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Several earlier computer studies of nonlinear oscillator systems have revealed an amplitude
instability marking a sharp transition from conditionally periodic to ergodic-type motion, and
several authors have explained the observed instabilities in terms of a mathematical theorem
due to Kolmogorov, Arnol'd, and Moser. In view of the significance of these results to sev-
eral diverse fields, especially to statistical mechanics, this paper attempts to provide an
elementary introduction to Kolmogorov-Arnol d-Moser amplitude instability and to provide
a verifiable scheme for predicting the onset of this instability. This goal is achieved by
demonstrating that amplitude instability can occur even in simple oscillator systems which
admit to a clear and detailed analysis. The analysis presented here is related to several
earlier studies. Special attention is given to the relevance of amplitude instability for sta-
tistical mechanics.

I. INTRODUCTION

In attempting to determine the behavior of non-
linear oscillator systems governed by Hamilto-
nians of the form

H=H +V

where H, represents an integrable system of os-
cillators and where V represents a weak nonlinear

and nonintegrable perturbation, most investigators
have proceeded along one of two divergent paths.
One approach assumes that the weak perturbation
V changes the unperturbed motion only to the ex-
tent of slightly shifting the frequencies of the
motion and introducing small nonlinear harmonics.
This approach is used most frequently when the
number of oscillators is relatively small, and it
is exemplified in certain perturbation expansionsI
due to Poincare, ' Birkhoff, ' and Kryloff and
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Bogoliubov. ' The second a.pproach assumes that

V, even though weak, has a profound and patho-
logical effect on the unperturbed motion, convert-
ing it into ergodic4 motion. This latter approach
uses the methods of statistical mechanics (pre-
sumed valid when the number of oscillators is
large) and is exemplified in the work of Fermi'
and Peierls. '

A brief paper by Kolmogorov' enunciated a
theorem which can perhaps provide a cornerstone
for linking the two aforementioned divergent views
on the effects of the weak perturbation V in Eq. (1).
Kolmogorov did not present a detailed proof of his
theorem; the missing proof, which is quite long
and mathematically sophisticated, was supplied
almost a decade later by Arnol'd' and independently
by Moser. ' As a consequence perhaps, the physical
scientist has largely remained unaware of
Kolmogorov's theorem and its implications. For
details of the theory with applications, the reader
is referred to the review article by Arnol'd. "
However, in order to make this paper self-con-
tained, we briefly present here those details of the
theory relevant to this paper; in particular we may
restrict our attention to systems with two degrees
of freedom without significant loss of generality.

Introducing action-angle type variables (Zf, p; )
for a two-oscillator system, Hamiltonian (1) may
be written

H = H, (Z„J', ) + V(Z„J„p„q,) .

If we set V ==0, then Hamiltonian (2) generates
motion for which the J's are constant and y;
=~i (~I ~2)f+Pfo, where the unperturbed frequen-
cies v& are given by &u&' = sHp/BZf. Following
Kolmogorov, we view the unperturbed system
motion in phase space as lying on two-dimensional
tori where (p„y, ) are the angle coordinates on the
tori and (J „Z,) are the "radii" of the tori. By
assuming that V is sufficiently small and by as-
suming that the Jacobian of the frequencies
S (w„~)/S (J, , J,) g 0, Kolmogorov-Arnol'd-Noser
(hereafter referred to as KAM) are able to show
that most of the unperturbed tori bearing condi-
tionally periodic motion with incommensurate fre-
quencies continue to exist, being only slightly dis-
torted by the perturbation. On the other hand, the
tori bearing periodic motion, or very nearly peri-
odic motion, with commensurate frequencies, or
with incommensurate frequencies whose ra, tio is
approximated extremely well by (r/s) where r and
s a.re relatively small integers, are grossly de-
formed by the perturbation and no longer remain
close to the unperturbed tori. Since the unper-
turbed tori with commensurate frequencies which
are destroyed by the perturbation are everywhere
dense, it is remarkable indeed that KAM are able
to show that the majority —in the sense of measure
theory —of initial conditions for Hamiltonian (2) lie

& cos(mp, + ncp, ) + ~ ~ ~, (3)

where we have explicitly written only one term in
the series. The KAM formalism seeks to elimi-
nate the angle-dependent terms using a convergent
sequence of canonical transformations, each of
which is close to the identity transformation, thus
obtaining a Hamiltonian which is a. function of the
transformed action variables alone and which is
close to the original Hamiltonian. If this can be
accomplished in some general sense, then one im-
mediately finds that the perturbed motion, for the
most part, lies on tori close to the unperturbed
tori. As illustration, let us seek to eliminate the
explicit angle-dependent term in Hamiltonian (3)
by introducing the canonical transformation gener-

by

F =
91~I +$ 2~ + + (g, ~ ) sIn(m~ + n

(4)

where (g,. g . ) are the transformed action-angle
variables and 8 „(9„8,) is to be determined. We
note that if B~„=0, we have the identity trans-
formation J; = g; and y; = ez.

Introducing the canonical transformation gener-
ated by Eq. (4) into Hamiltonian (3), we obtain

on the preserved tori bearing conditionally periodic
motion when V is sufficiently small.

Thus for small V, KAM theory proves that for
most initial conditions Hamiltonian (2) generates
nonergodic motion thus justifying the view that the
perturbation V largely serves only to slightly shift
the frequencies and introduce small nonlinear har-
monics into the motion. " Nonetheless, the rela-
tively small set of initial conditions leading to
motion not on preserved tori is, from a physical
point of view, pathologically interspersed between
the preserved tori. Moreover, Arnol'd" conjec-
tures that the system phase-space trajectory in
regions of the destroyed tori is quite complicated
indeed, perhaps ergodically filling the destroyed
region. Thus, if Hamiltonian (2) is ever to pro-
vide generally ergodic motion best described in
terms of statistical mechanics, the source of such
behavior must lie in the reasons for the very ex-
istence of this relatively small set of destroyed
tori. Hence we now investigate the properties of
V which lead to the destruction of tori.

To this end, we expand the V of Hamiltonian (2)
in a Fourier series and write
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xa (8, S )+f (S,8 )}

cos(me +ne )+ ~ ~ ~,

where &u (SI,82) = SH (31 g )/S g. and where we

have explicitly retained only the lowest-order
terms. We may now eliminate the given angle-
dependent term, provided we set

{~ ~) -mn 1' 2, (6)f (9,8)
mn 1, 2 n~, (g„g,) +n~(g„g

and provided that the denominator in Eq. (6) is not

very small (or zero} relative to f~„. If the de-
nominator in Eq. (6) is very small, then the coef-
ficient B~„is large, the transformation generated
by Eq. (4) is not close to the identity transforma-
tion, and the transformed coordinate motion is not
close to the unperturbed motion. As a consequence,
if there exists a band of frequencies ~ for
Hamiltonian (3) satisfying

then the angle-dependent term cos(my, + ny, )

grossly distorts an associated zone of unperturbed
tori bearing the frequencies satisfying the inequal-
ity (7}.

Moreover, when a zone of unperturbed tori is
grossly distorted by a specified angle-dependent
term cos(my, + ny, ), one must in general antici-
pate that there will be a host of angle-dependent
terms cos(m'p, + n'y, ) in Hamiltonian (3) whose
(m'/n'} ratios are sufficiently close to the specified
ratio (m/n) that the analog of the inequality (7) is
satisfied for them also. Hence the zone of unper-
turbed tori distorted by cos(my, + ny, ) will simul-
taneously be affected by a large number of other
angle-dependent terms. Physically speaking, the
inequality (7) is a resonance relationship which,
if satisfied, asserts that cos(my, + np, )resonantly
couples the unperturbed oscillators when their fre-
quencies lie in the designated band. If a number
of angle-dependent resonant terms couple the os-
cillators in this band, then one has the situation
envisioned in the quantum-mechanical Golden
Rule" in which an initial state is resonantly
coupled to adensity of final states leading to statis-
tically irreversible behavior. In analogy, one
would anticipate that the motion generated by
Hamiltonian (3}in the overlapping resonant zones
of destroyed tori is highly complicated, perhaps
even ergodic.

When V is very small and hence all f~„are
small, the inequality (7) shows that the resonance
zones are very narrow. Moreover, KAM show that
the totality of all resonant destroyed zones is
small'~ relative to the measure of the allowed phase

space. However, as V and the f~„ increase, or
equivalently as the total energy increases, one
anticipates from the inequality (7) that the measure
of the overlapping resonant zones may increase
until most of phase space is filled with highly com-
plicated trajectories moving under the influence
of many resonances. In short, KAM theory indi-
cates, but certainly does not prove, the existence
of an amplitude instability for conservative non-
linear oscillator systems which permits a transi-
tion from motion which is predominantly condition-
ally periodic to motion which is predominantly
ergodic. Since this transition lies outside the
scope of KAM theory, we now review some of the
computer generated evidence which supports the
existence of an amplitude instability.

One of the first computer demonstrations of an
amplitude instability was made in an investigation
of unimolecular dissociation by Thiele and Wilson"
and by Bunker. " These investigators noted that
for small amplitude motion the harmonic modes
of triatomic molecules exhibited very little energy
exchange. As the energy of the molecule was in-
creased, an amplitude instability occurred which
allowed free and rapid interchange of energy
between the harmonic modes. Consequently, as
the energy was further increased to slightly above
that needed to dissociate one atom from the mole-
cule, almost all initial configurations led to dis-
sociation. Thiele and Wilson" then used these re-
sults to argue that nonlinearity must be given a
central role in developing a statistical theory of
unimolecular dissociation. These molecular sys-
tems were not analyzed in terms of the KAM
theory; however, using the techniques discussed
in the following paragraphs, the present authors
have shown that the observed amplitude instability
of Wilson's oscillator model occurs concurrently
with a large-scale disappearance of preserved
tori.

The second major computer demonstration of
amplitude instability occurred in an astronomical
study. Henon and Heiles" studied the bounded
motion of the system

(6)

in order to determine whether or nota well-behaved
constant of the motion exists for Hamiltonian (6}
in addition to H itself. This study was motivated
by empirical and theoretical evidence" that a star
moving in a cylindrically symmetric potential ap-
peared to have a well-behaved constantof themotion
in addition to the total energy and the z component
of angular momentum. Since we intend to rely
heavily in the main body of this paper on the tech-
niques used by Henon and Heiles, we now outline
their approach. The reader who finds the following
discussion unclear is urged to read the extremely
clear Henon and Heiles paper.
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For fixed energy below the dissociation energy,
all the phase-space trajectories generated by
Hamiltonian (8) must lie on a bounded, three-dimen-
sional energy surface. If an additional well-behaved
constant of the motion I (q„p„q„p,) exists, then
all system trajectories are further constrained to
lie on bounded two-dimensional surfaces; if no
well-behaved constant I exists, then the system
trajectories will move randomly over some or all
of the energy surface. If we now imagine a two-
dimensional plane cutting through this three-dimen-
sional energy surface, then the existence of a well-
behaved constant I ensures that each system trajec-
tory will intersect this plane along a curve, called
a level curve; if a well-behaved I does not exist,
the intersections of each trajectory will form a set
of randomly scattered points. As a test then for
the existence of a well-behaved constant I, Henon
and Heiles integrated the equations of motion for
Hamiltonian (8) and graphically plotted the intersec-
tion points of the system trajectory with the (q, p )
plane determined" by the conditions /pl 0 and pl
~0. Using the Henon-Heiles method, we have in-
tegrated Hamiltonian (8)on a UNIVAC 1108 computer
to obtain the level curves shown in Figs. 1-5.

Henon and Heiles analyzed these figures only in re-
gard to constants of the motion. However, when
the constants of the motion 8 and I restrict the sys-
tem motion to lie on a two-dimensional surface in
(qp„q2, p, ) space, one may use canonical trans-
formation theory" to show that this two-dimensional
surface is topologically equivalent to a KAM torus.
A level curve in the (q„p,)plane is thus topologically
equivalent to a cross section of the torus. Figures
1-5 may then be regarded as profiles of KAM tori.

Figure 1, for energy E = ~», shows that, to com-
puter accuracy, "all trajectories lie on tori. How-
ever, the inequality (7) makes it clear that there are
zones of instability which could be observed with
sufficient computer accuracy. Nonetheless, Fig. 1
demonstrates that E =~» is deep within the region
of KAM stability. Figures 2 and 3 illustrate the
characteristic behavior of the tori at the onset of
macroscopic instability when the microscopic KAM
zones of instability become large enough to be seen
by the computer. Figure 2, at about E = 0. 106,
shows the appearance of a new type of torus which
consists of a chain of eight islands surrounding the
central invariant point on the upper p, axis. Figure
3 shows two zones on instability which appear
simultaneously with the island chains; both insta-
bilities characteristically first appear as a replace-
ment for the self-intersecting curve of Fig. 1,
called a separatrix. Jefferys" explains this latter
fact in terms of the KAM theory and the examples
studied later in this paper support his explanation.
Figure 4, at E = —,, depicts the intermediate situa-
tion in which preserved tori still cover about 7(P~
of the available area while intersections of the
single orbit shown rather uniformly cover the re-

E ~ O.N333333
Scale: 1 Tic = .10

FIG. 1. Level curves for the Henon-Heiles system
in the t'q2, p2) plane. The microscopic zones of KAM in-
stability lie below the computer integration accuracy.
Here and in all level curve diagrams whenever a tra-
jectory yields intersection points obviously lying on a
smooth curve, the indicated curve has been drawn in
freehand. The only exception occurs in Fig. 2 where the
full level curves for the two chains of eight islands have
not been freehanded in.

maining 30%. Figure 5, at the dissociation energy
E =~6, demonstrates that almost all the system
motion is now statistical in character.

The final example of KAM instability is provided
by the Hamiltonian system

H= 2Q (p '+&@ q )+o. Q A. . q qqk~qks qk
~p jt

originally proposed by Fermi, Pasta, and Ulam"
as a model for the study of the approach to thermal
equilibrium, although their study did not reveal an
approach to equilibrium. Additional studies of this
system have been made by Ford and Waters, ~ by
Jackson, "and perhaps most interestingly by
Kruskal and Zabusky. " However, Izrailev and
Chirikov ' were the first to suggest that Hamiltonian
(8) should exhibit a KAM instability leading to
statistical behavior. Zabusky and Deem ' investi-
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P2 E = 0.10629166
Scale. 1 T&c .10 P2

E 0.10629166
Scale: 1 Tic = .10

I Q2 ~a2
I

FIG. 2. Level curves for the Henon-Heiles system.
The onset of macroscopic KAM instability is seen in the
two chains of eight islands.

FIG. 3. Level curves for the Henon-Heiles system.
This figure is a continuation of Fig. 2, using the same
energy, and shows two macroscopic zones of KAM in-
stability. The zone of instability centered on the p2 axis
encompasses the chain of eight islands shown in the up-
per part of Fig. 2.

gated this possibility and they demonstrated that
the large amplitude motion, contrary to the small
amplitude motion, does indeed exhibit widespread
energy sharing among the harmonic modes. None-
theless, complete equipartition of energy was not
achieved and the motion exhibited correlations in-
consistent with complete ergodicity or thermal
equilibrium. At present, it is unclear whether
Zabusky and Deem were observing incomplete KAM
instability such as that observedin Fig. 4 or whether
they were observing the constant high-order corre-
lations of the type derived by Prigogine and co-
workers. "

While there can be little doubt that KAM insta-
bility is the source of the amplitude instabilities
observed in the above computer experiments, the
theorist's ability to predict the onset and comple-
tion of macroscopic instability is less certain.
Certainly, the three recent papers"~ "~ "attacking
this problem have treated quite complicated sys-
tems for which prediction is especially difficult.
Consequently, in this paper, we attempt to illus-
trate the origins and verifiably predict the onset
of macroscopic amplitude instability using ex-
tremely simple oscillator models. Our intent is
to provide an elementary introduction to KAM in-
stability and to provide a reasonably accurate
calculational scheme for predicting this instability

P2

E ~ 0.12500000
Scale: 1 Tic .10

I 02V ~

FIG. 4. Level curves for the Henon-Heiles system
showing the increase in the zone of instability with in-
creasing energy.
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Scale: 1 Tic ~ .10
well-behaved constant of the motion

I =nJ, —mJ2,

independent of H. As a consequence, we may
algebraically calculate level curves for Hamiltonian
(10) in any plane we choose, thus precisely deter-
mining in profile the shape and characteristics of
the m-n resonance zone. In order to ease this
discussion, let us turn to some specific examples.

We begin by considering the particular unper-
turbed Hamiltonian

H =J, J -J2 —3JJ +J2 (12)

common to all our examples. The action-angle
variables (Jf, qf ) are related to the Cartesian
variables (q;, p; ) via

q. = (2J . )"' cosrp (13a)

p. = —(2J. )"'sing. .
t t

(13b)

In order that the unperturbed frequencies given by
FIG. 5. Level curves for the Henon-Heiles system.

The isolated dots represent the level curve for a single
trajectory; however, integration accuracy for this highly
unstable orbit is questionable.

(d1 —1 —2J1 3J2

1 —3J, +2J

(14a)

(14b)

alternative to those previously suggested. In Sec.
II, we study the effects of isolated resonant terms
on the unperturbed tori; in Sec. IG, ere consider
the simultaneous action of two resonant terms and
show that they are sufficient to demonstrate a pre-
dictable instability. Section IV relates our results
to the Henon-Heiles system, and Sec. V presents
our conclusions.

II. ISOLATED RESONANCES

In this section, we illustrate the distortion of
unperturbed tori caused by isolated angle-depen-
dent resonant terms. The Hamiltonians we con-
sider are of the form

H=H(J, J )+f (J J ) cos(mq& +nqp ),

(10)

where uf ——s H0/s Jare both positive 'and where
m andn are integers such that the inequality (7)
can be satisfied. For brevity, an isolated pertur-
bation of this type is called an rn-n resonance,
and the associated zone of highly distorted tori,
loosely specified by inequality (7), is called an
m-n resonance zone. Such perturbations are es-
pecially easy to analyze since they give rise to a

be positive, we require that the energy E lie in the
range 0&E &~&3 and that the values used for the J; lie
on the branch which goes to zero with E. Now Eq.
(13) may be used to show that

H = Ho(J„J,) + u J,J,cos(2p', —'2', ) .

Now this system has the additional constant of the
motion

I =J, +J (17)

Thus the unperturbed level curves in the (q„p, )
plane, hereafter called the J, plane, are concen-
tric circles centered on the origin since J2 is a
constant. Similarly points on the level curves in
the (q„p„) plane or J, plane, defined by q, = 0,
p, ~0 ( or equivalently cp, = 2 3m), also lie on con-
centric circles. These circular level curves in
either plane are enclosed by a bounding level curve
representing the intersection of the energy surface
with each plane.

We now introduce a 2-2 resonance and write
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If we now use Eq. (17) to eliminate Z, from Eq.
(16}and if we set p, = —, 3v, we obtain

(3 + a cos2y, g,' —(5I+ I cos2p, )J',

Z, = [(5+a)/(I+ a)]Z, ,

(y, —C, ) = —,
' v or —,

*
v .

For the unstable periodic orbits, we have

(19a)

(19b)

+I +I2 —E =0

as the algebraic equation for level curves in the J
plane. A typical level-curve diagram for Eq. (18
is shown in Fig. 6. The unperturbed circular
level curves are only slightly distorted except in
the 2 —2 resonance zone enclosed by the self-inter-
secting separatrix level curve. The two self-inter-
section points represent distinct unstable periodic
solutions while the two invariant points at the center
of each crescent region represent distinct stable
periodic solutions. Since the central point of each
crescent represents a distinct periodic orbit, the
two crescents are not a chain of two islands.
The central points of an island chain represent a
single periodic orbit.

For all four of the above periodic orbits, we
have J, =J, =(p, —y, )=0, where a dot denotes time
differentiation. For the stable periodic orbits we
find

Z, = [(5-a)/(I- n)]Z, ,

(y, —y2)=0 or v .

(20a)

(20b)

Using Eq. (14) we see that 2&v, = 2~, implies

J,=5J (21)

Thus as predicted by the inequality (7), the 2-2
resonance zone of highly distorted tori occurs in
a neighborhood of the unperturbed torus bearing
the frequencies 2~, =2'„designated as the 2-2
torus. Putting Eq. (21) into Eq. (12}, we find

& [I (1 m E)in]

Z, =-h [I-(I-~E)' ]

(22a)

(22b)

as the values of J, and J, on the unperturbed 2-2
torus. Consequently, the unperturbed 2-2 torus
and the perturbed 2-2 resonance zone exist for all
allowed energies 0&E- ~&. As the energy in-
creases from zero, the 2-2 resonance zone moves
out from the origin and increases in width.

The closest (low-order) resonance to the 2-2 is
the 3-2 or the 2-3. We investigate each. First
consider

H = Ho(J„J2) + p J'~3~ J2 cos(3&p~ —2y2) (23)

The additional constant of the motion is

I=2 J, +3J, (24)

and the level curves in the J, plane are given by

E= 31+&12+(.'--~f)J +~&'

—(,' P)(fZ," 2J,'"-)cos3p, — (25)

Typical level curves for Eq. (25) are presented
in Fig. 7. Here the points at the center of each
of the three crescent regions do represent a single
periodic solution, and thus the 3-2 resonance zone
consists of a chain of three islands. Similarly,
the three self-intersecting points on the separatrix
represent a single unstable periodic solution.

Again setting 2, = J, = (3', —2rp2) = 0 yields

FIG. 6. Typical level curves for an isolated, 2-2
resonance computed algebraically.

&, = (1+2 J, ")/(13+aZ, ' ')

(3V, —2y, ) =m, 3v, 5v,

(25a)

(25b)
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chains may appear abruptly aQows one to under-
stand certain features of amplitude instability.
F'or example, the onset of the instability observed

by Thiele and Wilson" is evidently due to the
sudden appearance of an island chain.

Next we briefly mention the 2-3 resonance.
Here

H = H, (J„Z,) + PJ,J,'/' cos(2y, —3p, ) (28)

/he additional constant is

I= 3Jx+ 2 J2 (30)

Pevel curves in the J, plane are found from

E=-.' I -L12+(-,'-&51) z +aL z '

+ P[2+ 5/2 (1I)J 3/2] cos3&p

FIG. 7. Typical level curves for an isolated, 3-2
resonance computed algebraically. The dots represent
points computed using Eq. (25); the curves were drawn

in freehand. The chain of three islands first appears at
the origin for E= 0.08. All the widths of the islands in-
cluding this one increase with increasing energy.

for the stable periodic orbit; while

Z, = (1—2Z,'/2)/(13+a Z,'"),
(3y, —2y, }=0,2v, 4v,

(27a)

(27b}

r
2 g3

(28a)

for the unstable periodic solution. As one ex-
pects, the 3-2 resonance zone lies near the unper-
turbed 3-2 torus. Indeed setting 3~y 2(i02 and

using Eq. (12), we obtain

hs for the 3-2 resonance, the 2-3 resonance zone
a,ppears in the J, plane around the unperturbed
P-3 torus which can be shown to appear abruptly
at E =0. 16. The level curves for this resonance
are quite similar to those of Fig. 7 except that
the chain of three islands appears now in the J,
plane.

These three examples suffice to give the general
picture. An m —n resonance for m +n introduces
a chain of m islands in the J,plane and a chain of n
islands in the J, plane. Isolated resonances dis-
tort the unperturbed tori by introducing, in pairs,
new stable and unstable periodic orbits. An m- n
resonance zone, in general, appears abruptly at
some E~O, and it is bounded by a separatrix which
passes through the unstable periodic solutions.
The presence of an additional simple constant of
the motion allows one to calculate precisely the
shape and position of each m-n resonance zone.
Though it is not obvious, one may show that the
m-n resonance zones decrease rapidly in size as
m and n increase. Having now investigated iso-
lated resonances in considerable detail, we turn
to the case in which two resonances act simulta-
neously; we shall be especially interested in the
fate of the tori in regions where the isolated
resonance zones overlap.

(~ E)i/2 (28b)
III. DOUBLE RESONANCE

g,s the values of J, and J, on the unperturbed 3-2
torus where Eq. (28a) should be compared with

Eqs. (28) and (27). Now Eq. (15) requires that

J,~O. Thus in Eq. (28b) we must have E ~~
0 08. At E= xx~xs Jx = 0 Hence the unperturbed

3-2 torus and the 3-2 resonance zone appear
abruptly at the origin of the J, plane; they appear
abruptly in the J, plane when the bounding level
curve moves out to J,=», i. e. , at E=~es. The
fact that resonance zones in the form of island

H = H, (Z„J,} + oZ,J,cos(2', —2y, )

+ PZ,Z,"'cos(2y, —3/p, ), (32)

We now investigate the behavior of oscillator
systems simultaneously perturbed by two isolated
resonances. In particular, we wish to determine
how well this behavior can be predicted. We begin
by considering the Hamiltonian
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where o = P = 0. 02 in all calculations. Since the
unperturbed 2-3 torus does not exist for energies
E ~ 0.16, one may use the KAM technique indicated
in Eqs. (3)-(6) to eliminate the 2-3 perturbation
term. Consequently, one would expect the level
curves for Hamiltonian (32) for E ~ 0. 16 to be al-
most identical to those of Ha, miltonian (16). This
expectation is verified in Fig. 8 which presents
the level curves for Hamiltonian (32), obta, ined by
direct integration, for E = 0. 056. Figure 8 should
be compared with Fig. 6. In pa, rticula. r, Eq. (19a),
valid for P = 0, predicts that a stable periodic
orbit should occur at q, = 0. 142, which to three-
figure accuracy is exactly where it does occur in
Fig. 8. In addition, the function J, + Z„exactly
constant for P = 0, is now constant to between four
and six decimals while 3J, + 2J, is constant only
to two decimals.

Using data calculated from the equations of Sec.
II, we determined that, for energies slightly
greater than E = 0. 16, the 2-2 and 2-3 resonance
zones should be widely separated. Figure 9 shows
the level curves for Hamiltonian (32) at E = 0. 18.
The details of Fig. 9 are accurately predicted from
the data of Sec. II. Next we conjectured that a
Henon-Heiles-type zone of instability might occur
when the 2-2 and 2-3 resonance zones begin to

E ~ 0.00010000
Scale: 1 Te .10

Pg
E 0 18000000
Scale: 1 Tic = .10

FIG. 9. Typical level curves for the 2-2, 2-3, doubly
resonant Hamiltonian for energies yielding widely sep-
arated 2-2 and 2-3 resonances.

az

ag

FIG. 8. Typical level curves for the 2-2, 2-3, doubly
resonant Hamiltonian for energies below the appearance
of the 2-3 resonance. Note the similarity to Fig. 6.

overlap. At low energies, the 2-3 zone lies in-
side the 2-2 zone, thus the zones should first
overlap when the outer edge of the 2-3 zone
touches the inner edge of the 2-2 zone. In order
to estimate the energy for the onset of overlap, we
calculated the q, -axis intercept of each zone
boundary using the equations of Sec. II. In Fig.
10, we plot these q, intercepts as a function of
energy. Overlap first occurs at energy E = 0. 2095.
In Fig. 11, we plot level curves for Hamiltonian
(32), obtained by direct integration, at E = 0. 2095.
Here one observes that indeed a small zone of in-
stability has rather abruptly appeared with the
overlap of the 2-2 and 2-3 resonance zones as
conjectured.

In order to illustrate the dynamics of breakdown,
which is quite complicated, we show, in Fig. 12,
the level curves for Hamiltonian (32) at E = 0. 20,
slightly below the predicted overlap energy. The
2-2 and 2-3 resonance zones occur in their pre-
dicted places; however, the computer also detects
the chain of five islands shown in the figure butnot
previously predicted. There is also a detectable
chain of seven islands near the chain of five which
is not shown. We now discuss the origin of these
higher-order resonances.

The hierarchy of resonances implicit in Hamilto-
nian (32) may be made explicit via the following
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FIG. 10. q2-axis intercepts of the inner 2-2 and

the outer 2-3 separatrices are plotted as a function of
total energy.

FIG. 12. Level curves for the 2-2, 2-3, doubly

resonant Hamiltonian at E = 0.20, slightly below the

predicted overlap energy. The dots between the 2-2
and 2-3 crescents are part of a chain of five islands.
A chain of seven islands, not shown, has also been

found in this region.

canonical transformation formalism. Let us now
regard Hamiltonian (32) as just Hamiltonian (16)
perturbed by a 2-3 resonance. But Hamiltonian
(16}, which has a simple known constant of the mo-
tionI, is integrable"; thus it is possible, though
not simple, "to determine a canonical transforma-
tion T to variables (A&, 8;) such that the unper-
turbed Hamiltonian (16) is a function of the g.
alone. " Denoting this new unperturbed Hamilto-
nian by I» we have

a

I
/ /

I
/

I
/

~

e, = e,(g„g,) . (33}

In the original coordinates, typical level curves
for H, were shown in Fig. 6; in transforxned co-
ordinates, the level curves are concentric circles
centered on the origin. Under transformation T,
the 2-3 resonance becomes some function
V(8 „J2, 8 „82). The full Hamiltonian (32) then
becomes

a = a, (g„g,)+ V(g „g„8„8,). (34)
FIG. 11. Level curves for the 2-2, 2-3, doubly

resonant Hamiltonian at the energy predicted for initial
overlap of the 2-2 and 2-3 resonance zones.

If V(8 „82,8 „82) is expanded in a. Fourier series,
then a number of new resonances will become ex-
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plicit. These new resonances we shall call secon-
dary resonances as opposed to the primary reso-
nances explicitly appearing in Hamiltonian (32).
Using the methods of Sec. II and treating each sec-
ondary resonance as if isolated, we could estimate
the position and shape of each secondary-resonance-
zone island chain. Transforming back to original
coordinates would then reveal the position and
shape of the secondary island chains. Let us note
that any single resonance in Hamiltonian (34),
when added to H» forms an integrable system.
Thus, we could repeat the process, eliminate
this resonance, and reveal tertiary resonances.
Indeed repeating this process to arbitrary order
would reveal, upon transformation to original co-
ordinates, a complicated network of island chains,
some nested within each other. y The process
outlined here is the germinal concept in Hamilton-
Jacobi theory, ' and all perturbation methods in-
cluding the KAM method are various approxima-
tions which seek to reveal the nature of the
Hamilton- Jacobi transf ormation.

It thus becomes clear that the chains of five and
seven islands detected in Fig. 12 are due to sec-
ondary resonances. Rather than present the
formidable calculations" necessary to verify this
fact, let us observe only that the chains of five
and seven islands occur at precisely the positions
of the unperturbed 4(dy =5402 and 6(dy: 7(02 tori cal-
culated using Eq. (14). The following picture thus
emerges. As the primary 2-2 and 2-3 resonance
zones approach overlap, certain higher-order res-
onances begin to macroscopically distort some of
the intervening preserved tori. As a consequence
the narrowing region between the 2-2 and the 2-3
resonance zones contains that host of overlapping
resonances, anticipated in the paragraph following
the inequality (7), which yields a macroscopic zone
of instability. Clearly, instability is due to a host
of stable and unstable periodic orbits which now
lie in a narrow region. Evidence for this instabil-
ity, again h,t E = 0.20, appears in Fig. 13 where
we plot a ragged level curve for an orbit near the
original 2-2 separatrix. In essence then by ex-
g,mining the overlap of macroscopic primary res-
onance zones, we have illustrated on a macro-
scopic scale the nature of the microscopic KAM
zones of instability. Moreover, we have calcu-
lated with reasonable accuracy the energy of onset
for this macroscopic instability. Rather than at-
tempting to improve this estimate by including the
secondary resonances, we now seek to demonstrate
that the macroscopic zone of instability grows
with increasing energy.

For energies much above E =0.20, the unper-
turbed frequencies for Hamiltonian (32) become
so small that obtaining level curves by direct in-
tegration requires prohibitively long integration
times. Consequently, we now increase e and P
to e = 0. 95 and P = 0. 25 and consider the Hamil-

P2
E ~ 0.2NONN
Scale: 1 Tic = .10

t ~ l ~
~ ~ ~

FIG. 13. This figure is a continuation of Fig. 12 and
shows that a small zone of instability exists at energies
below the predicted 2-2, 2-3 overlap.

tonian

H = H (J„J2)+ a J,J'2 cos(2p, —2p2)

+ p Z,'"8,cos(3&, —2p, ) (35)

for which instability occurs at a lower energy.
Here we choose to plot level curves in the J, plane,
and Fig. 14 plots the q, intercept of the inner 2-2
and the outer 3-2 separatrix versus energy as
calculated using the equations of Sec. II. Here
the 3-2 resonance zone is seen to first appear at
E =-0. 08 while overlap is predicted at E:—0. 12.

In Fig. 15, we plot level curves for energy
E = 0. 05. While these curves all appear regular,
using high accuracy a chain of five islands has
been detected at a radius of 0.08. The 5(d, =4~,
unperturbed torus lies at a radius of 0.098. In
Fig. 16, we plot level curves for energy E = 0.08.
The chain of five islands is now clearly visible
and the 2-2 separatrix is now a small zone of in-
stability. Instability thus occurs no later than
E = 0. 08 as compared with the predicted E = 0. 12.
Since the 3-2 resonance has not yet appeared at
E =0.08, it is especially clear that one cannot
ignore secondary resonances here. Again, how-
ever, let us not pursue the details of secondary



188 AMPLITUDE INSTABILITY AND ERGODIC BEHAVIOR 427

E = 0.08000000
Scale: 1 Tic .10

0.30

~ 61

0.10

0.05

I

0.10
ENERGY

I

0.15

I

0.20

FIG. 14. q~-axis intercepts of the 2-2 and 3-2
separatrices are plotted as a function of total energy.
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FIG. 16. Level curves for the 2-2, 3-2, doubly

resonant Hamiltonian showing that a chain of islands and

a zone of instability occur even before the 3-2 resonance

appears.

resonance. Rather let us observe the increase in
size of the zone of instability shown in Fig. 17 for
which the energy has increased to E = 0. 10.
Finally, in Fig. 18 at E=0.14, we see that the
3-2 resonance has at last moved into the ever en-
larging zone of instability. It is now clear that
our model Hamiltonians exhibit many of the char-
acteristics of the more complicated systems
previously studied. As illustration, we now turn
to a discussion of the Henon-Heiles system in
terms of our model Hamiltonians.

IV. RESONANCE IN TRANSFORMED
COORDINATES

FIG. 15. Typical level curves for the 2-2, 3-2,
doubly resonant Hamiltonian at low energy. Even at
this low energy, a chain of five islands, not shown, has

been detected.

The isolated resonances of Sec. II were easily
handled because one could without difficulty de-
termine a well-behaved constant of the motion.
Though it is less obvious, the small amplitude
motion of the Henon-Heiles Hamiltonian (8) is
dominated by an isolated resonance. Using a
modified Birkhoff canonical transformation,
Gustavson and independently Walker ' show that
the Henon-Heiles Hamiltonian may be written
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FIG. 17. Level curves for the 2-2, 3-2, doubly

resonant Hamiltonian showing the increase of the in-
stability zone with energy.

where V is very small compared to H0 for suffi-
ciently small-amplitude motion. Neglecting V,
Hamiltonian (36) has the additional constant

I=J, +J

One may then canonically transform Eq. (37) back
to original coordinates obtaining the algebraic
equation I= I(q„p„q„p,). This approximate con-
stant of the motion and Hamiltonian (8) may be
combined to obtain an analytic expression for
level curves. For E = ~» this expression gives
level curves congruent with the directly integrated
level curves of Fig. 1.

As the energy increases, the resonances in V
begin to grossly distort the tori of Fig. 1. In
order to determine the onset of macroscopic in-
stability, we note that Hamiltonian (36), neglecting
V, is integrable"; thus there exists a canonical
transformation to coordinates (gf, ef) such that
the full Hamiltonian (36) becomes

FIG. 18. Level curves for the 2-2, 3-2, doubly
resonant Hamiltonian showing the 3-2 resonance as it
moves into the ever-increasing zone of instability. The
ragged looking chain of three islands in the right of the
diagram represents a single level curve.

0 1+ 2 1 1 2 2 (39)

For Hamiltonian (39) we recall that the level
curves are concentric circles in either the J, or
the J, planes. We now introduce the coordinate
rotation

exactly the same way as we analyzed the doubly
resonant Hamiltonians of Sec. III. In essence
then, the Henon-Heiles Hamiltonian is only one
(compounded) canonical transformation away from
the analysis of Secs. II and III. In view of the
complexity of actually reducing the Henon-Heiles
problem to manageable form, however, it is
perhaps worthwhile illustrating by example the
effects that even a simple canonical transformation
can introduce.

We begin with the unperturbed Hamiltonian (12),

+=a,(g„g,)+ v(@„@„e„e,), (38)
Q, = (k)'"(q, + q, ),

Q. =(l)' (-q, +q.),

( )1/2(p p )

P, = (-,')'~(- p, +p,),
(4o)

where H0 is now angle-independent. Since V has
a Fourier expansion, we may determine the be-
havior of this multiply resonant Hamiltonian in

where (q;, p;) are related to the (2;, q f) by Eq. (13),
and the (Q;, Pf) are related to the (gf, ef) via
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Q. = (2g.)'"cos8.

P.= —(2 g.)'~2 sin8 .
(41)

E = 0.00000000
Scale: 1 Tic = .10

In the variables (gf, 8;), H, becomes

H, = g, .q, —.'—(g, .g,)"2(a, .a.)(a, u.)'"

&& cos(8, —8,)+3g, g, cos'(8, —8, ) . (42)

In the g, (or Q„P,) plane, the level curves for H„
originally concentric circles, become the ovals
shown in Fig. 19. It is interesting to note that the
level curves of Fig. 19 differ mainly from the
E = 10 4 Henon-Heiles level curves only by a
90-degree rotation (see Fig. 7 of Ref. 32). Since
the Henon-Heiles Hamiltonian (36) may be written

H =J~+J2 —~2 (J, + J2)2

+ ~s J,J, sin'(p, —p, ) ~ V,

where V, is negligible for sufficiently small E, the
90-degree rotation is seen to arise because the
cosine in Eq. (42) becomes a sine in Eq. (43).

Next let us consider the effect of Rotation (40)
on the level curves of Hamiltonian (35), where

FIG. 20. Level curves for the 2-2, 3-2, doubly

resonant Hamiltonian in the rotated coordinate system.
These curves are close cousins of those appearing in

Fig. 4.

H =H,(J„J,)+ o.J,J, cos(2y, —2y, }

+ PJ,'"J,cos(3p, —2p,), (44)

and where H, is given by Eq. (39). Changing vari-
ables according to Eq. (40}, we may write Hamil-
tonian (44) as

H=H[g„g„(8, —8,)] + V(g„g „8„8,), (45)

FIG. 19. Level curves for H=&~+~p +f 3J$~2+~22 2

at E= 0.09 in the rotated coordinate system. If this
picture is rotated by 90 degrees, one very nearly ob-
tains the low-energy level curves for the Henon-Heiles
system.

where H, is now given by Eq (42) and . V is a com-
plicated but calculable function. Figure 20 shows
the directly integrated, g, plane level curves for
Hamiltonian (45) at E = 0. 09. First, comparing
Fig. 17 with Fig. 20, we see the rather dramatic
distortion in level curves produced by a simple
rotation of coordinates. Next, comparing Fig. 2
with Fig. 20, we see that similarity which is to be
expected from the similar forms of Hamiltonians
(36) and (45). In short, we have made it quite
plausible that the Henon-Heiles Hamiltonian is
only a coordinate transformation away from the
g,nalysis of Secs. II and III.

In concluding this section, we note that the level
curves of Fig. 20 were not obtained by integrating
Hamiltonian (45). Rather we integrated Eq. (44)
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expressed in (qf, pf) coordinates and then deter-
mined the trajectory intersections with the rotated
(Q„P,) plane defined by q, = q, and P, ~ P, . Thus
geometrically speaking Figs. 17 and 20 differ only
$n that they represent the intersections of a given
Set of trajectories with two different planes. As a
consequence we see that the shape of the level
curves for a given Hamiltonian can dramatically
depend on the intersection plane used. In particu-
lar, in order to obtain level curves for the Henon-
Heiles problem similar to those of Fig. 9, instead
of those shown in Fig. 1, one would have not only
to rotate the intersection plane but also distort it
into a curved surface. Therein lies the complexity
of the Henon-Heiles problem.

V. CONCLUSIONS

For over fifty years, Poincare's theorem on the
nonexistence of well-behaved constants of the
motion (other than the total energy) has stood as a
pillar in the foundations of equilibrium statistical
mechanics. ' It provides a central argument sup-
porting the view that states of equal energy are
equally likely for an isolated system. KAM theory
on the other hand proves that the nonexistence of
well-behaved constants of the motion is insufficient
to ensure that states of equal energy are equally
likely. For sufficiently small-amplitude motion,
most initial conditions lead either to motion unin-
fluenced by any resonances, in which each action
variable is a constant, or to motion influenced by
isolated resonances, in which linear combinations
of the action variables are constant. The existence
of these constants of the motion do not violate
Poincare's theorem since the minority of trajec-
tories moving under the influence of many reso-
nances are densely woven between the well-behaved
majority. In addition to clarifying and perhaps
reducing the significance of Poincare s theorem,
however, the KAM theory points to an amplitude
instability beyond which the irregular trajectories
begin to dominate and the system motion perhaps
becomes statistical. It is thus quite possible
that KAM instability can be made a cornerstone
for statistical mechanics.

In this paper, we have attempted to illustrate the
origin and nature of KAM instability using simple
examples. For these simple systems, we have
demonstrated not only that the large-amplitude
motion does indeed become quite erratic but also
that the onset of the instability can, in principle, be
predicted. Moreover, several computer studies
(in addition to ours) show that for sufficiently large
amplitudes almost all trajectories are highly
erratic. In this paper, we have considered sys-
tems with only two degrees of freedom; however,
the procedures used can, with considerable labor,
be extended to more general systems. In order
for the KAM instability to be shown to be univer-

sally relevant to statistical mechanics, however,
several rather serious questions must be answered.

All the computer studies thus far discussed in-
dicate that widespread KAM instability occurs
only after the amplitude of the motion becomes
quite large indeed. Physical systems, on the
other hand, apparently obey the laws of statistical
mechanics even at cryogenic temperatures. One
must therefore establish that physically realistic
models exhibit KAM instability even for small-
amplitude motion. One might suggest that physical
potential energies are more complicated than the
cubic terms of the Henon-Heiles potential or that
physical systems have an enormous number of
parti. cles. However, Thiele and Wilson" used a
Morse potential in their calculations and observed
instability only for energies greater than one-half
the dissociation energy. Equally, Zabusky and
Deem" studied Hamiltonian (9) for a 200-particle
system and they observed an instability only for
relatively large energies. However, the work of
Northcote and Potts~ suggests a possible mechan-
ism for introducing a small-amplitude instability.
They used an infinitely steep hard-core repulsion
superimposed on an otherwise harmonic potential
between particles and obtained ergodic-type be-
havior for almost all amplitudes. It is thus quite
possible that an extremely steep repulsive hard-
core potential could be responsible for small-
amplitude instability in physical systems. Such a
nonlinearity would, in addition, cause those rather
sharply def ined "collisions" between harmonic
normal modes usually assumed in statistical
mechanics. Nonetheless, whatever the conjecture,
the general existence of a small-amplitude insta-
bility for physically realistic models has not been
proved.

Moreover, erratic or statistical behavior of the
system trajectory in the full phase space is not
really required for statistical mechanics. " "y ~
Most physically measured quantities require only
that projections of most trajectories be ergodic on
some subspace of the full phase space. In short,
statistical mechanics may follow from some type
of "coarse graining. " Consequently, even if KAM
instability is applicable to a wide class of physical
systems, there still might exist an equally wide
class for which it is irrelevant.

Finally, there is an open question concerning
the extent to which the zones of instability are in
fact ergodic. In Fig. 4, for example, the unstable
level curve shown does rather uniformly cover a
certain zone of instability; however, successive
intersection points for this orbit do not randomly
fill the zone. Indeed, extremely accurate inte-
gration shows that they circle the stable invariant
points in an orderly, though not regular, fashion.
This rather low degree of order which persists
even in zones of instability also appears in the
work of Zabusky and Deem. " Successive points
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in Fig. 5 do jump randomly, as pointed out by
Henon and Heiles"; however, this randomness
might disappear with improved integration accu-
racy. " In short, the following situation may pre-
vail. For small amplitudes only, a few low-order
resonances influence the motion. ~ Here only
simple measurable quantities would be correctly
predicted by statistical mechanics. As the am-
plitudes increase a larger number of resonances
become significant, allowing a wider variety of
physical measurements (but not all} to be correctly
predicted. In this picture the sudden onset of
KAM instability would mark only a sudden in-
crease in the predictive capacity of statistical
mechanics rather than the issuance of an unre-
stricted license for its use.

Whatever the final resolution of these questions,
we suggest that their study is fascinating. An-
swers would provide not only an increased under-
standing of irreversibility but perhaps also even
g, practical device for violating the second law of
thermodynamics. In any event this paper repre-
sents at best only a very modest contribution
toward their resolution, and much of the material
in this paper will be quite familiar to that small
group of astronomers, mathematicians, and physi-
cists who have made similar or vastly superior
contributions. Nonetheless, by couching the dis-
cussions in language familiar to physicists, it is
our hope that these questions can attract the at-
tention of a broader audience.
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