues and
the expansion coefficients c„„.

Substituting Kq. (2.18) into Eq. (2.17), we obtain the
usual form

In the general case, it would be necessary to calculate
the values of the spectral density function using the
Hamiltonian (2.13) and to solve Kq. (2.12) numerically,
obtaining solutions of the form of (2.14) for each ele-
ment. For the usual case where polarizations are not
measured, a total of 2 (2I+ 1) relaxation constants would
appear in various combinations for each element p
of the density matrix at time $.

An important special case exists when the relaxation
mechanism is isotropic, that is, when g„'(cu) in Eq.
(2.15) is the same for all values of p and co. It has been
shown previously that in this case the relaxation con-
stants are given by

where
(~IG'(t)

I p&=Z &-c"e ""'. (2.20) l .=—LZ A-e-e —a.],
A'

The physical case we treat here is that of an odd-A
nucleus in an axially symmetric electric field gradient.
In this case, the levels are pairwise degenerate with

where o, is an eigenvalue of Eq. (2.23), and that the
expansions coefficients c„„are proportional to vector
coupling coefficients.
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The general case of isotropic perturbations has been
considered in Ref. 10, v here the necessary conditions
for the expansion coefficients to be proportional to
vector coupling coefIicients are discussed. The angular
correlation function has a particularly simple form when
this is the case Lsee Eq. (3.3) below j.

Starting from Eqs. (2.7) and (2.16), we can write
the general form

p (k& /) =P(«'! G(&) IPP')~», (O) (2.23)

14'(k3,k3,I) =43r Q Q A3,A3,Gl„g ,»'(I).
klan Irma'

X V3,"*(k,) F~.,'(k,,), (2.27)

where we define the perturbation factors G ,kr»'(/) as

where, from Eqs. (2.7) and (2.19), we see that

(«'!G(I)!PP')=e ' "( «!G*(&)!PP'). (2.26)

Substituting, finally, Eq. (2.25) into Eq. (2.1), we can
write the correlation function as

perturbation factors G&.(I) are given by

(3.1')

The following special cases exist:

(a) The static perturbation is zero and the fluctuating
Hamiltonian is isotropic. The original density matrix
may be chosen diagonal, with the result that the off-
diagonal elements are always zero. The diagonal ele-
ments at time t are given by Eq. (2.19).The perturba-
tion factors for the powder source as well as for the
single-crystal source are given by

a1P1r

(3.2)

(I I k,
)(I

I k)
The sums over the vector coupling coefFicients can be
performed, yielding the final result for the angular cor-X(«'!G*(&)!PII'), (2 2&) relation function (see Ref. 1)

and where the factors («'!G(t)!PP') are to be calcu-
lated, as outlined in this section, from the eigensolutions
of the diagonal and ofI'-diagonal parts of the relaxation
matrix. Equation (2.28) may be considered as the
general form for the perturbation factors for sources in
the form of sing)e crystals.

III. PERTURBATION FACTORS

The above solutions (for the elements of the density
matrix as a function of time) can now be used to derive
the detailed form of the angular correlation function
resulting from the combination of a static and a fluctua-
ting perturbation.

The more usual experimental situation is that of a
polycrystalline source. The perturbation coefficients for
this case can be easily obtained using the technique of
Ref. 11, which consists of averaging over the angles
specified by kr and k3 in Eq. (2.27) above while holding
the angle between k~ and k2 constant. One obtains the
general relation (valid for time-dependent, time-inde-
pendent, and asymmetric perturbations)

+(k„k,,&) =P QI, &'&P I, "'G& (l)Pa(cos8), (3.1.)

where 8 is the angle between ki and k2 and where the

' D. Dillenburg and Th. A. J. Maris, Phys. Letters 17, 293
{1965}."S.Devons and L. J. B. Goldfarb, in Vaedbnch der Physik,
edited by S. Flugge {Springer-Verlag, Berlin, 1957}, Vol. 42,
p. 362.

II (k3,k, ,t) =p .43"'43.'-'e ""P3(cos8). (3.3)

(b) The static perturbation is an axially s&nzmctric
field gradient, while the fluctuating perturbation is iso-
tropic. The perturbation coefFicients can be written for
a single-crystal source as

G~, k,»(t) =P L(2k, +1)(2k3+1))'»

g
—(&/&) (rx—a') t

while for a crystalline powder source one obtains

e—)t/g t I l k '
G3(i) = —+ g

2k+ 1 rxArx' Q —o.' p

X~—[3i(a3—a' )~q(J~ 33~~'i (3
—
4)7

where co@ is the usual quadrupole frequency. '
(c) Finally, for the most general case treated here,

that of an axially symmetric field gradient combined
with a fluctuating anisotropic perturbation, we obtain
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in the single-crystal case the expression metrics of the relaxation matrix and to watch for de-

generacies or for equivalence of energy separations in

each special case.

while in the crystalline-powder case the perturbation
factor can be obtained from Eq. (3.1').

It is interesting to note in the above formulas that
the relaxation of that term in the angular correlation
which does not oscillate in time is always connected
with the diagonal elements of the density matrix,
while the relaxation of the terms which oscillate in time
is related only to the o6-diagonal elements of the density
matrix. The same separation between the two different

types is observed in XMR experiments, where the be-
havior of the diagonal elements determines the relaxa-
tion times T~ while the off-diagonal elements determine
the relaxation times T2.

It is, furthermore, interesting to note that if it is
possible to measure the relaxation constants of all of
the diGerent oscillating parts of the perturbation factor,
a fairly direct relationship between different elements
of the relaxation matrix R can be determined, and this
can provide important qualitative information as to
the structure of the relaxation mechanism. On the other
hand, the structure of the nonoscillating part of the
perturbation factor, especially whether it consists of
more than one exponential, can provide information on
the symmetry of the Ructuating perturbation.

We note that the equations in this paper have been
derived for the particular case of an odd-3 nucleus in
an axially symmetric static 6eld gradient. We have
further emphasized quadrupole-type fluctuating 6elds,
although the formulas have been derived for a more
general form. The generalization to more complex situa-
tions such as aspmunetric 6eld gradients or even-, 4 nuclei
can be done in a manner similar to that used for the
case of static perturbations (Ref. I). In making this
generalization, it v ould be necessary to check the sp m-

IV. CONCLUSION

Ke have discussed the application of the Bloch-
Wagnness-Redfield theory of nuclear relaxation to the
interpretation of angular correlation measurements in

solid sources in the presence of fluctuating perturbations
It has been shown that the theory permits derivation
of the form of the perturbation factor, and allows one
to predict the structure and the number of the different
relaxation coe%cients involved for various special
cases. In particular, it also allows one to use the exten-
sive literature of NMR in interpreting, in a very simple
way, angular correlation experiments involving relaxa-
tion.

A quite extensive treatment of the effect of relaxation
on the linewidth of Mossbauer spectra has been made
by Blume and Tjon" from a slightly diferent point of
view, and these authors show that their results can be
directly applied to the calculation of the perturbation
coe%cients in time dependent angular correlations.
The technique differs from that adopted here in that it
is basically model dependent. It has, however, the ad-
vantage that it can be used to discuss situations in
which t is comparable to or shorter than the correlation
time v„and thus allows the study of several cases of
experimental interest that can not be treated by the
formulas presented here.

The formalism developed in this paper has been used
to discuss measurements of the time-dependent angular
correlation of radiations from Hf' ' included in the com-
pound HfF7(XH4)3 providing useful information about
the molecular structure of this compound. '~
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