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Spherical-Coordinate Analysis of Ground-State Energy Eigenfunctions
for an Electron in the Field of a Finite Dipoles
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Ground-state energy eigenfunctions for an electron in the field of a stationary, finite dipole

are obtained in spherical polar coordinates. The analysis is made in two systems, one with

origin at the positive dipole charge and the other with origin at the dipole center. Results
show the number of partial waves needed as a function of dipole moment D, and the structure
of the radial functions throughout space. No regular nodal pattern in the radial functions for
different angular momentum partial waves was noted. The functions expressed in spherical
coordinates are available numerically for use in other calculations.

Previous calculations of the ground-state energy
eigenfunctions P, for an electron and a stationary
finite electric dipole were made in elliptic hyper-
bolic coordinates. ' Though the variational calcu-
lation was greatly facilitated by the use of these
coordinates, analysis of P in terms of spherical
polar coordinates is more relevant to an under-
standing of the interaction of electrons with polar
molecules. For example, one may be interested
in negative-ion formation, electron scattering, or
the influence of other forces on the interaction of
electrons with polar molecules. The previous re-
presentation does not yieLd physical insight into
these phenomena. In particular, a partial-wave
analysis gives the number and relative importance
of orbital angular momentum states in the electron
wave function for different dipole moments D. A
complete analysis of the wave functions of Ref. 1
has been made, ' and we summarize the findings
here.

%'ith reference to Fig. 1 we use the coordinate
systems (r,8,) and (r, 8) and write

t)'(), r/)=Q FI(r )& (cos8l)=Q G (r)&I(cos8), (I)
l=o L=0

where ($, r)) are the coordinates used previously. '
The coordinates (r, 8) are convenient in a number
of problems, particularly when other potentials
are treated in addition to the dipole potential or
when rotational excitation of the dipole about its
center is considered. For large dipole moments
and for comparisons with the properties of the
hydrogen atom, (r„8,) are more convenient.

The functions F~ and GE are found simply by
taking inner products, e. g. ,

1

Ef(r ) = 5 f($, g) P (cos 8 ) d(cos 8 ) . (2)

The functions g given in Ref. 1 were transformed
into (r„8,) and the integration in Eq. (2) performed
numer ically. A similar transformation yields

FIG. 1. Coordinate system
for electron and finite dipole.

Gf(r). Results thus found, agreed with those ob-
tained independently by direct numerical integra-
tion of the coupled radiaL equations which result
from expressing the Schrodinger equation in
spherical coordinates. ' Numerical values of the
radial functions F~ and G~ are tabulated in Ref. 2
for the complete range of dipole moments.

Some of the results are illustrated in Figs. 2-4.
In these calculations ten partial waves (l = 0, ... , 9)
were used. As expected, when D is near Dmin,
Ef and GI are practically identical (Fig. 2), and
the wave function is predominantly s and P. In
the limit of zero binding energy the wave function
goes smoothly into the continuum. This suggests
that the descritpion of low-energy electron scat-
tering from polar molecules requires at least s
and P waves. Since (r,) =(r, ) =1.85435x10', the

integrated probability density it)* it), from the
origin to the region where F~ and G~ do not differ
visibly, is «1. Figures 3 and 4 shows the radial
functions for D = 1.00002. Generally, the functions
are largest numerically near the dipole charges.
Although oscillatory behavior occurs for the
higher l values, no predictable node pattern was
found.
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FIG. 2. Radial functions Fg
(r~) and G~ (r) for D=0.67465.
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FIG. 3. Radial functions FE(r&) for D=1.00002. FIG. 4. Radial functions G~(r) for D=1.00002.
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