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The projection operator techniques of Zwanzig and Mori are used to obtain a generalized
Langevin equation describing the time evolution of the fluctuation of the microscopic phase
density

6g(x, p, t) =g(x, p, t) -(g(x, p, t))

for a classical many-particle system. This equation is then used to develop an exact kinetic
equation for the time-correlation function (6g(x, p, 0)bg(x', p', t ) ) [which is the generalization
of the Van Hove time-dependent pair correlation function G(r, t)]. In the lowest order of ap-
proximation, this kinetic description reduces to the Vlasov-like equation which has been used
to study neutron scattering from liquids. A less restrictive approximation is obtained by uti-
lizing weak-coupling perturbation theory to yield a generalized Fokker-Planck equation for the
time-correlation function. Other possible approximation schemes are also discussed.

I. INTRODUCTION

A variety of techniques have been directed to-
wards the calculation of time-correlation functions
in nonequilibrium statistical mechanics. & Re
cently, there has been particular interest in the
application of the projection operator techniques
developed by Zwanzig' for the study of irrevers-
ible processes. As one of several specific illus-
trations of projection methods, Zwanzig derived
a generalized master equation for the autocorrela-
tion function of a dynamical variable. This ap-
proach was subsequently generalized and extended
by Mori, who utilized projection operators simi-
lar to those of Zwanzig to derive a generalized
Langevin equation describing the time evolution of
an arbitrary vector A (t) whose components are
dynamical variables depending on the particle co-
ordinates of a many-particle system. This equa-
tion was then used to study the corresponding
correlation matrix( A(t)A ~ (0)), hence yielding a
generalization of Zwanzig's work.

In this paper, our objective will be the calcula-
tion of the classical time-correlation function

g (x, p; x', p', f) -=(5g(x, p, 0)6g(x', p', f)),

where 5g(x, p, f} -=g(x, p, f} —(g(x, p, t})

is the fluctuation from equilibrium value of the
microscopic phase density defined by

N
g(x, p, t} =-Q 5[x-x (f)]5[p-p (f}]. (l)

@=1

The time-correlation function 8 (x, p; x ', p', f } is
of particular interest in thermal neutron and light
scattering from many- particle systems since its

integral over p and p'is just the Van Hove density
correlation function' G(r, t }which, in turn is
directly related to the scattering cross section of
the system under investigation. By applying the
theory of Mori and Zwanzig, we will obtain a gen-
eralized Langevin equation for 5g(x, p, f} which
can then be averaged to obtain an exact kinetic
equation for the singlet density distribution func-
tion f,(x, p, f }—= (g(x, p, t ))&(0) However, of more
direct interest is the related kinetic equation which
describes the time evolution of the correlation
function Q (x, p; x ', p ', f ).

Recent theoretical investigations of neutron
scattering in gases and liquids by Nelkin et al .' ~'

have attempted to calculate G(r, f) by first ob-
taining and solving an approximate kinetic equa-
tion for 8 (x, p; x', p', f ). By suitable approxima-
tions, we are able to reduce the exact kinetic
equation to that studied by these authors. Fur-
thermore, the exact kinetic equation for 8 sug-
gests less restrictive approximations which

yield alternative kinetic descriptions of 9 [ and
hence of G(r, t) ] in a consistent fashion.

In the following work, we will first extend the
generalized Langevin equation of Mori to vectors
with continuous parameter dependence (in this
case, upon p). This will lead to an exact equation
describing the time evolution of 5g(x, p, i }. Then
by averaging this equation over a suitable ensem-
ble, we can obtain a kinetic equation for the singlet
density-distribution function f, (x, p, t) Following.
the workof Mori, we shall also derive an exact
kinetic equation for the time correlation function
8(x, p; x ',p', t } which will then be compared with
the existing approximate kinetic descriptions of
this quantity. As one possible consistent proce-
dure for obtaining an approximate kinetic equa-
tion, we have calculated in some detail the weak-
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coupling limit of the exact kinetic equation using
standard perturbative techniques.

II. DERIVATION OF KINEI'IC EQUATION FOR
&5[p —p (t)] —n5(k)M(p), (i0)

Consider a vector A whose components A (I') are
dynamical variables of the phase I' =- (xl, . .. , xA,
pi, . . . , piV} of a many-body system. Mori' has
demonstrated that the Louiville equation describ-
ing the time evolution of such a vector can be cast
into the form of a generalized Langevin equation:

where it has been noted that & g(k, p, t)& = n5(k)
&M(p), n being the equilibrium density, and
M(p) = (P/2')~ 2 exp(- Pp2/2m).

The extension of the generalized Langevin equa-
tion to such a continuous representation is straight-
forward:

dA=- ifIA (t)+ f d~y(~)A(t r) =f(-t),t
dt

where the frequency matrix 0 is defined by

ln -=&A(0)A*(0)& &A(0)A*(0)&-',

the damping matrix p is given by

9 (~) =-&f(r)f*(0)&&A(0)A*(0)&-',

and the random force f (t) is given by

f (t} e =-i(1—P)I,A(0) .

(2)

(4)

——i fdp'Q(p, p')A(p', t)+ f dr
0

x fd p'y (p, p', ~)A(p', t &) =f—(p, t).

The appropriate projection operator (6) becomes

PG(p) =- fdp'fdp" (G(p)A*(p'))0 '(p', p")A(p"),'(l2)
where Q '(p', p"}is the inverse of the static corre-
lation function defined by

P(p, p') -=&A(p)A*(p')) =no (p- p')M(p)

+ n'M(p)M(p')h(k),

Here, A* is the row vector adjoint to A; P is a
projection operation defined by its action on an ar-
bitrary dynamical variable 6 as

where h(k) is the Fourier transform of [g(r) —1],
g(r) being the static pair correlation function. By
its definition, Q '(p', p") satisfies

PG -=(G A*(0)&&A(0)A*(0)) 'A(0)
fd p'4(p, p')0 '(p', p")=&(p-p") . (i4)

and & ) denotes an average over the equilibrium
canonical ensemble p, (I') = e t H/, P

-=I/kT;
and I. is the Liouville operator I.—= i{H, ]. It is a
straightforward task to demonstrate' that

(f(t}A*(O)&= 0 .

Hence, by postmultiplying (2) by A*(0) and averag-
ing over p, (I'), Mori was able to derive an exact
equation for the correlation matrix

r(t) =-&A(t)A*(0))&A(0)A*(0)) ',
which took the form

dI"
„—-inr(t)+ f dv9(~)r(t-~)=0.t

Mori's generalized Langevin equation (2) will
now be used to study the time behavior of the dy-
namical variable 5g(x, p, t), or equivalently, its
Fourier transform in space 5g(k, p, t). To this end,
choose A(t) to be a "vector" whose "components"
A~ -A(p, t) are indexed by a continuous parameter
p and defined by

But substituting the explicit form (13) into (14),
we arrive at an inhomogeneous integral equation
for@-'(p, p" )

nM(p)@ '(p, p")+n'M(p)h(k}

y fd iM( i) y- z( a tt) g( zt)

It is straightforward to demonstrate that the
unique solution to Eq. (15) is

(p p ) = ~(P —p")/nM(p') —h(k)/[1+nh(k)] .
(i6)

Having obtained @ '(p', p"), we are now in a posi-
tion to explicitly evaluate each of the terms in (11).
First, note that the frequency kernel becomes

tfl(p, p') = fd p"&A(p)A*(p")&y '( " ') -(I t)

g
But A(p) = Q t}(p-p )+o(p),

S2
(18}
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N .k n
where o (p) =—Q e F 5(p- p ). (19)

Q=1 Bp

Hence, &A(p)A*(p"}&= (ik ~ p/m)Q(p, p' )

&(p p', t& = fdp" &f(P, t&f*(P",0)&0 '(p", p')

(f(p, t&f*(p', 0)& k(k)
Mp') 1+ a{k)

+ &o(p)A*(p")& .

To calculate (o(p)A~ (p")&, note that

N N
&a(p)A*(p")&= Z Q

~=1 p=1

(20)
x &f(p, t) fdp"f *(P",0}& ~

Note that f (p, 0) = i(l —P)I.A(p) = (I —P)A(p)

=(I-P)o(p)+' P (I-P}A(p)

(26)

WQ ~p'k
F

8
q(

-O.
)

-'k x (-„~))
= (/-P)o(p). (26)

mQ

F . I)(p p ))n5(k)M(p). (2()

~=1 Bp

The second term vanishes since (Fu& = 0. To eval-
uate the first term, define the microscopic current
and density

Hence, the second term in (25) vanishes since
fdp" o(p") = 0. Furthermore,

Po(p& = fdp' fdp "&o(p&A'(p')&4 '(p', p")A(p")

P M(p) "g
fdp "A(p")

m I + nh{k)

N . nP ikJ —e
k 1m

pk=- Z e " . (22)
Q=1

-=p(P) fdF'A(p" );

but fdp "A(p") = pk-n5(k) —= 5pk,

(2'l)

Then (21) becomes
)

&o(p)A~(p")& = ——M(p) M(p") m&J p

so that (26) becomes

f(P, o) = o(P& —p(P&6pk

Noting that

P M(p )M(p") n'g(k) (23).

Hence, using (20} and (23) in (17), we find

'0(P II") 0 '(p' p'&

+ dp" — PM(p) M(p")n' (k}y-'(p", p )m

ik.p (-,)
tk.p (~ ng(k)

m m 1+ nk(k)

(24}

In a similar manner, the damping kernel (p(p, p ', t )
becomes

&f(p, t)f*(P', 0)& = &[ e i(l-P)LA]

x[6*(p') p, *(p'}6p ]&

([
itL(l —P).

(l ) A)

x[ (I-P)o +-p+ (l—P)5p ]),

and (I-P)5p =0, our final form becomes

*(p')' [ ()- ( ) ])
(P(P, P', t) =

M(~,)

(26)

To proceed further requires a detailed investiga-
tion of the propagator exp[it(l-P)L]. This will
be deferred until Sec. III.

In summary then, the generalized Langevin
equation for A (p, t) = 5g(k, p, t) can be written ex-
plicitly
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8 ik.p ( )
ik p ( )

ng(k)
et g m ' ' m 1 +nb(k)

xfdpng(k, p', t) f d7 fd p'q

x (p, pl, ~)3g(k, p', f - ') =f (p, i) . (29)

where 8 is the conjugate parameter which pre-
scribes the initial values of A . By defining

To obtain a kinetic equation for the singlet phase-
distribution function f,(k, p, i ), one can follow
Mori' s prescription of averaging the generalized
Langevin equation over a perturbed canonical en-
semble

= —f dv Jdp'(p(p, p', v') (p', p", i '-), (32)

which is just the explicit generalization of Eq. (9)
to continuous parameters. Hence, as has been
suggested by other authors, ' we find that the time-
correlation function gy(p p ", f) obeys a kinetic
equation identical to the linearized kinetic equation
for the singlet distribution function f,(k, p, f). It
should again be stressed, however, that (32) is an
exact equation for g~rp p", t) in which no linear-
ization assumption was necessary. Of course,
since (32) is exact, its solution is tantamount to
solving the equations of motion themselves. Hence,
(32) has only a formal significance until we intro-
duce approximations sufficient to obtain an ex-

plicitt

and tractible form for the damping kernel
~rp, p ', ').

f (k, p, f) -=(g(i, p, f))
( ), (30) III. APPROXIMATION OF DAMPING KERNEL

one obtains an exact equation for f,(k, p, t)

~9f ik ~ pf (k
~

)
ik ~

pM(~) ng(k)
sf m ' p ' '

m p I+ng(u)

x fdp'f, (k, p', i)+ j dT fdp'

&«P(p, p', &)fi(k, p', i ~) =(f(p, i)) 0
(31)

p 0

In the linear approximation of small departures
from equilibrium (small 8),

—PH A* ~ 8 —PH—
(I

and the inhomogeneous term (f(P, i))p(0) vanishes.
In the more general case of arbitrary departures
from equilibrium, (f(P, t))p(0) will introduce non-
linear terms in f,(k, p, t), into the kinetic equation.

However, our immediate concern is not with

f, (k, p, i), but rather with the time-correlation
function

P(pl pl r) —= 0. (33)

Interestingly enough, the resulting approximate
kinetic equation

One can generate approximate kinetic equations
for 8~(p, p", t ) in a consistent fashion by utilizing
various approximations in the calculation of
rp(p, p', i ). Of course, the general scheme of in-
troduc ing approximations into such generalized
master equations by approximating the behavior of
the damping or memory term has been studied in
some detail by Zwanzigs and Mori. ' More recently,
such an approach has proved to be remarkably suc-
cessful in the study of simple time-correlation
functions in liquids, '~ "and hence might be ex-

pectedd

to yield similarly good results in the study
of more general phase-dependent time-correlation
functions [ as well as in the derivation of approxi-
mate kinetic equations for f,(k, p, f) ].

There are several ways to approximate the
damping kernel y(p p ', ~). The crudest approxi-
mation would be to simply set

9 rp, p ",i) -=( 3g+ (k, p ",0) 3grk p, i) & .

If we multiply (29) by 5g* (k, p ",0) and then aver-
age over po=e PH/Z, recalling from (7),

8 g i k p

et pal
8~(p p", t)+

i k p ng(k)
(P) I+no(n)

( f(p, t) 5g* (k, p ",0)) = 0, x fdp'g (p', p", t) =0 (34)

i k p
~ ~ik p

S,rp, p-, f). M(p) I" „'(,)

x fg~l (~l ~ll i)

then we obtain an exact kinetic equation for is just the Vlasov- like equation first derived by
Zw anzig' and later applied to the study of neutron
scattering in liquids by Nelkin and Ranganathan. '

A natural generalization of this approximation
of completely ignoring the damping term can be
achieved by using a "two- component" kinetic
description. That is, we choose a new vector A(t)
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= col[a(p, t), b(p, t)] which has two continuous com-
ponents

alization of Eq. (34)

a(p, t) =bg(k, p, t), b(p, t) -=(I P) -4(p, t),

(38)

~9~ ik p

~t m

ik p
G ($

/gal

t) kf( )
sg k

where P~ is an explicit notation for the projection
operator defined in (12). The second component
is chosen such that (i) it is orthogonal to a(p, t),
viz. , ( a(p, t )b(p', 0)) = 0, and (ii) a(p, t) and b(p, t)
satisfy a conservation relation, viz. ,

x fdp 8 (p' p' t)=Xk(p, p", t),

O'.X
st

—i fdp'n (p, p') hack(p', p", t)

(41)

Ba ik. p ( )
ik. p kf( ) ng(k)

s t m ' m 1+nk(k)
= —fdp'[ fdp'"& b(p)b'(p"' )) 0

xB (p', p", t), (42)

xfdp'a(p ', t) = b(p, t) . (se)

9t 5
idp-' n (p, p' )b(p', t)

+ f dv fd p'S (p, p', &)b(p', t- v)

+f (p, t), (37)

where i 0 (p, p') -=fdp"(b Qp b~ (p")}P '(p", p'),

(s8)

p', ~) = Id''&(-I -P)i*(p ')e'

and pa b '(p", p') is defined by Eq. (14) for
pa(p, p ') =-(a(p)a+(p')) and 4 b(p, p') =-(b(p)b*(p')) .
Consistent with out earlier approximation (33},
we now approximate this exact set of equations by
assuming

The latter is the first of the generalized Langevin
equations in the two-component description as one
can verify by a calculation similar to that outlined
for the one-component description. [ We note that
(36) does not contain any damping term or random
force. ] The second of the Langevin equations is
obtained as

where we have defined .Xk(p, p", t ) -=( b(p, t)a~ (p"}}.
Using the explicit forms for a(p ) and b(p), one can
easily calculate the kernels Ab(p, p') and

& b(p)b~(p")) appearing in (42). Hence, a two-
component kinetic description has led to a system
of two integrodifferential equations as the natural
generalization of the Vlasov equation (34), which
yield an approximate equation for Bk(p, p", t) if the
cross correlation function Xk(p, p", t) is eliminated.
Comparing (41) and (32), we find that 3Ck(p, p", t)
replaces the damping term in the latter. Hence,
neglecting the damping term in the two-component
description is equivalent to an approximate evalu-
ation of the damping term in the one-component
description, i.e. , in (32).

A similar procedure could be used to generate
still higher-order approximate kinetic equations
by neglecting the damping term in an "n-component"
kinetic description. Such a scheme is related to
Mori's continued fraction representation" of time-
correlation functions. However, such coupled
sets of kinetic equations become rapidly unman-
ageable.

An alternative and perhaps more systematic ap-
proach to approximating y(p, p', t) consists of ap-
plying standard perturbative methods" "directly
to the fortn (28). That is, one can calculate
p(p, p', t) to lowest order in a perturbation para-
meter [e.g. , the density n or the interaction
strength X= O(V)]. To illustrate this procedure,
we shall apply a perturbation expansion in the
coupling parameter X to obtain a Fokker-Planck-
like form for the damping term. (A similar per-
turbation treatment in density should lead to a
Boltzmann-like operator. )

%e will first demonstrate that

sb(p, p', ~) =-0. (40} ~Oe 0 = ~ Oe 0 +OX

If we multiply through by a~ (p") and average over
the equilibrium ensemble po, then we find agener- (4s)
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where

N
p 8Z
ma=1 8x

( -- I'.-ik p'I ik y' l n3g3(l()
m j ( m i + nh(t)}

p) M(p')

To verify this, note that x exp(- k t'/2mP) . (48)

iI,PG = fdp'fdp "(GA*(p')) (t) '(P, P ) ttLpFurthermore, a ~ p' e a p

x A(y" ) + o(p")
ik p"
m

i PLG = dp+ dp" G -A* p' + a'* p'
m

l(pt pat)A(pl()

(44} N . e p-tk'x pot a («p «R
)

itL() ik'x «P
(y=l P=1 Bp

sa(pi)) 2 2 2 (
&p ~=1 P=1 y =1 yg p

Using Eq. (16) and noting Q '(p, p ') = Q
' (p", p'),

we find

[ 3 L, P] G = Jdp' fd p"[ nM(y')] '

x [( GA*(P'}&o(P") —( «~ (p')&A(p")]

~ a« ~
+ G5p* k — GJ ~ ~ ikp m

k m k k

ut i k x 3%.yt/m Py
&hp —p }e e

8p

( — +p tl:p tl ) tt(p-pp)) (sp )

ap

ng(k)
l+ a(n)- O('}~

Hence, (l —P)L=L(l —P)+O(g, and we find

it(l P)I,
(O)

-it(l -P)I,
(, )

= e 3f(0) + O(~3).
itL

(48)

(48)

or a* p e 'ap = — Mp'eitL() a -, ik pt m

k
/Z E(F'P S(k'-SS ~

- l -3 l ))~)~
ja=l P=l

p

x 5 (p-y'}- M (p') —M (p) ea, a if pt/m
«p ~«

Therefore, ((3(p, p', t} = [nM(p')]

x( o+(p')e '[ op —li(p)ap~l)+0(& }. (47)

N N
Z (F p (tt — + p' t /ptttt )/

l(y=l P=1
(yg P

ltLpIf we now recogroze that e ' is an operator which
merely displaces x ~ to x ~+ p ot/m, then we can
calculate

'p(p)apk)

N N
( ) p p -ik'x Fot a

p

~=1 P=1 aP

'k 'k.p tl )xe

«nt (8ik x
O(~3) (49b)

Here we have noted that the terms arising from
o, sk pssy in Eq. (49b) are of O(V). Combining Eqs.
(48) and (49b), one arrives at an expression for
the damping kernel s)(p, p', t ) which is correct to
O(X3).

The damping term becomes particularly trans-
parent in the Markovian limit' in which we let
&-0, t-~, x- ~ in such a way that X't and X'x re-
main constant. (Note that both t and x refer to
displacements in time and space in a stationary
homogeneous medium. ) Then
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f. d f~A(p, p")&k(p', p", t- ) -fdl' d3k I
=

Sj (S ), kP(k)PS(k)kV(k)vit'(k (58)

g r rr

&ft')
ik( p) TLo

( ) k pip st)
and S(k) is the static structure factor, S(k) = 1
+ n h(k). Noting that

&r
=- fkp'I, , k((p'), S Z'(P

e, P

d'p' ' h(p', p) (p- p')
Bp

[ (C)(p', t)M Pp) —)t (p, t)M(p')] = 0, (54)

~~P ~Q Q p 7 p 'p 8

m m &p'

1

+, , k((P'), k(i): "s r'(@PS
0 oi p

p p 7' pT

(s k(P', P ",t )

-='M['k{P'P "]
nM(p')

{50)

~A~QI3 Q p p T p T

dp M(p j F F x —x +-&-&P e P p7'

(51)

then we find JM[(t)(p, t)] =— d'p'sT t (p', P),

&p

x + pp p(p', t ) M(p)
p

9 Pp+ (t)(P, t )M(P'), (52)

where 5 (p', p) = p f, d&Z
a, P

~&~Op ~Q ~8 p 7' p7F F x -x' +
m m

Here we have assumed that the integration over all
times does not change the magnitude of the O(X')
terms [as it would if we had terms of the form
&' exp( —Xt )]. If we integrate by parts twice and
use the fact that

one can reduce(52) to a more familiar form:

d3kJJP) =fdk'J, S(k)V(k)k = S(k
8 p

"V( )" ( I!
— t - )P(P', i)S((P) ~ P(P, i) M(P')]

(55)

In the absence of initial correlations, S(k) =1,
(55) reduces to the Fokker-Planck operator derived
in the standard weak-coupling theory" ' of many-
body systems [e.g. , see Eq. (6. 18) of Ref. 14.]

Hence, the damping term (28) to lowest order in
the interaction strength X can be regarded as a
generalized Fokker-Planck operator which reduces
to the more conventional form (55) in the Mar-
kovian limit.

In a similar manner, the damping term reduces
to the linearized Boltzmann operator following a
density expansion and subsequent Markovian limit
n -0, t - ~, x- ~ such that nt and nx remain
constant. " (For an earlier derivation of the Boltz-
mann equation via projection techniques, see
Mazur and Biel. ")

IV. CONCLUSION

In summary, we have utilized the projection
operator techniques of Zwanzig and Mori to derive
a kinetic equation for the time-correlation function
of the microscopic phase density, When the damp-
ing term is neglected, this equation reduces to
that considered in earlier studies of neutron scat-
tering in liquids. A direct generalization of this
particular approximation was given by using a two-
component kinetic description of the many particle
system. An alternative approximation scheme
based upon standard perturbation theory was pro-
posed and used to calculate the damping kernel
directly. In the Markov limit, this approximation
reduces to the linearized version of conventional
kinetic equations (e. g. , the Fokker-Planck equa-
tion). We feel that such equations are useful for
studying neutron scattering in dense gases and
liquids and can serve as a starting point for numer-
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ical calculations.
It is also possible to utilize this application of

the generalized Langevin equation to study kinetic
equations for the singlet distribution function itself.
The principal approximations must then be intro-
duced not only into the calculation of the damping
kernel, but as well into the study of the inhomo-
geneous term (f(p, t))p(0).

It should be stressed that the generalized Lange-
vin equation is an extremely general relation, and
indeed is capable of describing the time evolution
of any set of dynamical variables Af(t). The choice
of an appropriate set of variables is not unique,
and this choice will strongly influence the ease of
calculation and accuracy of results obtained from
approximations to the generalized Langevin equa-
tion. It is not at all obvious that the kinetic de-
scription of By(p, p' ', t) will yield a more accurate
calculation of the Van Hove function G(y, t) =—(py(t)

p y(0)& = J&p fdp" By(p, p", t) than would a direct
calculation using a finite state vector A =-col[ py,
Ty, Ky ] which contains the density as one of the
components (hydrodynamic description. (The
latter approach has been investigated by Akcasu
and Daniels" and was found to give very good
agreement with molecular dynamics calculations
by Rahman. " Our effort in this work has been to
merely indicate that such a kinetic description
can be obtained rather directly from the general-
ized Langevin equation, and not to attempt to jus-
tify this level of description for a particular many-
body system.
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