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Pairs of He atoms in solid bcc He have spatially symmetric or antisymmetric wave func-
tions which correspond to energies c and e, e+= E + 2Ae. The energydifference e+ —e
is due to a tunneling process and an interaction process. The effect of these two processes
can be simulated by adding to the Hamiltonian of the solid an exchange Hamiltonian,

X = —2n, tg a ~ a.= —2(DE +E6 )Q o ~ o. ,x . . i T x. . i j'
'E jt ZJ

where Ae is a sum of DeT (due to the tunneling process) and De~ (due to the interaction pro-
cess). A theory of the magnitude and sign of D~~ and 4~T is given. We find 6&T «and
6~ &0. Using quite general arguments, we show that I BET I 2 I b e'~ I . The exchange in bcc
solid He is antiferromagnetic. Evaluation of the formulas for AeT and d e~ using the ground-
state wave function of Guyer and Sarkissian leads to Ae= J, in good agreement with experiment.

I. INTRODUCTION The state

A quantum solid is one in which the root-mean-
square deviation of a particle from its lattice
site, urms, is a large fraction of the near-
neighbor distance &; urms j» -', ; the zero-point
motion of the atoms is large. As a consequence
of this large zero-point motion it is possible for
atoms on neighboring lattice sites to change
places. For a pair of 'He atoms (fermions) on
neighboring lattice sites R, and R„wewrite a
wave function of the form

(x o, x o )=C (x x )X(a o )

(x )p (x )X(a a ), (1)
1 2

where cpR (xl) and pR (x2) are single-particle
wave func)iona localized in the vicinity of lat-
tice sites R, and R„andX(o,o, ) is the spin wave
function for the pair. ' If Eq. (1) is to be a good
first approximation to the wave function of the
pair, the overlap between

(x } and q& (x }
1 2

must be small. Although the zero-point motion
of the atoms is large, it is not so large that we
do not have

and the state

RR 22' l l

in which particle 1 is at lattice site R, and parti-
cle 2 is at lattice site R„aredegenerate with
energy eigenvalue E. But if there is any overlap
between

rp (x ) and rp (x )
1 2

we must admit the possibility of exchange, i.e. ,
particle 1 can be at lattice site R, as well as R„
and vice versa. We must write properly sym-
metrized pair wave functions (for a pair of
fermions we need wave functions which are anti-
symmetric under exchange x, —x„a,—a, ).
When the spins of the particles are parallel,

X(a a )=5 5 =X
] 2 gf gf

weuse 4 (x x )
1 2 2

a space antisymmetric wave function for which

fdx p (x )y (x )« fdx p (x )yR(x ) . (2)
1 2 1 1
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(x x ) = —4 (x x )
1 2 1 2
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then

(xo, xo )=C (xx)X (cro)

(xo,xo)
1 2

When the spins of the particles are antiparallel

X (o,o, ) =(5 5 —5 5 )/V2
0'j 0 0'2t' 0'~4 0'2 0

we use 4+ (x x )
1 2

a space symmetric wave function for which

RR 12 RR 21 (4)

then

R(x o, xo )

These space symmetric and antisymmetric wave
functions have energy eigenvalues E+ and E, re-
spectively, and lift the degeneracy which existed
for the unsymmetrized wave functions. Let us
assume E+ = E,w ~. The effect of admitting the
Possibility of exchange can be simulated in the
Hamiltonian describing the pair by adding to the
bare Hamiltonian X, the spin-dependent term

4~0 ~ 0

Since the overlap of near-neighbor pair wave
functions is largest, we should add a term like
Eq. (5) for all near-neighbor pairs in the solid,

X = —4Q Q bE..o. .o.
X (,) ZJ g J

The properties of the solid which follow because
of the Hamiltonian

SCAN
are referred to as exchange

properties. ' They depend on the sign and mag-
nitude of 4E. The exchange properties are many
and they have been the subject of a long and exten-
sive experimental exploration. '

The purpose of this paper is to discuss the
theory of exchange in quantum solids. We will
not deal with exchange phenomena, rather we
will describe a theory of the magnitude and sign
of hE.

The early theoretical work on exchange in
quantum solids, that of Bernades and Primakoff'
and Sanders, ' is primarily of historical interest.
More recently, Nosanow and co-workers' ' and
Thouless" have developed theories of exchange.
Nosanow and co-workers have developed a theory

as an integral part of their quantum solids pro-
gram. As such, there is a body of computation-
al results which follows from the quantification
of their theory. (i) When the properly symme-
trized wave functions are taken to be a superpo-
sition of the unsymmetrized wave functions,
Nosanow and co-workers find antiferromagne-
tism, i. e. , 4E&0, of about the right order of
magnitude. " (ii) nE is very sensitive to the de-
tails of the short-range correlation function
(both in magnitude and sign); nE is also very
sensitive to the details of the single-particle
wave functions.

The theory of exchange due to Thouless is a
theory of tunneliag. ' lt produces an intuitively
appealing and simple result. (a) &E & 0. The
ground state of the system is manifestly antifer-
romagnetic. (b) This result follows because

has one less nodethan g and hence E+& E;
it depends in no way upon the details of the wave
function describing the yair. The theory due to
Thouless does not include the short-range cor-
relations which are an integral part of the
Nosanow theory. The Thouless theory can be
modified to include short-range correlations
with no qualitative change in conclusions (a) and
(b) above.

There is a fundamental difference between the
result of Thouless and those of Nosanow et al.
Thouless finds manifest antiferromagnetism;
Nosanow and co-workers find a magnetism
which is extremely sensitive to details which are
totally irrelevant to the Thouless theory. The
computational procedures used by Thouless and
Nosanow and co-workers are sufficiently differ-
ent as to preclude easy comparison of these
theories.

In Sec. II, we briefly review the theory of
quantum solids which was recently developed by
Guyer" and Guyer and Sarkissian. " We apply
this theory in Sec. III to the calculation of 4E
as an illustration of the sort of computational
procedure which is employed in tunneling calcu-
lations. The calculation is a generalization of
the Thouless tunneling theory; it includes short-
range correlations. We obtain manifest antifer-
romagnetism independent of the details of the
pair wave function. The important point is that
the sign of ~ depends in no way upon the nature
of the bare interaction between a pair of particles.
In Sec. IV, we look more carefully at the pair
problem which leads to 4E in order to learn
where the effects of the interaction are. We
find that in order for the bare interaction to have
an effect on the sign of rkE the short-range cor-
relation function must depend upon the symmetry
of the pair wave function. We are then led to
view the exchange process as a combination of
two processes; (i) a tunneling process, and (ii)
an interaction process. We find that the tunnel-
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ing process drives the system toward an antifer-
romagnetic ground state, whereas the interaction
process can lead to ferromagnetism or antiferro-
magnetism depending on the nature of the bare
interaction. We exhibit formulas for the contri-
bution of the tunneling process and the interaction
process to bE. In Sec. V, we evaluate these
formulas. We find that the tunneling process
causes an energy shift (toward antiferromagne-
tism) about 2. 5 times the energy shift of the in-
teraction process. The exchange interaction is
due to a tunneling process; the ground state of
the system is antiferromagnetic. We discuss
the physics of the tunneling process in detail.
Our concluding remarks are in Sec. VI. In the
Appendices, we include various analytic details
which are needed to support the arguments in
the body of the paper.

II. THEORY OF QUANTUM SOLIDS (REVIEW)

X =Z. T(i)+ —E s . .(ij),1

0 z 2.. zj
zj

(ioa)

and V= —Q v(ij) =—P [v(ij) —w ..(ij)] . (10b)
1 ' .. 1
2" 2 .. ij

zj zj

u . .(ij)=w (o)+-,'u" (o): u. . u. . + ~ ~,
zj AB. ' BB zj zj

z j z (11}

We assume that the problem XO4 (1. N)n=E„@„(1N) is solvable and leads to a ground
state which is characterized by the localization
of particles in the vicinity of a lattice site. The
complete set of states generated by X, is to be
used to do perturbation theory on V. To be able
to be more explicit in the developments which fol-
low, we will take w;j(ij) in such a, form that the
C„(l .N) are products of single-particle states.
For example, we may choose

We begin this section by briefly reviewing the
theory of the ground state of quantum solids due
to Guyer" and Guyer and Sarkissian. '

The Hamiltonian which describes a solid 'He
crystal is

where u. =x.—R. , u. . =u. —u. , such that
z z z' zj i

(i2)

X= Q T(i)+—Z v(ij),2. .z=1

is well defined. Then the Hamiltonian X, can be
regarded as a sum of single-particle Hamilto-
nians;

where T(i) = pi2/2m and v(ij) is the Lennard-
Jones interaction between particles i and j;

v(ij) = v(r . )=4 [e( or/. .)"- (o/r. )'], ..
zj zj zj

x =Q. [T(i)+-,'v.(i)],

and C„(1. N) is a product of single-particle
wave functions, 4n(l N) = IIi pPi(i), where

a=10.2'K and 0=2. 556A. To do a formal per-
turbation theory of a system which is character-
ized by localization, it is useful to add to X an
effective interaction between pairs of particles
which will lead to a convenient localized first
approximation. %'e write

N
1x= Z T(i)+ —Q w (ij)..2" iji=1

X (1 N)4 (1' 'N)=E 4& (1 ' N)0 n n n

Q. Q.
and the p. (i) = p (x.)

z R.

are solutions of "
[T(i)+ &.(i)]q . '(i)

z z

(14)

where

+ -Q [v(ij) w (ij)]— ..
1
2" ij

zj

Q, O.
= h .(i)s'. '(i) = e y . (i ).

z z Q. 2
z

(15)

» writing a product for Cn{1 ~ N) we will have a
useful set of wave functions if

to .(1J)= Rl (x x. )zj R A. z j
&@ (1 ~ N)~4, (1 N)) =5

n n' nn' (16)

is an effective interaction between x. localized
z

near lattice site R; and xj localized near lattice
site R.. '4 X is separated in theform X=X,+ V,
where

where n=fni n&) denotes the excitation level
of the particle at each lattice site. Equation (16)
is satisfied if we have
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Of course, &pP (i) I &pic(i)& = 5~p follows from Eq.
(15). For a solid in which the particles are well
localized in the vicinity of their lattice site, e.g. ,
neon, argon, etc. , we have

(.i)~q (.i)&=5 &5R R' z2

to good approximation for the low-lying states.
For a quantum solid in which the single-particle
wave functions are reasonably extended in space,
we must be more careful. For example, in sol-
id helium we have

& ~2~2
&q. (i)l~ (i)&/&~.'(i)l~ '(i)&~e

where a2 =1-2, and 4 is the distance between
near-neighbor lattice sites Rz and R&." We may
avoid the difficulty associated with the nonorthog-
onality of the single-particle states generated by
X, by several schemes.

(i) Put each particle in its own quantum field

to localize a particle in the vicinity of two lat-
tice sites R, and R, (see Fig. 1). In this case
we have adulterated the specification of X„.it is
now a sum of single-particle Hamiltonians for
all but the pair of particles 1 and 2. We have

N
X (12;3 ~ ~ N)=h (12)+ Z h (i).

Z
l —3

and X (12 3. ~ ~ N)C (12 3 ~ ~ N)
o n

=E (12)4 (12;3 ~ ~ N) .
n n

(22)

This complete set of states (4 „(12;3 ~ ~ N)) wjii
be particularly convenient for describing the ex-
change process between particles on lattice sites
R~ and R2.

(iii) We may employ in place of the single-
particle states generated by Eq. (15) the
Wannier single-particle wave functions" {8. (i))

2
for which

&e. (i)~e. (i)&=5
s g aP R.R.' z2

(23)

described by the complete set of states at its lat-
tice site only. " If particle 1 which is usually
localized near R, is to be localized near R„it
does so by existing in a proper superposition of

Certainly this is not a convenient scheme for
describing a system in which the particles change
places. But it is useful for doing a Hartree
or similar unsymmetrized calculation. In this
case the question of nonorthogonality does not
enter.

(ii) Suppose we know that particles 1 and 2 can
both be in the vicinity of lattice sites R, and R,
while particles 3. ~ N stay in the vicinity of their
respective lattice sites. Then, we may write

This set of functions has the orthogonality prop-
erty which is called for to permit second quan-
tization of K and the use of the full range of field
theoretic computational procedures. The
Wannier states provide an immense computation-
al advantage at the expense of wave-function
simplicity. In what follows we will always use
the formulation of perturbation theory within

(o)

(b)

where P»~(12) is a pair wave function which
satisfies the equation (c)

h, (12)y, (12)

=[T(1)+T(2)+U (1)+U (2)]y, (12)

=~ (12)VI2 (12) . (20)

The single-particle potentials in Eq. (20) tend

FIG. I. Single-particle potentials I: (a) Each particle
stays in the vicinity of its lattice site —no exchange.
(b) Particles 1 and 2 can exchange. They see a common
double well due to the other particles in the solid. (c)
A periodic single-particle potential is seen by all of
the particles in the solid.
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the context of one of these three orthogonalization
schemes.

Let us calculate the ground-state energy of
the system described by the Hamiltonian 3C, Eq.
(7), using the perturbation theory appropriate to
orthogonalization scheme 1. We will not consider
the exchange process. The expectation value of
X is given by the Rayleigh-Schrodinger perturba-
tion series in V. For the energy shift, we have

nE =&3|:&—Eo=(V&+(VGV)

+(vGvGv&+ ~ —(v&&vGGv)+. ", (24}

+ &v(ij)Gv(ij) Gv(ij }& + ~ ~ ~

—&v(ij)&&v(ij)GGv(ij)& + ~

Thus, we write
I~-—Q(E E )2.. zj 0

zj

It is important to recognize that Eq. (30) is a
relatively simple equation of motion for the wave
function of the pair of particles i and j. The per-
turbation v(ij) affects particles i and j only; we
write"

G = (E.-3~,) '(1-14'.&&4.
1 ),

and &
~ ~ ~

&
= &e,(I N)l ~ ~ ~ I4,(1 ~ N)&.

(25)

(25)

N
4 (1~ ~ N) =()) (12) II 4 .'(f)

z=3

Progress is made in obtaining nE using Eq. (24)
by making various approximations to the full per-
turbation expansion.

We proceed by making a sequence of approxima-
tions to LkE in which a pair of particles, a triple
of particles, etc. , are treated exactly. Here we
look in detail at the pair approximation.

In each term of the perturbation expansion we
follow a pair of particles through the term letting
them interact among themselves only. We write

&v& =-Z, &0(~~)&,
1
2 ..

zj

&VGV& = -Z, &V(fj)Gv(fj}&,
zj

[h, (I)+a, (2)+ v(12)] ll „(12)= e„y„(12), (32)

where E» = E, + c» —2e,. This equation describes
a pair of particles each in the single-particle po-
tential of the lattice medium and interacting with
one another through v(12). In Eq. (32) the single-
particle potential on particle 1, in the vicinity of
lattice site R„is not UR, (xl) from Eq. (12); it is

V„(x)=V (I)- fdx lq (2)l'~ (12), (33)

a slightly skewed single-particle potential due to
the treatment of particle 2 exactly (see Fig. 2}.

We write the pair wave function which solves
Eq. (32) in the form

I
(VGVGV& = —2 &v(ij)Gv(ij)Gv(ij)&, etc. (28)

zj
(l)»(12) = c', '(l)0', '(2)g»(12) . (34)

With this approximation to each term we have
Then, the energy shift for the pair, &»-2&0, can
be written in terms of g»(12), viz. ,

I
nE =—Z, [&v(ij)&+&v(ij)Gv(ij)&+ ~ ~ ~

2 ..
zj

—&V(ij)&&v(ij)GGv(ij)&+ ] (29)

(40(1. ~ ~ N)l v(12)l 4O»(1 ~ ~ N))

(4'o(1 ~ N) I 40»(1 N)&

&v(12)g»(12)&

(35)

This energy shift is the sum of the energy shifts
of the auxiliary problems

3C ..4 . .(1 N)

=[K +v(ij)]4 . .(1 ~ ~ N)=E. .4(1)~ ~ N) . (30)0zj ij Ozj

The Rayleigh-Schrodinger perturbation expansion
for the energy shift in Eq. (30) is

E . . —E =&v(ij)&+&v(ij)Gv(ij)&ij 0

Using Eq. (35) in Eq. (31) we have

1 / vzjg ij
zj

..())g. .( j)))ij ij

&g;, (j)&

We expect a functional form for a)»(12) which
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(4o)

The I; matrix acts like an effective interaction be-
tween the pair of atoms i and j, localized near
lattice sites Ri and R, respectively. It is found
by solving Eq. (32) in the form given by Eq. (34).
Equations (14), (32), and (31) constitute the pair
approximation to E —Eo.

So far in the pair approximation we have an un-
known, since we have not specified the effective
interaction w»(12). It may be chosen in several
ways. (a) Choose w»(12) so that the pair energy

Q (e, . —2e )

g2

FIG. 2. Single-particle potentials II: Particle 1
near lattice site R~ sees the single-particle potential
U&(1) which is due to all of the other particles in the
solid. Particle 2 sees a similar potential centered at

Particle 2 contributes to U~(1). When the contribu-
tion to U~(1) of particle 2 is subtracted, particle 1 sees
U, (1).

depends upon u, = x, —R„and(wlj (lj )gl (1j )) /
(gl (lj )& is not sensitive to the weighting factor
gl. (Ij).

1g

Thus,
(w . .(ij)g, .(ij)& &w ..(ij)&

U U = U

& g„..bj)&
(37)

is a good approximation. " Since E, is given by

(36)

we can use Eqs. (36) and (37) to write E in the
form

(~)(ij)g (tj)&..
E =Z,. &Tb)&+2 Z

ij &g,"bj)&

We define the t matrix by

t, (12) = e(12)g (12)/(g, (12)& (39)

and, in terms of it, the energy of the system is

leads to U, (1) of Eq. (12) in the form U, (1)= U, (x,
—R,).

Thus, fdx.
~

(().(j)~'w .(Ij) = w (u )lj 1g 1

vanishes identically. (b) Choose w„(12)so that
E in the pair approximation is stationary with re-
spect to variation of the parameters in w»(12).
We briefly discuss these two alternatives:

(a) The choice

Q (e.. —2~ ) =O
ij 0=

implies, Eq. (36),

(w . .(ij)g. .(ij)&
&t.j(")&=Z, 2

j~() ' j~(i) &g (~j»

=Z Z (w. . (ij)&
i j~ (i)

using the approximation of Eq. (37). From the
definition of the single-particle potential in Eq.
(12), we have

(41)

Thus, the condition

Q(~. —2c )=o0=
U

is satisfied when the expectation value of the en-
ergy of particle i in the single-particle potential
U;(i) is the same as the expectation value of the
energy of i interacting via the t matrix with the
other particles in the lattice. For a particular
choice of the functional form for U.(i), Eq. (41)
may be further reduced to a computationally
tractable form.

(b) To apply method (b) a parametrized choice
of the single-particle potential must be made.
Let us choose
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U.(i}= U0+ 2ku.0 2
2

(42)

Then for a given choice of k we have E, a func-
tional of k, E[k]. We may vary E[k] with respect
to k io attempt to find a stationary (possibly mini-
mum) value of E. Since the basic equations we

are employing are much like those of Koehler"
and Gillis, Werthamer, and Koehler~ we expect
to achieve a result similar to theirs. We find
6E[k] j6k implies~

[(u.'f ..(ij)& —&i . .(ij)&3k . (.) i ij ij

x (u.'g . .(ij)& /( g. .(ij)&] (43)

III. TUNNELING

Finally, the pair approximation requires the so-
lution to Eqs. (14), (32), and (31), subject to the
constraint of Eq. (41) or Eq. (43).

The basic idea of the sequence of approximations
(which starts with the pair approximation) is to
treat larger and larger clusters of particles
exactly while treating the interaction of the cluster
with its medium in some approximate way. In
the lowest-order approximation, Xp or E„all
particles are coupled to one another by springs.
In the pair approximation, the springs are re-
moved for one pair at a time and replaced by the
true Lennard- Jones interaction. In the triple
approximation, a triple of particles interact
among themselves via the Lennard- Jones interac-
tion; they interact with all other particles in the
system by springs (see Fig. 3).

where [r(i)+ U (i).]y.'(i) =e y.'(i)i i 0 i

and 4 (1 N) = Q y.'(i)0
1

(44)

(46)

The solution to Eq. (30) reduces to Eq. (32).
Using the definition of U;(i) in Eq. (33) we have

DDDOdd~ .Old

&ODD~ Odl Dld —.DDD&

000

(b)

[T(i)+ T(j)+ U.(i)+ U (j)+ v.(ij)]|j..(ij) =- e . .P (ij}..
2 i2 U i2

(46)

Equation (46) is the equation of motion for a pair
of particles, each localized in the vicinity of a
lattice site due to the solid medium, interacting
with one another through v(ij}.26 When we write
Pi&(ij) in the product form of Eq. (34), Eq. (46)
amounts to an equation of motion for g "(ij) W.e
have

Let us begin the discussion of exchange by
looking in some detail at the solution to the
ground-state problem in the pair approximation of
Sec. II. In this approximation the energy of the
system is given by

0 ~~ .000 0

1
&=&0+ 2

Z, (E.. -E ),
22

U

(31)

where EO and E"are the energy eigenvalues of
the auxiliary problems

~ODD ~ ODD D Dddr

Ko(1 ~ ~ N)4~(1 ~ ~ N) =Eo@o(1 N) (14') +o, ijk
and X ..4 ..(1" N)=E. .4 ..(1" N) . (30')

Og 02j g 02'

For a choice of u; (ij) which leads to single-
particle potentials at each lattice site [e.g. , the
choice in Eq. (12)] we have

Z =N[~ --,'(U. (i)&],

FIG. 3. Springs: (a) In the lowest approximation
all of the particles are coupled together by springs.
(b) For a pair of particles (ij) the spring mi j {ij) is
replaced by the Lennard-Jones potential v(i j). (c)
For a triplet of particles (ij&) the springs soij {ij),
jA, (j~), and wyigi) are replaced by the Lennard-Jones
potentials v(i j), v (j k), and v(ki).
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4 . .(ij)[T(i)+T(j )+v(ij )
zj

+m p(ij) ln4 (ij.). ~ p(ij) lng. .(ij)]
zj zj

&&g..(fj) =(~ . . —2~ )g. .(ij),
zj zj 0 zj

(47)

tion in 4; (ij) constra. ins the relative motion of i
dj,

4' ..(ij) = &p(r; Z) q (R, d),
ij

y (r; Z) = exp[- —,'a'(r —Z}'] .

where 4 "(ij)= p (i)p (j}, and p(ij) is a 6-compo-
nent momentum vector p(ij) = [p(i}„,p(i), p(i)z,

'j

P(j),P(j),P(j)z]. For comPutational convenience
let us assume that p,.(f) is a Gaussian;

(f) =. A exp[- —,'a'(x. —R.)']
z z z

Then,

p(ij)4'. .(ij) p(fj) = —a'[u. p(i)+u. p(j)]
zj z

and we have

p(ij) ln4' ..(fj) ~ p(ij) lng. .(ij)
zj zj

=--,'a'(r- Z) p(r)g. .(ij)
zj

The coupling term is important in determining
the asymptotic form of g(r; Z).

The coupling term depends upon the angle be-
tween r and 4. We argue that because of the
localization of z and j near Rz and Rj, respectively,
the important relative coordinate vectors are
along the line riiZ (see Fig. 4). Thus, we argue

that (a) g(x) may be taken to depend upon I rl = r
only and (b} the equation of motion for g(r} should
be solved one dimensionally along the line rll 4. In

the work of Guyer and Sarkissian, "these two as-
sumptions have been checked. They lead to a
good first approximation. Corrections due to
making them are small, nonetheless these cor-
rections have been included in the detailed compu-
tational use of Eq. (48). Using assumptions (a)
and (b) we have

—2n'(R- d) P(R)g. .(zj),
zj

where &= R.—R. , d = —,'(R. + R. )
z j' ' i

(
Iz d2 d, +v(r)+ (r- a) g(r; S)
m dr' 2m dr

= &~(&)g(r; &), (49)

and P(R) and p(r) are the center of mass and rela-
tive coordinate moments, . Thus, Eq. (47) for
gfj(ij) takes the form

[T(R)+ T(x)+ v(x) — (r —Z) p(r) (2ihnz/m)
2m

where &e(&}= e"—2e0. As x- 0 we have the WKB
zj

solution for the pair of particles in the hard core
ot' v(r),

&& (R —d) .P(R)] g (fj) = (E .. —2E )g (fj)ij ij 0 zj

The equation of motion for g separates into the
center of mass and relative coordinate parts. The
important thing which gzj(fj} is supposed to do is
to describe the relative motion of i and j due to
v(r}. We write gf&(zj) =g(r; Z)G(R; Z) and set
G(R; d) equal to 1. The equation of motion for
g(r; n) is

[T(r) + v(r) + (jgznz/2m)(r —Z} ~ V ]g(r; Z)

= az(Z)g(r; Z) (48)

This equation of motion is almost the equation of
relative motion for two free particles interacting
through v(r). However, g(r; Z) is coupled through
the third term, (8 az/2m)(r —Z) .V, to the relative
motion due to 4f&(ij). We will refer to the third
term as the coupling term. It arises because of
the product form of g~&(ij ) and because the localiza-

FIG. 4. Relative motion: The shaded area around

R~ is the region of space where particle 1 spends most
of its time. Likewise, the shaded region around R2 is
the region of space in which particle 2 is found. The
vector r~2 is most probably parallel to A. The relative
motion of particles 1 and 2 is approximately one dimen-
sional because each is localized in the vicinity of a lat-
tice site.
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P =
& (o/K}(me)ua 1

As ~-+~ the coupling term determines the
asymptotic form;

g(r; n) -r, 6 = 3n e(n}/eo

where e, = 38 o.'/2m and 4e(h) = v(a) (0; 6 —0
as & -+~. Thus g(r; &) has the form shown in
Fig. 5. The details of g(r; 6) for a particular
equilibrium spacing 4 depends weakly upon 4 for
small r and large x. We will often refer to g(r, &)
or g (ij ). .as the correlation function. We do this1'
beca se it is that part of g; (ij ) which measures
the short-range correlation in the motion of i andj. The true pair correlation function can be re-
lated to the set of g "(ij)by a cluster-expansion
calculation.

Further on in this paper it will be necessary to
understand the physics which determines the struc-
ture of g,&(ij ) Ou.r purpose above has been to lay
the ground work for this understanding.

Within the context of the pair approximation we
have been examining let us consider the exchange
process. Particle 1 can be in the vicinity of lat-
tice site R, as well as lattice site A, and the same
for particle 2. We must make a fundamental
change in our description of the pair of particles.
The Hamiltonian in Eq. (46) must be replaced by

&(I)+ T(2)+ U»(l)+ fr»(2)+ v(12)

(a)

FIG. 6. Double well I: Particles 1 and 2, which are
in the vicinity of R~ and H2, see a double well in this
region of space due to the lattice medium. Two choices
of the biased potentials U~ (1) (A and B) are shown on

(a) as dashed lines. These two biased potentials give
rise to 2 potential differences AU&(1) illustrated in (b).
The biased potentials localize a particle near one of the
lattice sites. The potential differences AU2(1) are neg-
ative in the region of space near the other lattice site.

where U»(1) is a single-particle potential for
particle 1 in the vicinity of 8, and R, due to the
lattice medium. We expect fr»(1) =V, (1), for x,
=R„U»(1)= fr, (1), for x, =R, (see Fig. 6). The
ground-state pair wave function for i and j must

NEAR-NEIGHBOR,

DISTANCE = 3.4B A

0.0 2.0 3.0

r( 0)

I I I

5.0 6.0 7.0 b. 0 10.(,

FIG. 5. Correlation functions: The functions f (r), g(r) s, andg(r) WKB are the correlation functions of Nosanow

(Ref. 6), Guyer and Sarkissian (Refs. 12 and 13), and the %KB correlation function. The common characteristic of
all of these functions is that they go rapidly to zero for «(T, i.e. , as the particles penetrate one another's hard core.
The numerical calculations of De~ and De~ discussed in Sec. V were done with these three correlation functions.
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solve the equation

[T(1)+ T(2) + U (1)+ U, (2)

+ v(12) ] /~2 (12) = e~~tJ)~~(12) (so)

and h» (21)g»(21) = e,2$»(21)

where h»B(12) = T(1)+ T(2) + U, (1)+ U,B(2)+ v(12).
Consider finding e+» from Eq. (50),

where the + indicate that there are two nearly de-
generate solutions to Eq. (50}which correspond to
having the spins of the 2 particles parallel or anti-
parallel. We have tIt»~(12) = s g,+,(21). The Hamil-
tonian given by Eq. (50}is of the kind which is
used in orthogonalization scheme 2. Equation (50)
can be derived using Rayleigh-Schrodinger per-
turbation theory in scheme 2 in the same way it
was used in Sec. II to obtain Eq. (29} in scheme
1. It is plausible to expect to construct an approx-
imation to $~~(12) in the form

q„(12)= [g»(12) ~ y»(21)] /&2, (sl)

where g»(12) solves Eq. (46). These wave func-
tions are spatially symmetric and antisymmetric,
respectively, and belong to the spin states

gl g2 gl g2

g~0 g20

g~k g24

+5
g~f g24 g~4 g20

h» (12)g»(12) = [T(1)+T(2)+ U (1)

+ U (2) + v(12)]$»(12) = e»g»(12), (52)
8

where U, (1) and U, (2) are biased single-
particle potentials (see Fig. 6). U,&(1) is so con-
structed as to reproduce exactly U»(1) in the re-
gion of space near R,. It differs from U»(1) only
in the vicinity of R,. %'e have

[T(i)+U (i)]y.(i)=e0y..(i) .8 .
(52)

Now h» (12)$»(12)= e»IIt»(12)
8

Let us attempt to find «+- « . %'e can find an ex-
pression for the energy difference «+ —«- by using
the following generalization of a standard proce-
dure. The wave functions g»(12) and $»(21)
which we add together in the superposition approx-
imation in Eq. (51) are not exact solutions to Eq.
(50), since, in $»(12), we constrain 1 and 2 to re-
main in the R, and R, sides of the double well,
respectively. But $»(12) exactly satisfies the
Schrodinger equation

h(12)$,~(12) = [T(1)+ T(2) + U, 2(1)

+ U,2(2}+v(12)]g,~(12) = e,~g,~(12).

As an approximation to g+»(12) use

P„(12)= Pp, (1)@ (2) a p, (2)p, (1)](vY) 'g(r„)

= (1~X)(W2) ' (s4)

We use the schematic notation 1 for y, (1)y,(2)g(r»)
and X for y, (2)&p,(1)g(r»). From Eq. (50) we have

(1 + XI h(12) I 1 +X}
(1+XI 1+X)

(1I h(12) I 1) a(XI h(12) I 1)
(1I 1}+(Xl1)

We may write h(12) =h» (12)+AU, (1)+aU, (2),
where AU, (1)= U»(1) —U,~(1) [see Fig. 6(b)].
Then we have

2(ll &U, (1)l 1) 2(XI DU, (1)l)
(1I 1) (1I 1)

The first term is the pair energy before symmetri-
zation, the second term is a small energy shift
which is the same" for «yg and «», and the third
term has the opposite sign for «» and «». The
third term is negative, since DU, (1) is always
negative. Thus, even before scrutinizing this term
in detail we know that «,z & «z2. It is easy to under-
stand the meaning of this result. The quantity

(XI AU&(1) I 1) is the reduction in potential energy
which particle 1 of a symmetric pair sees in the
vicinity of lattice site R, because there is a lower
potential energy in the vicinity of this lattice site
when we have U»(1} in place of U,+(1).

The above calculations are tunneling calculations.
The energy difference «12 —«12=+ T is twice &T
a tunneling frequency. In Sec. V, we discuss in
detail the meaning of this result, estimate ~~,
and suggest a simple model for computing the
tunneling frequency.

The magnitude of heT given by Eq. (55) depends
on the bare interaction between i and j through
g(r~&) Howeve. r, the sign of b,eT depends in no
way upon g(ri&) and, therefore, in no way on
v(ri. ). This result is not a consequence of the
model of the pair problem that is implied by Eq.
(50) but rather follows from the assumptions we
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have made about the form of the pair wave func-
tion in treating this equation, i.e. , in writing

g,,(12) in the form given by Eq. (54).
To learn the effect of the interaction process on

the energetics which determine the magnetism of
the system we look at two simple model systems
which illustrate useful limiting cases.

Case 1. A pair of noninteracting particles in a
double well. Consider a pair of noninteracting
particles in the double well of Fig. 6(a). In the
limit where the barrier is large enough that the
particles are to first approximation localized on
one or the other side of the well, the ground state
is degenerate. " This degenerate ground state for
a single particle is split by the finite probability
of tunneling through the barrier. We have

with the corresponding energies e+ which are ap-
proximately

where t is a tunneling matrix element. The
ground state for a pair of noninteracting fermions
in the double well has wave function

0 (12)= 0'(l)t)'(2)

and energy 2&+. If the particles are fermions, the
ground state is antiferromagnetic. The first ex-
cited state is ferromagnetic, with energy

+
+ E =260

Quite generally a pair of noninteracting fermions
in a double well have an antiferromagnetic ground
state. It is tunneling through the barrier in the
double mell which yields this result.

Case 2. A pair of free fermions having a strong
repulsive short- ranged interaction. Consider a
pair of Fermi particles in a box with dimensions
large compared to the fundamental length in the
interaction between them. For the pair we can
construct two free-particle states

(
fk'Xi Sk X2 'lk'Xg lk Xg)'

kk' = e 'e '~e 'e

corresponding to wave vectors k, k'. Using the
center of mass R=-,'(x, +x, ) and relative coordi
nate r =x, —x, we can write

2
iK ~ R cosmic ~ r

kk' g sill K ~ r

where K=-,'(k+k') and K =k- k'. The expectation
value of v(r) for these two states is

In the limit vcr» 1 [o is the range of v(r) j, we
have

where v(r) is approximated by v(r) = V,e(o- r)
Thus for Vo& 0, the space antisymmetric or ferro-
magnetic state is the ground state for the pair.
For V, & 0, the space symmetric or antiferromagnetie
state is the ground state of the pair. The reason
for this dependence of the magnetism on the sign
of the interaction is quite simple. When the in-
teraction is strongly repulsive, the pair chooses
the space antisymmetric (spin parallel) wave func-
tion which is small at ~-0 in order to minimize
the potential energy. The space symmetric wave
function (spin antiparallel) is large at r 0and-
the opposite argument holds.

The purpose of looking at Case 1 and Case 2 is
to expose the elementary physical mechanisms
operating between a pair of Fermi particles
which lead to magnetism, i. e. , which lead to an
energetic difference between a parallel spin pair
and an antiparallel spin pair.

We have: (a) Tunneling. Because more than
one single-particle well is accessible to a particle
by tunneling, the energy of the state (0t) is lowered
relative to the energy of the state (f i). (b) Inter-
action. Depending on the detailed nature of v(r),
a pair of particles may choose either the state (04)
or the state (f f ) as the lower-energy state. For
a positive hard-core interaction, the state (fi) has
lower energy than the state (f4).

We take particular note of the fact that (Case 2)
the interaction is capable of changing the sign of
the magnetism. Why is there no evidence in Eq.
(35) for the dependence of the sign of &e& on the
nature of v(r) P This is because the calculation,
as we have carried it out above, has not correctly
treated the interaction process. In Sec. IV, we
will attempt to show how we must modify the above
approach to include it.

IV. INTERACTION

Let us consider the solution to Eg. (50) when we write the pair wave functions in the form

q„(12)=C,~(12)g„(12)=[P,(1)y~(2)ayg(2)%2(l)l(~) gas(12)
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The motivation for writing g»(12) in place of g»(12} is that g»(12) is the manifestation of the influence of
v(r) on the relative motion of 1 and 2. This relative motion is coupled to the relative motion in 4»(12).
If there is no feature of the relative motion of 1 and 2 due to v(r») which depends upon the symmetry of the
pair wave function, it is hard to see how v(r») can have a,n influence of the sign of e» —e» T.hus, weargue
that such influence as there is must appear through the coupling of g»(12) to 4»(12) and manifest itself as
g»(12). This argument requires that we make a distinction between the present situation and that dealt
with in Case 2 above. The motion which is important for determining the interplay of symmetry and v(r)
is the relative motion of the pair of particles. In Case 2, we symmetrized the plane waves e~:- ~ x, and

x2 to obtain iwo relative motion wave functions pkk~ and calculated the expectation value of v(r)
using these wave functions. %e can expect this procedure to work adequately so long as the relative motion
of 1 and 2 is principally determined by pkk ~, i.e. , so long as v(r) is sufficiently weak that the relative
motion of 1 and 2 embodied in $kki is not seriously distorted by v(r) In t. he case of two interacting 'He
atoms the Lennard- Jones potential dramatically distorts the relative motion of a pair of particles. Of
course, it does this precisely in the region of space (r» = o) where the interaction between 1 and 2 is
most important. Thus, we cannot adequately treat the interaction process for a pair of strongly interacting
particles by assuming that the symmetrization of the wave function need involve only the localized part.

Let us substitute Eq. (56) into Eq. (50) and find the resulting equation of motion for g» (12). After sev-
eral straightforward manipulations we obtain

4»(12)[H(12) + m ' p(12)ln4»(12) ~ p(12) lng» (12)]g~~(12)a 4»(21)[H(12)

+~ 'p(12}In@»(21) ~ p(12) Ing„(12)]g, z (12)

= (e,~
—2@0)[4»(12)+ 4»(21)] g~~(12)

+ [b U~(1}+dU(2}]4»(12)g»(12) a [AU~(1) + EU2(2)] 4»(21)g~~(12) (57)

where H(12) = T(l)+ T(2)+ v(12) and we have used Eq. (52). On the right-hand side of this equation we have
two terms which are the potential energy manifestation of the tunneling process. Vfe replace these terms
by their expectation value.

Since &I+XI +Us(I)++Ui(2)11& =+&I+XI AUi(I)+«2(2)IX&

we make the replacement

[~U (I)+~U (2)]~ I&~[~U (I)+~U (2)] ~X&=(~ +-', ~~ )(I~X),

where e&=2&lion U2(I)~1&/&1~1&

~~ =4&x~x U (1)~1&/&1~1&.

Equation (57) now has the simple form

4»(12)[H(12) + m 'p(12) In@»(12) p(12) Ing»(12)]g„(12)+ 4»(21)[H(12)

+ m '
p &12}ln4»(21) ' p(12}Irgxs(12)1 gxa(12) = (fxR+ f + 2n6 2co)[4»(12) s 4»(21)]gal(12)T

(56)

There are two terms on the left-hand side of this equation. The first of these, which is multiplied by
4»(12}, dominates the second when particle 1 is near lattice site R, and particle 2 is near lattice site R,.
It is convenient when dealing with this equation to look at its behavior when the interacting particles are in
various regions of real space and of relative coordinate space. By relative coordinate space we mean the
space of r»=x~ —x (see F~. 7). When particle 1 is near lattice site R, and particle 2 is near lattice site
R„wehave r» parallel to R, —R, and in the direct region of r» space. When particle 1 is near lattice site
R, and particle 2 is near lattice site R„wehave r» parallel to R, —R, and in the exchange region of r»
space. To see what Eq. (58) looks like in the direct region of space we multiply from the left by 4»(12)
and obtain
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(b)

DIRECT, It} EXCHANGE f}(

~tt
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FIG. 7. Real space and r~2 space: The vector r~2 is
in the direct part of r&2 space when particle 1 is near

R~ and particle 2 is near R2, e.g. , x& at F and x2 at B,

rfg at FB. For the exchanged case (particle 1 near Q
and particle 2 near R~) r~2 is in the exchange space e.g. ,

xf at C and x2 at E, r~2 at CE. The equation for g (~) is
solved along the line DO. The important region of r~2

space is on the border of the shaded region along the

line DO where x~2=a.

(1a t )[H(12) + m ~p(12) In@ (12) ~ p(12) lng (12)]g (12)

ln
D P 12 lng12 12 g12 12 = 1+tD g12 12 (59)

where E = e
2

~ +-,4c —2E,1 and t = 4 (12)-&C (21)12

is given by t = exp(- o.&&2
~ r12)

engr P
in the Gaussian approximation to the single-particle wave functions. In the direct space, 4» ~ r» - 0.
When the pair of particles are at the distance of closest approach,

—e24cr —13
Ir I=e, t =e =e

12 ' D

On Fig. 7, we have shaded a region near the origin of approximate radius o. A pair of particles have a
hard time getting inside the shaded region due to v(r»); g»(r») vanishes rapidly as r» becomes less than o.

The behavior of g»(12)+ in the direct region of space (for example, along the line between D and 0, DO)
is principally determined by the first term in Eq. (59). In fact, if the second term in Eq. (59), propor-
tional to tD, is ignored we have g»(12) =g»(12}. This is the approximation which leads to tunneling only.
The second term in Eq. (59) is the overlap term; it is a measure of the effect of the overlap of C»(12}and

4»(21) on the relative motion of the particles in the direct space. As remarked above, tD is a very small
quantity. However, so is the energy shift due to tunneling. We must consider the effect the overlap term
has on the equation of motion for gf, (12) along DO and on the energy eigenvalue E+. We can show that the
equation of motion for g»(12) in the direct space is exactly the same as the equation of motion in the ex-
change space, i.e. , g»(12) is the same function at points A, A', A", and A"' in r» space. Thus, we need
look in detail only at the equation in direct space to understand its behavior everywhere.

We want to estimate the energy shift due to the tD term which couples g»(12) to the overlap of 4»(12) and
4»(21). Let us calculate the expectation value of the coupling term. We have

p(12) I g (12) (12) =
D m D 12 g12 D 2m r,2 g(r»)

In the direct region of space the term contributes an energy which we can estimate by multiplying it by
4»(12)' and integrating over x» & 0. Since 412(12)'tD = C 12(12)4»(21), we obtain

n2r2 2s (ttma2/m) —,'n Ji drg'(r}g(r)e
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where a factor of -', is the average value of Z' r/r over the direct space and f I Ddr ~~ ~ is the integral over
the direct space ID.

We can show that the expectation value of the overlap term in exchange space is the same as that above
except that we must integrate over I'~, the exchange space. Thus we have E = ~&2+ cD —2~0+ —2b, ~T +-,'4~,
where

&e =+(a'a'/m)-, '~ fdr g'(r)g(r)e
—o.'r'/2

(60)

We can easily determine the sign of ae» by noting that g(r) is given bv something like g(r) = exp[- y(r)],
g'(r) = —y '(r)g(r), y(r) = (e/r)" and y '(r) = —(&/&}(&/r)y(r); &e» fs positive. Thus the interaction process
energy difference, &a~, is positive. As with the case of the tunneling process energy difference this
sign is a consequence of quite general arguments. We may easily understand this positive energy shift.
Due to the overlap of 4»(12) and 4»(21), there is more wave function in the vicinity of r»= o for @»(12)
+4»(21) than there is for 4»(12) —4»(21). This extra wave function leads to positive interaction energy.
Of course, this is the same argument aswe madeaboveinCase 2. But now a much more sophisticated
mechanism has come into play. This extra wave function changes the relative motion of 1 and 2 through its
coupling to g»(12).

The effect of the tg term on the equation of motion for g»(12) is small. We will not bother to compute
the corrections to the relative coordinate wave function due to this term. We only need the estimate of
the energy shift due to it.

We may write the energy of a pair of particles in a double well and interacting with one another through
v(r») in the form

E =e +e —2e kp[6e +n, e ]

where ~eT and ~~~ are given by

2 —ofr 2ne =4(X~ n. U (1)
~

1& =4 fdr nU (l)g(r) e (61)

and ne =(h o, /m)~ n. fdr g'(r)g(r)e2 2 , , —a'r'/2
x (62)

The choice of magnetic ground state for the system will depend upon the balance of b,~T and b,c~. We
note that although both 4&T and &&& depend upon the overlap integral, they are sensitive to two quite dif-
ferent features of the system. b,e~ depends upon the average of the lattice medium potential over the
overlap trajectory, "whereas d e» depends upon the behavior of v(r) over the overlap trajectory.

As we would expect as v(r)- 0, g(r)-1, and g'(r)-0. In this limit &e» vanishes as it should; neT re-
mains finite and proportional to the uncorrelated overlap integral.

U. TUNNELING, INTERACTION?

In this section, we will discuss the evaluation
of the two integrals obtained above which give
the magnitude of 4cT and &a~. The physics of
the tunneling process and interaction process
boils down to these two integrals; we will spend
some time learning what they mean. Let us be-
gin with a description of the physical content of
the tunneling integral.

nU, (1) is a very mild function of x, and x;
(aU, (1))ot means average of n U, (1 over the im-
portant region of space for overlap, the overlap
trajectory (ot) (see below). A discussion and
justification of this procedure is given in Appen-
dix B.

We have n e =4(SU2(l)) tP

where P = fdx, fdx ttI»(12)tII»(21)/(I
~
1) (64)

A. Tunneling Integral

This integral is given by Eq. (61),

(XI nU2(1) I 1) 4 I (X I 1)
T (ll 1) 2 ot (1I1) '

where we can write the second step because

(62)

is the overlap integral. Large contributions to
p come from regions of space where p, (I) over-
lays y, (1) at the same time that ip2(2) overlaps
&p, (2). Because of the factor g»(12) this overlap
must occur with x, and x, separated by a distance
on the order of cr, I r»l & o. When the single-
particle wave functions are taken to be
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Gaussians th, the maximum overlap occurs in a
spherical shell of approximate d'e ra &us —,o centered
at the midpoint between R, and R . Vfe i

is in Fig. 8. This region of space is called
the "overlap trajectory. " Equation (64) can be
written in the form,

2 3 —a' n'/2 f ( )
7r

0

(66}

If we put g(r) = 1 we have p = &- a24 /2

results from
=e, which

s from having both y, (1}overla y (1)
p, ( ) overlap p, (2), at the midpoint beiw

R, and R„i. e. ,

e een

P —P, -v'g(x, —~ 4'2( g=~2 )

x y, (x, = —,'a)y, (x, -'a)—

For g(r) behaving as a cutoff function at X =cr
we have

2 /2 3 —a' n'/2 p ~ 2 —c.'r'/2

We may use the asymptotic formula"

~ —P 1 —x'
e df= —e2x

to write p in the form

I/2 —Q & /2 —Q X /2

Thus, with g(r) present P is less than P b a
factor e-o"~'/2

n, ya
This extra factor arises be-

cause as the particles tunnel they are driven out
of the straight-line trajectory between lattice
sites by the hard-core interaction. They pass
one another at relative distance X (see Fi . 9 .
We have

see ig. 9.

p = p, {x,=d)rp, {x,=d)y, {x,=d)p, {x2=d)

—o.'(&'+ X')/2

where d = [{n/2)2+ {Z/2) j

is th~ mstance the particles are from their lat-
tice sites when they pass one another. The tun-
neling integral is proportional to the overlap in-
tegral. The particle dynamics in the o

gra escribe the tunneling process. Let us
reemphasize the most important point: Overla
does not occuroccur at r»-0; overlap occurs when

er ap

y~(I)and cp, {1)overlap and y, {2) and {2) o
while r

an y, overlap
+~2~ g,

B. Interaction Integral

and the approximation

2 f2f fe df=x f e dt

The interaction integral is bi given y
2 2

ne = — —,
' af dr g'{r)g{r) (66)

FIG. 8. The overlap tra-
jectory: For Gaussian single-
particle wave functions the
maximum overlap occurs on
a spherical surface at radius
120 centered half-way between
R a~ and R2. This surface is at
distances on the order of 0.6 6
from the lattice sites.
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(b)

FIG. 9. Pair and triple exchange: (a) For pair exchange the particles must pass around one another at relative
distance 0, 1 1' 2, 2 2' 1. 5) For triple exchange the particles cycle. They do not move far from the direct
line of flight from one lattice site to another.

Since g(r) behaves like

g(r) = exp[- y(r)],

n
where y(r) = p(olr)

we expect g (r) to be largest in the vicinity of
r = O'. Thus, 4&~ is given by an integral like

In the spirit of the approximation we used in Eq.
(63}we can write

/2~2 —(y (r)) p,x m 2 ot
(68)

where (y (r))ot is y {r) averaged overthe overlap
trajectory. Thus br~ like 6&T is proportional to
p. The physical description of the tunneling pro-
cess given above applies equally well to the in-
teraction process, except for the fact that the mag-
nitude of the interaction process depends upon
the potential energy the particles exert on one
another as they pass near x = 0 at relative dis-
tance cr.

In Appendix A we discuss in detail the evalua-

tion of Eqs. {61)and (62) for hey and hex using
three different correlation functions. Here, we
quote the results of that evaluation.

(1) For three correlation functions [(a}g(r)
=f(r) from the ground-state calculations of
Nosanow and co-workers' '; (b) g(r) from the
ground-state calculations of Guyer and Sarkis-
sian" "; and (c) g(r ) = exp[- P (o/r )'], p = 2/5o
x (Vme 9 "/g, the WEB solution for g(r) as r - 0]
we find (neZ/De~}=2. 5 at all molar volumes from
V = 18.0 to 24. 'l cm'/mole. These calculations
were done with the values of ~2 and 4 shown in
the table in Appendix A. The ratio EeZ'/Aez is
not strongly sensitive to the details of the single-
particle wave function or the correlation function.
This is demonstrated in Appendix A where we
show, using quite general arguments, that
(aeZ/Der)=4 independent of a', n, andthe correla-
tion function.

(2) The magnitude of neZ (or Sex) is most
sensitive to how far into the hard core g(x) per-
mits a particle to go. In Fig. 5, we have plotted
the three correlation functions which we have used
in our calculations. It is clear that the Nosanow
f(r) permits the closest approach for a pair of
particles; the &KBg(r) keeps a pair furthest
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apart. The magnitude of bey and h~„calculated
using Nosanow's f(r) is about a factor of 2 greater
than that obtained using the g(r) of Guyer and

Sarkissian. The magnitude of beT and he~ cal-
culated using g(r)WKH is about a factor of 2 less
than that obtained using the g(r) of Guyer and

Sarkissian. The rather wide range of variation
in correlation functions shown in Fig. 5 leads to
at most a factor of 4 in the behavior of hay and

Exchange in solid 'He is principally due to a tun-
neling process. %e can describe the effect of this
process on the system by adding to the Hamiltonian
K, an exchange Hamiltonian,

0.10

where J = he + 4e

is given approximately by

Z(S) =- -,'(2w)"(I'a'/m)o 'o'a

„-a'(n,'+ cr')/2

(&0)

This last equation follows from the analytic ap-
proxirnation to the overlap integral developed
above and in Appendix A. It has a very simple
meaning. Since 8'o.'/m = k&eD we write

iJ(a)i/5'=(g =(g e

0.0t

20

l I

22 25

V ( cm&/ mole)

I

24

FIG. 10. J versus molar volume: The shaded area
is the region in which the results of the NMR and thermo-
static measurements of 4 fall. See Ref. 3.

where ~~ =kgD is the frequency of a 'He atom
in its potential well (the number of times per
second it approaches the barrier), and the factor
exp[- o, 2(d2+o2)/2] is the probability of turmeling
through the barrier.

In Fig. 10, we have plotted J'(6) from the exact
evaluation of deZ and Le~ (Appendix A) against
molar volume. On the same figure we have
plotted the data from both NMR and thermostatic
measurements of J(h). ' We note that the com-
puted values of d(h) have essentially the molar
volume dependence of the data. The computed
values of J(a) are below the experimental values
as they should be, since Z(h) is sensitive to the
overlap at distances d= 2(n'+o') =0.66, far
from the lattice sites, where the Gaussians
give too little wave function.

VI. CONCLUSION

In this paper, we have attempted to calculate
the magnitude and sign of the exchange interaction
in solid 'He. The principal results we have ob-
tained are these.

(1) A Hamiltonian of the form

correctly describes the exchange system. The
exchange energy J(h) arises from two sources,
tunneling and interaction.

(2) The tunneling process in which particle 1
tunnels through the potential barrier of the lattice
medium from lattice site R, to lattice site, at
the same time that particle 2 tunnels from to
R„leads to manifest antiferrornagnetism for the
ground state of the solid.

(3) The interaction process {which like the tun-
neling process depends on the overlap integral)
is sensitive to the nature of the interaction be-
tween the exchanging pair. The interaction pro-
cess leads to manifest ferromagnetism for the
ground state of the solid.

(4) For a system in which there are strong dy-
namical correlations in the motion of a pair of
particles, i. e. , for a system in which the pair
wave function must be taken of the form
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+„(12)= q, (1){2,(2)g„(12),

the effects of the interaction process is embodied
solely in the dependence of the correlation function
g»(12) upon the spatial symmetry of the pair wave
function. If the dynamical correlations do not
depend on the symmetry of the pair wave function,
there is no coupling between the interaction and
symmetry.

(5) For bcc 'He over the full range of molar
volumes at which it exists, the tunneling process
leads to an antiferromagnetic energy shift which
is greater by a factor of 2. 5 than the ferromag-
netic energy shift due to the interaction process.
This result does not depend upon (a) the details
of the single particle wave functions; (b) the de-
tails of the pair correlation function; (c) the molar
volume; and (d) the spacing between the exchang-
ing pairs (it is equally true to next-neighbor ex-
change). Therefore, the ground state of bcc 'He
is antif erromagnetic. The exchange interaction
energy is principally due to a tunneling process.

(6) We have calculated the magnitude of J (6)
using a wide variety of correlation functions. We
find J{n) to be substantially independent of the de-
tails of the correlation function and in good agree-
ment with experiment. The principal molar vol-
ume dependence in j(n) comes from the depen-
dence of the overlap of the single-particle wave
functions on molar volume.

(7) The physics of the tunneling process and the
interaction process are the same as the physics
which is described by Anderson3' in the treatment
of excitons and spin waves. A Hubbard-1. ike
Hamiltonian may be employed to describe solid
helium and to quantify the relationship of the solid-
helium magnetism problem to the more familiar
treatments of magnetism. "

(6) Finally, we comment on the relation of our
calculation of J to ihe work of Thouless, and of
Nosanow and co-workers. The calculation of
Thouless is a tunneling calculation and leads to
manifest antiferromagnetism. The calculations of
Nosanow and co-workers are of a quantity whose
relationship to J is unknown. Under a special set
of assumptions (which are not those employed by
Nosanow and co-workers) the quantity calculated
by Nosanow and co-workers is a tunneling approxi-
mation to J.

We will complete this section by commenting on
two problems, related to the one we have dealt
with above, which are the subject of our current
investigations.

I" . Tnple Exchange

When a triple of particles tunnel in a cyclic way
[cp,(1)-p2(1), p2(2)-y2(3) -q&2(3) -y, (3)) it can
be shown that the ground state for the triple is

ferromagnetic. This result is in agreement with
that obtained earlier by Thouless. " Like the
pair tunneling process, triple tunneling is propor-
tional to the overlap integral:

3 BD 3'

fdx, dx dx2 @»2{123)4'»2(312)
3 fdx, dx d%24'»2(123)4'»2(123)

and 4,22(123) = rp, (1)cp2(2)p2(3)g»2(123)

= y, (l)P2(2)y2(3)g»{12)g22{23)g2,(31).

When the triple of particles cycle they do not have
to pass around one another as they do in pair
tunneling. Thus, the factor exp[- o 2o'2/2] is ab-
sent (see Fig. 9). But p, requires the overlap
of three pairs of wave functions. We estimate P3
to be

-a' 2( 2' -o' 2(~, 2'

—(5/3)o 'n2/2,=e

where 6, = 3 v 3 6, the next-neighbor distance.
Since p, is approximately

- (o.'/2)(&'+ o')
p

(a2 2 (2~2 o2
we have p, /p, ~e ' =0. 14.

Triple tunneling is down by about an order of
magnitude from pair tunneling.

We expect the same inequality which related
pair tunneling and pair exchange to relate triple
tunneling and triple exchange. We have not in-
vestigated this point in detail.

B. Phonons and the Exchange System

The exchange system arises because of a pair
tunneling process. The coupling of phonons to the
exchange system occurs because of the modula-
tion of the double mell by the presence of a phonon
in the lattice, i. e. , U]2(1't) given by something
like

Ul (1;t)= Q fdx v{x x.)~y . (j')~2,12' j~12 j lj It tj
where R (t) = R& + e exp[i(k ~ Rj —~t)] replaces
U»(1) in Eq. (50). This modulation is most po-
tent in the region of space m'dway between lattice
sites. The pair of particles are tunneling through
a barrier whose height is modulated by the pres-
ence of phonons in the lattice. This process may
be studied using time-dependent perturbati. on
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theory; the perturbation is

U„(1;f) + U»(2; i) —U, ~(1) —U»{2).

The obvious result of such a calculation is that if
the modulation is at frequency Z(n) there is a res-
onant absorption of energy and a transition from
4 yg(1 2) to 4,, (12). Such a modulation can be due
to a phonon of frequency & = J(n)/h {a 1-phonon
process) or to a superposition of phonons whose
beat frequency is J(n)/8 [a 2-phonon process
with m —u =Z(n)/h].

It is clear that the perturbation

P,~{12;f) = U»(1; f) + U„(2;t)

—U„(1)—U„(2)

is not easily represented by a simple power series
in the displaeements from '.he lattice sites. That
is, we do not expect that there exists a useful ex-
pansion of P»(12; t) in the form

P»(12; f) =P»(R, R ) + V,P»(R, R, ) ~ u, {f)

+ V,P»(R,R, ) ~ u, (t)+ ~ ~ ~,

(4',+~ (12) ~H(12)
~

4', , (12)),

where H(12) = T(1)+ T(2) + v(12),

by &~»(12) IH(12)
I ~i~(»))

which are nonzero.

since P„(12;t) is most important in the region of
space where ) u, r= I u, I

=
& ~ and where such a

power series breaks down. Therefore, we do not
believe that the usual procedures' for treating
1- and 2-phonon processes are meaningful for
treating phonon modulated tunneling. Nonethe-
less, the qualitative results of the usual treat-
ment, {e.g. , the temperature dependence, etc. )
can be carried over to this problem since they
are invariant to the details of the perturbation and
depend principally on the density of states avail-
able to effect 1- and 2-phonon assisted transitions.

Varma, ' and Nosanow and Varma' have developed
a theory of the coupling of the phonons and the ex-
change system. In their theory the phonons ap-
pear in the off-diagonal matrix elements of the
exchange operator. Explicit expressions are
given for these off-diagonal matrix elements.
But, when calculated properly, these off-
diagonal matrix elements vanish identically.
They are nonzero in the theory of Nosanow
and Varma because these authors replace the
matrix elements like

Associated with 4,+(12) and 4,, (12) are spin
wave functions which are orthogonal. There can
be no matrix elements between 4,+, (12) and 4,, (12)
for spin-independent quantities; H(12) is spin-
independent. This latter objection also applies to
our statement that time-dependent perturbation
theory can be used to treat P»(12; t). There are
no matrix elements of P»(12; f) between 4,+(12)
and 4', , (12), since P»(12; f) does not involve o,
and cr, . We believe that the appropriate micro-
scopic mechanism for coupling the phonons to the
exchange system has yet to be identified.

This latter remark leads us to consider the
general question of the phonon-exchange inter-
action. Is there a mechanism for phonon-ex-
change coupling'P We believe that neither the ex-
isting calculations'~ ' nor our calculation by con-
versation (above) provides an explanation for the
mechanism of coupling between the exchange sys-
tem and the phonons. We are led to look at the
experimental data which suggests the existence
of phonon-exchange processes in the solid. The
strongest such data is that of Giffard and Hatton. "
In that data no evidence for a phonon-exchange
interaction appears in the data on pure 'He. When
small concentrations of 4He impurities are in-
troduced a 2-phonon process occurs, i. e. ,
Hatton and Giffard find an extra relaxation pro-
cess which has a very strong temperature depen-
dence. They suggest that this extra relaxation
process is a 2-phonon process. We believe that
this extra relaxation process is not a 2-phonon
process. We make the following argument: (a)
At T- =2. 5 K ' in pure 'He there is no evidence
for a 2-phonon process, T,(2 P"o"o")(x= 0) & 10'
sec. Therefore, the intrinsic relaxation rate for
the 2-phonon process in bulk 'He is less than 10-'
sec '. (b) The addition of 15 ppm ~He impurities
leads to T (2 Phonon)(x —l.5ppm) = 10 sec. Each
impurity (or the region of space around each im-
purity) must relax about 10' 'He atoms in 10' sec.
An intrinsic relaxation rate at an impurity site of
10' sec ' is required. (c) Thus, if the extra re-
laxation mechanism is a 2-phonon process in the
vicinity of a ~He impurity, this process must go
six order of magnitude more rapidly than it does
in bulk 'He. We do not believe it is reasonable to
expect this. Therefore, we argue that the extra
relaxation is not due to a 2-phonon process.

As an alternative to the 2-phonon process we
make the following speculation. In pure 'He in the
temperature range 1.0 ~ T ' & 2. 5, the relaxation
mechanism is due to the presence of vacancies.
Relaxation occurs because one of a tunneling pair
of 'He atoms finds that it has a vacancy for a
neighbor and tunnels to the vacancy lattice site
leaving its tunneling partner behind and confronted
with a magnetically inert vacancy. The original
tunneling partnership is destroyed. We suggest
that the presence of 'He impurities in a 'He lat-
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tice leads to a qualitatively similar relaxation
mechanism. One of a tunneling pair of 'He atoms
finds it has a ~He atom for a neighbor and tunnels
to the 4He lattice site leaving its original tunneling
partner behind and confronted with a magnetically
inert 'He particle. The physics is the same; the
original tunneling partnership is destroyed.

A few estimates of magnitudes are necessary to
support this suggestion. First, we know that at
T ' = 2. 5 in pure 'He T, is greater than 10'. This
T~ is due to a concentration z-e -13.6X2. 5 10-14
of vacancies. It requires a jump frequency (or
tunneling frequency) of about 10"sec '. This
is a reasonable time for quantum mechanical
tunneling of a 'He atom into a neighboring
vacancy lattice site. We estimate

is more complicated than simple superposition or
that phonons may be aiding in the 'He-'He tunnel-
ing process. We do not understand the details of
either of these processes.
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APPENDIX A.

(v) B D B D an/-4o~ k

T K
„xl91,1,%2 ff

e

(v) 5 9 -1
or (d = 2&&10 & = 5&10 secT T

Here ~T is the quantum mechanical tunneling fre-
quency computed above for two SHe atoms. To
make this numerical estimate we have used ~'
from Table I (v=20 cm~/mole) and o"D=30 K. A
vacancy concentration of 10 ' would lead to a T,
on the order of 10 ' sec. A 'He impurity con-
centration of 10 ' leads to T, =10'sec. Thus, the
tunneling process involving a 'He atom, and a ~He

atom is very slow compared to the vacancy tun-
nelingprocess. Infact, we expect that (d T" 4' is
about

(3, 4) B D -[a,'(n'+o')]/4
T

[a,'(a'-+ &')]/4

1. Overlap Integral

Consider

fdx, dx, y, (12)q (21)

fdx, dx, $»(12)g»(12)
(Al)

where $»(12) = y~(1)y2(2)g(r») (A2)

(1)
—[a'(x, —R,)'] /2

1 (A3)

Using the center of mass and relative coordinates
we have

—a' n.'/2 f, r g(r) e dr
2 - a'r'/2

Io =4'
)2 —a (r —Q /2

(A4)

The denominator is approximated adequately by
putting g(r) = 1. We have

D = (2v)'"/a' . (A5)
Since e4'= ~ e,', we have"

3

or ~ ""= 10'sec '
T

For the numerator, we use a cutoff approximation
in which g(r)' is replaced by 8(r- X) for a suitable
X. We choose X to be that r at which the exponen-
tial part of the integrand in Eq. (A4) has a maxi-
mum. For g(r) given by

This tunneling frequency is of the right order of
magnitude.

Although the estimates of tunneling frequencies
above tend to confirm our speculation about the
'He impurity, the process we are describing has
no temperature dependence. The extra relaxation
process found by Giffard and Hatton depends on
T as T ' or exp(- 3. 5/T). This latter tempera-
ture dependence suggests either that the dynamics
of the combined vacancy and 'He impurity system

(„) —P(o/r)

we have the condition

—[-,'a r +2P(a/r) ] =0 .d g 2 2 n
dr r=X

Thus, we have

1 —a'rP/2 ~ 2 —a'r'/2
Io= —4'

&
r e dr

(Ae)

(A7)
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a2n 2/2

We approximate J,(X) thus:

(A8)
write this in the form

4m —a' cP/2 nP
1 0'

&,(&) -=D $ r e dr
4v ~ 2 —a'r'/2

x o 2-n'z' 2 (AI8)

4v 2 r ~ —a r2/2
e dr

Further, we use the inequality

In the spirit of the approximation above to Z,(X),
we write

4v& l~ o 2 —ar /2
Pl+ 1 2 2

Z, (~)=——np l — r e dy'
D a

to approximate the remaining integral by

Thus, we have
(Ala)

4v 2W ~ —P 4vX —aX/2J (X)=—& —f e df= —~eD a aA/vY D a

n+1
=——np — J (X)

D g

Thus, we have

n+1
I, =—&p

-' I, ,

Pl+ 1
or ~ =—nP—

(A14)

(A16}

)1/2 a (6 + X )/2

The cutoff X is at

(A 11)
Now from the definition of X, we have

x=o(2pn/a o ) =crx
2 2 2+1/n

Since P=1, a'o'=8, for n=4, 5, ... , ~ is not
substantially different from 1. The cutoff is near
cr for all reasonable choices of n. It should bet

2. Interaction Integral

so that we may write

I 1~ = —(y26OV .
I0 2

(A17)

(A18)

The relative coordinate part of the interaction
integral is

I, =—e n f r g'(r)g(r)e dr .(A12)
4v —a'rP/2 ~ 2, —a'r'/2

The interaction integral, defined by Eq. (62), is
proportional to I,; the tunneling integral, defined
in Eq. (61), is proportional to I,. We show in Ap-
pendix B that the tunneling integral is given by

=4(~U (1)),I

Using the analytic approximation to g(r}, where (aU2(1))ot= (II' /ma)a' 4/4oFrom .Eq.
(62) we have

( )
—p(o/r)

we have

4 v —a'rP/2I =—eD

= (g'a'/m) —,'I
x 1'

Thus, we have

/6e =4

(A19)

(A2O)

60 n+1
nP o 2 2 —a t /2x —— r g(r) e dr.0'

0

We use the same cutoff procedure as above to

we have calculated I0 and I, and bey and 4c~ ex-
actly for the values of a' and 4 from the solution
to the ground-state problem by Guyer and
Sarkissian. %'e have done this for three correla-
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tion functions; (i) Nosanow's f(r) = exp[- Kv(r)],
(ii) the correlation function of Guyer and
Sarkissian, and (iii) the WKB correlation function.
In Table I, we list the value of J, and the ratio
J,/Jo for all three correlation functions. We note:

(a) The ratio J,/Zo is essentially the same at
all molar volumes for all three correlation
functions.

(b) The ratio J,/Jo agrees quite well with the
result for that ratio using the cutoff approxima-
tion, i.e. , compare J,/Jo with column four of
the table.

(c) The ratio neT/ne computed using the
values of 8, and 1, from the table is neZ /ne„
= 2. 5 [independent of molar volume and in
reasonable agreement with the estimate above,
Zq. (A20}].

(d) Both 8, and Z, are largest using the Nosanow
correlation function and smallest for the %'KB
correlation function. This is as it should be
since the Nosanow correlation function lets
the pair furthest into the hard core, whereas
the %'KB correlation function keeps them
furthest away (see Fig. 5}. By equating Jo cal-
culated from the exact formula [Eq. (A4)] with

J, from the approximate formula we can find
a X for each molar volume and correlation
function. We find: (i) the Nosanow corre-
lation function acts like 8(r- 2. 22) and is inde-
pendent of molar volume, (ii) the WKB correla-
tion function acts like 8(r- 2. 65) at v = 24. 7 cm'/
mole and 8(r 2. 45) -at v= 16.0 cm'/mole, and
(iii} the correlation function of Guyer and
Sarkissian behaves like 8(r 2.45} a—t v= 24. 7 cm3/
mole and 8(r 2. 30) a-t v= 16.0 cm'/mole. The
Nosanow correlation function goes from 0 to 1
rapidly in the vicinity of o. Its cutoff equivalent
is less sensitive to molar volume than those of
the %KB correlation function and the Guyer and
Sarkissian correlation function.

APPENDIX B

xg(r») and &p,(l)y, (2)g(r») is a maximum. For
Gaussian single-particle wave functions, this re-
gion of space is a spherical shell of radius —,'o
centered midway between R, and R, (see Fig. 9}.
A quantity like

(X
~

E(x x.) I » /(111),

where E(x,x }are mild functions of x, and x~ is
well approximated by

(Xi E(x,x )i 1)/(li 1) =(E(x x )),p

U, (1)= —,'k(x, —R,}, x&0;

U„(1)=-,'k(x, —R,}', x)0.

The biased single-particle potentials are

U, (1) = 2k(x, —R, )2

and U, (1)=-,'k(x, —R)'.

The average value of nU, (1) over the overlap
trajectory is

(nU2(1)) = —,'k fdA[r R, )' ——(r —R )2]

g6
= —k—, (»)

where I rl = —,'cr and the dA integral is over the half-
space 0 ~ 6) ~ —,'m. Finally, we use the identity k
= h @2~ m/to write

Here (E(xlx2))ot stands for the average of E(x,x,)
over the overlap trajectory. [We have verified
this approximation for E(x,) =(x, —R,)', where it is
good to better than 2%%uo. ]

nU, (1) is defined in Eq. (55) [see Fig. 6]. We
take U»(1) to be the sum of clipped harmonic os-
cillator potentials

The overlap trajectory is defined as that region
of real space on which the overlap of rp, (1)@2(2) (&U (1)& = (k n'/m)a'&rn/4

2 ot (B2)

TABLE I. Values of Jp and J~/Jp for the three correlation functions.

Molar
volume

18
19
20
21
22
23
24.7

3.39
3.45
3.51
3.56
3.62
3.67
3.76

2.48
2.23
2.03
1.84
1.69
1.55
1.32

0. So/2

10.8
9.9
9.2
8.4
7.9
7.3

Jp

3.57{-3)
5.90{-3)
9.06(-3)
1.34(-2)
1.86(- 2)

2.53(-2)
4.20(-2)

gs
{J&/ Jp)

8.5
7.8
7.3
6.8
6.3
5.9
5.2

Jp

5.81{-3)
1.02(-2)
1.62 (- 2)

2.47(-2)
3.48(-2)
4.79(- 2)

8.08 (- 2)

f E&)

8.6

7.2
6.7
6.2

4 9

1.53 (-3)
2.71(-3)
4.41(-3)
6.90 (-3)
9.99(-3)
1.42(-2)
2.58(-2)

WKB

(J,/Jp)

8.9
8.2
7.6
7.1
6.6
6.2
5.5
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In this early part of the discussion we shall ignore
correlations.

This terminology arises because a Hamiltonian like
that in Eq. (6) correctly describes exchange in electron
systems. We will show in this paper that exchange is
due to a tunneling process and an interaction process.
We will use the term exchange generally to refer to the
piece of the Hamiltonian which embodies the effect of
the tunneling process and the interaction process.
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Using the theory of Bardeen, Baym, and Pines (BBP) for dilute He -He mixtures, the
second-sound velocity has been calculated for concentrations of He below 10% for tempera-
tures below 0.5 'K and pressures below 20 atm. In addition, the phase diagram at T= 0 for
phase separation and solidification has been constructed. The changes in the second-sound
velocity and the phase diagram caused by variations in the BBP parameter n are also studied.

I. INTRODUCTION

It is well known that the presence of a small
amount of He' in an He' solution has a dramatic
effect on the second-sound velocity czz at very low
temperatures. The qualitative explanation is that
at these low temperatures the He4 contribution to
the normal fluid density p„(asdue to the phonons)
is so small that the He' contribution to p~ becomes
dominant.

A quantitative understanding of this phenomenon
was obtained by Pomeranchuk and Landau, ' who
regarded the He' particles as independent excita-
tions, with excitation spectrum E,+ K'0'/2m
where m* is the (effective) mass of the excitations.
It appears that there is a regime in concentrations
x of He' where the second-sound velocity depends
only on m*. Thus m can be determined from mea-
surement of czz and is found' to be of order 2. 5m3,
where m, is the He atomic mass. This regime is
limited on the low-concentration side by the con-
dition that He excitations still dominate the pho-
nons. For temperatures below T=0. 5 'K this is
already so for x & 10 '. On the high-concentration
side of the regime one has the limiting condition
that the He' excitations are sufficiently dilute so
that they can still be considered as independent.

Recently, Bardeen, Baym, and Pines' (BBP)
have extended Pomeranchuk's idea and determined

the effective interaction between the He' excita-
tions. The interaction in dilute mixtures is weak
and attractive and can be taken pairwise.

It is the aim of this paper to extend the second-
sound theory in He' —He' mixtures to higher con-
centrations using the BBP interaction. We esti-
mate the limit of concentrations, adequately des-
cribed by the BBP interactions, to be of the order
of 10%. Since BBP' s potential is determined at
T=O, we are restricted to temperatures for which
the He4 background is essentially in its ground
state, i.e. , to temperatures where no appreciable
amount of phonons are present, which we estimate
to be so below T=0. 5 'K.

Also, the BBP potential is determined from
specific-heat and spin-diffusion data at vapor
pressure. Accordingly, the shape of the potential
is known only at p = 0 and there only approximately.
However, since the shape of the potential enters
into our results for czz in a minor way, we have
assumed that the shape is pressure-independent.
In fact, the uncertainties due to the lack of knowl-
edge of the pressure dependence of the shape seem
small as compared to the uncertainties in the mea-
sured strength parameters, in particular, the so-
called BBP parameter a.

The phase-separation curve is more sensitive
to the shape of the BBP potential than czz. There-
fore, we have included in Appendix A a calculation


