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The paired-phonon analysis operates in the function space generated by product functions

compounded from (i) a starting trial function 0 of the Bijl-Dingle-Jastrow-type (BDJ) (a prod-
uct of two-particle correlation factors exp($U(r;&)]; (ii) paired-phononfactors pkp k to all
powers, (iii) multiple phonon factors pk ~ ~ pl to all powers, with neglect of all matrix ele-
ments representing processes in which phonons coalesce, split, or scatter. Results in the
present study include {i) a simpler and more general derivation of the fundamental relations;
(ii) proof that the improved ground-state trial function 4 generated by the analysis is still in
the BDJ function space [with U(r) replaced by U{r)+AU(r)]; (iii) a formula expressing 6U(r)
in terms of S(k), the starting liquid-structure function, and so(k), the residual interaction
function; (iv) a convenient representation of the phonon factor pk as a linear combination of
phonon creation and annihilation operators; (v) explicit statement of the relation between the
optimization condition ao(k) =—0 and the variational extremum property of the expectation value
of H in the BDJ-type function space; (vi) usable approximate procedures for evaluating the
residual interaction function so(k) based on the hypernetted-chain (HNC) and Percus-Yevick
(PY) relations; and (vii) numerical evaluation of tt)(k), the energy shift BE, and the improved
liquid-structure function S (k) using P's computed by Massey and Woo as starting functions.
For He at the equilibrium density, (1/N)f5E--0. 7'K; for the hypothetical boson-type He

system at p=0.0164k, (1/&)t5E--0.3'K {HNC) or -0.5'K {PY). In the discussion, empha-
sis is placed on the practical possibility of accurate numerical evaluation of the interaction
function co(k) by the method of molecular dynamics applied to systems containing 10 -10
particles.

I. INTRODUCTION

Recent theoretical studies ' ' of the ground state of liquid 'He are based on the use of a Bijl-Dingle-
Jastrow-type (BDJ) trial function in evaluating the expectation value of the Hamiltonian operator:

10) —= 4'(1, 2, ..., N) =

1&i&j&N

U(rf~)/2, p U
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E, = (0 I H I 0) .

Semiquantitative agreement is found between computed and experimental ground-state properties which in-
clude the equation of state (energy, pressure, and compressibility as functions of density) and the liquid-
structure function as a function of density. It is clear however that the theory has not yet produced a close
approach to the optimum BDJ trial function 4 = %opt' firstly because the extremum property of the expec-
tation value permits a poor trial function to give a fairly good result for the energy; and secondly because
the number of parameters in the available parametrizations of the radial distribution function g(r) or of
the correlation function U(r) are too small to generate much structure in either function. The problem of
characterizing and computing the optimum BDJ-type trial function was solved in principle several years
ago by Jackson and Feenberg' in a formal analysis of the paired-phonon space (although it was not recog-
nized at that time that the improved description of the ground state remained within the BDJ function
space). The analysis operates in the general function space

2ng m~

k, l

pg =0, 1, 2, ...

m-= 0, 1, 2, ...

with neglect of processes in which phonons scatter, split, and coalesce. This neglect is justified ulti-
mately by finding that the resulting optimum trial function for the ground state constructed from the build-
ing material of Eq. (3) is still a symmetrical product of two-particle factors [with a starting U(r) replaced
by a final U(r)+5U(x)].

The neglected processes generate components in the state function which do not occur in the BDJ-type
function space. For example, the three-phonon component

~k, 1, —k —1) =p p p ~0)/[¹S(k)S(l)S(1k+1I)]k l -k-1

with kE )k+1) WO, represents a process in which three phonons emerge from the substrate described by 4
or three phonons are absorbed into the substrate. These processes make a substantial contribution to the
ground-state energy. ' Incidentally, the evaluation of this contribution to the energy is greatly simplified
by the assumption that 4' is actually the optimum BDJ-type function.

We are concerned with three problems in this study: {i)development of a simpler and more general
analysis of the paired-phonon function space; (ii} description of practical methods of deriving semi-
quantitative results from the formal analysis; (iii) actual numerical evaluation of nearly optimum improve-
ments in the correlation function, liquid-structure function, and energy.

Section II is devoted to the derivation of a general formula for matrix elements in the paired-phonon
space [Eq. (17)]. In Ref. 6, these matrix elements were evaluated by the introduction of a generalized
superposition approximation for the nth-order distribution function p("}(1,2, ..., n) generated by 4'.
Actually, the calculation involves only products of factors h(r~") =Z(rf&) —1 which must occur in any correct
representation of p(s)(1, 2, .. ., n) as a sum of elementary clusters in h(rf&) plus a remainder. For ex-
ample,

P&"(1, 2, 3, 4) = p'[1+h(r») + ~ ~ ~ +h(r~)+h{r»)h(r») + ~ ~ ~ ~ h(r„)h(r„)

+ h(r») h(~~) + ~ ~ ~ + h(~») h(r24) + ~ ~ ~ +h(r») h(r») h(r~) h(r„)]+5P'4'(1, 2, 3, 4).

The mQmown remainder Op&4& (1, 2, 3, 4) is negligible unless all four points are within a sphere of radius
not much greater than p '~'. In computing the expectation value of I pk I'

I p~I', products of h{rf&}factors
more complicated than h(r»)h(r~) are not needed. Clusters containing additional h(r~&) factors and also
the unknown remainder 5p"' make contributions to the expectation value which are down by at least a fac-
tor of 1/¹ Thus, the matrix elements under discussion arefreefrom the uncertainties and errors inherent
in the superposition-type approximation for p(&~. Nevertheless, it is useful to evaluate matrix elements
in the paired function space by a simpler and more general procedure. This task is accomplished in
Sec. II.

The results of the paired-phonon analysis are
summarized in Sec. III. The section concludes
with a brief discussion of the correspondence be-

tween these results and the Bogoliubov treatment
of the weakly interacting boson system. In Sec.
IV, the pl~onon factor pk is expressed directly in
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terms of creation and destruction operators Akf
and Ak. The improved liquid-structure function
and excitation energies are shown to fit the Bijl-
Feynman formula for the energy of an elementary
excitation. This formula yields an improved value
for the velocity of first sound. In Sec. V, the im-
proved ground-state tria, l function 4 is first de-
termined as a combined infinite series and infinite
product in the variables I pk I' multiplying the
starting trial function 4. The series is summed
to a final explicit exponential form giving a cor-
rection 5U to the starting correlation function U.
The optimization condition on 4 is formulated in
Sec. VI and shown to imply that 0 satisfies the
variational extremum condition on the expectation
value of H. In precise explicit terms, this means
that if the paired-phonon analysis generates no

energy shift then small changes in 4 (i. e. , in U)
produce no first-order change in the expectation
value of H. Finally, methods of reducing the for-
mal analysis to numerical terms are developed in
Sec. VIII. Numerical results are exhibited in
tabular and graphical forms in Secs. VII and VIII:
Sec. VII for liquid 'He at the equilibrium density

p =0. 0218A ', and Sec. VIII for the hypothetical
boson-type 'He system at p=0. 0164A '.

Section IX supplements the rigorous statements
in Sec. VI on the relation between optimization and
extrernum conditions by showing that the same
statements hold when the evaluations are based on
the HNC approximation for fI(r) as a functional in

g and S.

II. MATRIX ELEMENTS IN THE PAIRED-FUNCTION
SPACE

Our first concern is to evaluate the matrix ele-
ment (Ol I pk I "IO). We begin by introducing a,

generalized normalization integral

2 -(x/N) ipk!2
I(klx) = f &k e dr

and a, generalized liquid-structure function

mentary proof that the expectation value of
[(1/N I pk I']' is double the square of the expectation
value of (1/N) I pkl'. Entering Eq. (8) with this
result, we get the differential equation

d 1
dx S(k lx)

and the solution'

S(k)'"i' =1,.S(k)
(10)

Here S(k) =S(k lo), the liquid-structure function
generated by O'. Equation (7) can be integrated
with respect to x to yield'

I(k ix) = 1/[1+xs(k)] .

(Ol[(1/N) ip I ) IO) =n!S(kP, (12)

Equation {12)is a known result, ' but the present
derivation is strikingly simple compared to the
original.

Next, consider generalized versions of Eqs.
(6) and (7):

I(x) =I(x ~ ~ ~ c ~ ~ ~ )k

-(xck/N) I p

(xch/N) I ph I
'

h, h &0

Equations (6) and {11)imply a general explicit
formula for the expectation value of [(1/N) I pk I ]".
To derive the formula suppose x so small that
xS(k) &1; then Eq. (6) generates one power series
in x, and Eq. (11) another. The identity of the
two series requires

S(kl )- 1 j'y
M(k $x} k 12- ~ N

dx
= ——i~(kl x) .

Differentiation of S(k Ix} with respect to x yields

„—S(k ix) =S{kis)'d

1
i

-{./N) ipl, i' 1

I(k Ix)

References 6 and 8 give fu'l details of the ele-

(8)

= (1/N)(ip- f8)
k x

= -(1/x)(d/dc ) lnI(x) .k

S(k is) = —ckS(k ix)2

leak, l &0

'r ('F~&pi'&J&&'&".

Equation (8) is replaced by
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S(k IX) = S(lF }/[1+xe„-S(k)],

I{x)= II 1

1+x'-„S(a) '

k, k~&0

(16)

0 ~ 1 2
~

0 0
1

p
2 y 0

where ( ) signifies the expectation value used in
Eq. (14). We draw again on Ref. 8 for the result
that the coefficient of cl in Eq. (15) is of order1/¹ The sum in Eq. (15}can be made negligible
by limiting the number of nonzero summands to
a sufficiently small number p «¹Under this
restriction,

s'ta)=(—" st& ~gi)

= &0INIpkI'[ Q v*(r ) .E. 0-]Io),
z&j

g'(r) = —g(r It))
~P P=0

Results

Normalized basis function in the p k function
space:

Im, n) = p p IO)/[N S(k) ]' '. {19)

"j
=g.(n. )!S(k.), Q n «.N. . {17)

Matrix elements of W

(m ', n'IWIm, n) = 5, [S(k Il3)/S(k)1m '+n-m-n'
Equation (16) exhibits the separability of the ex-
ponential factors in the integrand of the integral
defining I(x). Each exponential factor contributes
to the integral as if the others were absent.
Equation (17) includes all the matrix elements
needed to obtain a representation of the Hamilto-
nian operator in the paired-function space.

x[(m '+n)! I(P)]/[m +n)! (m'+n')& ]'n (20)

Matrix elements of H

III. REPRESENTATION OF THE HAMILTONIAN
OPERATOR IN THE PAIRED-FUNCTION SPACE

Our objective here is to summarize the definitions
and resu1ts of Ref. 6.

First Definitions

V*(r) =~(r}-(If'/4m)nII{r},

i{P)=(0
I
w

I 0),

p"'(r„Ip) = p' g(r, It)}

X(X-1)
I(P) 34 ~ ~ N'

s(klp) =»'(
} &0IIp-„I wlo)

= 1+p fe [g(r IP) -g{"IP})dr,

g(r) = g(r IO), S(k) =S(k IO—),

x([(mm'+nn')/(m +n')]e(k)+ (m+n')w(k)),

e{k)= k'k'/2mS(k),

u'(k) = S (k)/S(k}+(k k /4m)(1 —1/S(k) (21).
Here we have modified the notation of Ref. 6 by
writing e(k) for e'(k) and w{k) for e (k).

The functions im, n) are normalized, but they do
not form an orthogonal basis; and they do not de-
scribe states with definite numbers of phonons
with momentum hk and —Sk. The special case
m = n = 1 illustrates these points since ) p k )'+ is a
linear combination of a no-phonon state and one
with Sk and —hk phonons. At this level, the first
task is the construction of an orthonormal basis
system describing states of independent "free"
phonons. New functions le; s, p) are generated by
the real linear transformation

p
Ie;s, p)= Z a It+s, t),

l=0
(22)

a =0, l &P; s& -P, P=0, 1, 2, ...,

subject to the orthonormal property
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(e; s, p ~S
~
e; f, q) = 5

p, q s, t (23) a k I!e's p)=(p+1)" le;s —1,p+1),

The factor 5s t simply expresses conservation of
momentum since le; s, p) is an eigenstate of the
momentum operator with the eigenvalue Sks. The
new basis functions describe a physical system
containing s+P "phonons" with momentum Sk and

P "phonons" with momentum —Sk. A state with
momentum —Sks is described by the complex-
conjugate basis function (le; —s, s+p) = le; s, p)*).

The explicit solution of the orthonormalization
condition for s = 0 is given in Ref. 6; the general-
ization to include s 0 appears in Ref. 8. Here we
simply state the solution:

a
~
e; s, p) = Mp

~
e; s + 1,p —1),

H +H =(a a +a a )[e{k)+w(k)]k -k k k -k -k

+ (a~ +a„a ) w(k). (27)

with the terminal condition ~e; —p —1,p) —= 0. The
equivalent Hamiltonian operator in the occupation
number space of the k and -k phonons is

a =(-1)p+l [(s+2l)!(s+p)!p!]''
sP;L l!(s+l)! (p —l)! (24)

The transformation to diagonal form is accom-
plished by introducing new canonical creation and
annihilation operators

In the orthonormal representation the matrix of H
reduces to the nearly diagonal form' = Xa

k
—pa

(28)

(e;s, P lH~e;s, P) =E +(s+2P)(e+w),

&e; s, p —1~H ~e; s, p) =[p(p+s)]'&2w,

(e; s,p+1 ~H ~e; s, p) = [(p+1)(p+1+s)]'"w.

(25)

A =Ra -pa+k +k vk '

subject to the condition X'- p, '= 1, or explicitly,

a ~e;s, p) =(s+p+1)' '~e;s+l, p),

a-
~
e; s, p) = (s +p)"'

~
e; s —1,p), (28)

All other elements (e; t, q l H
~
e; s, P) vanish.

The quantum numbers and numerical coefficients
in Eg. (25) can be identified with the correspond-
ing quantities in the Bogoliubov treatment of the
low density, weakly interacting system of bosons.
This means that the matrix of H possesses an
equivalent representation as a quadratic form in
creation and annihilation operators. %'e define
canonical creation and annihilation operators by
the statements

X = 1/[1 —D(k)']»'

p, —D(k)/[1 D(k)2]»2

D(k) =
- w(k)

e(k)+w(k)+[e(k)'+2e(k)w(k)J»' '

The condition e(k)+2w(k) &0 insures that D(k)~ & 1,
so that X and p, are real quantities as implied by
the notation of Eq. (28).

Up to this point only the wave vectors k and -k
have occurred in the analysis. The necessary
generalization to the product function space de-
fined by

Plk mk+n!, mk+nh 1/2
l!..., m, n-, ~ ~ ) = II p p ~0)/ II H s(k)

ka&0 " -" ka„o
{30)

introduces the matrix elements,

(..., m„-', n„-', ".~f~. .., m„-, n„-, ...) = II (m„-', n„-')f(m„-, n„-),
k, k &0

(31)

(... , m&, ni', ... JH-Eol. .., ml, ni, ...)= ~ & I, mIJHn-Eorm 1,nI)
/, l„&0
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subject to the constraint mk+nk=mk+nk. The
constraint eliminates all processes which can be
interpreted as phonons coalescing, splitting, or
scattering, and limits the range of trial functions
to the paired-phonon space (for the description of
the ground state}.

Separability, as discussed in Sec. II, is assumed
in writing the right-hand members of Eqs. (31).
The assumption is justified if

(I +n ) & ~ ~ ~ &N.k k
k, k &0

x

(32)

H =E + Z—[e(k)- e(k) —w(k)]

+ZkAk Ake(k), (33)

in which e(k) = [e(k)'+ 2e(k)w(k)]' '

& e(k) + w(k), (34)

It is now possible to generate a normalized orthog-
onal system of basis functions labeled with corn-
plete sets of quantum numbers s, p ranging over the
wave vector space k, k~ &0. Subject to the in-
equality of Eq. (32), the matrix representation of
H in this function space is diagonal with the ex-
pU. cit form

is the corrected excitation energy for a free phonon
of momentum k and Ak~Ak is an occupation-num-
ber operator with eigenvalues 0, 1, 2, .... The
correction to the ground-state energy is negative
or zero and vanishes only if w(k) vanishes iden-
tically. If E, is the minimum expectation value
attainable in the BDJ function space, the energy
correction must vanish. Consequently w(k) =0
characterizes the optimum BDJ-type trial function.
Some consequences of the optimization condition
u (k) = 0 are developed in Secs. VI and IX.

The preceding analysis establishes a parallelism
between the theoretical terms and descriptions of
two distinct computational procedures, one devel-
oped by Bogoliubov" for treating a boson system
with weak interactions, the other emerging natural-
ly out of the paired-phonon analysis for a boson
system with strong and highly singular interactions
at realistic liquid densities. The parallelism ex-
tends also to theories of the hard-core boson sys-
tem at low density" and of the charged boson sys-
tem at high density. " To avoid possible misunder-
standing we state explicitly that the parallelism
does not imply or suggest that an adequate treat-
ment of liquid 4He can emerge from the Bogoliubov
formalism as a starting approximation. Basically,
the problem for the theorist is to understand the
emergence of mathematically equivalent connec-
tions at different and widely separated levels of
approximation.

IV. OPERATOR REPRESENTATION OF p~~

The general formula

phle's p&=~ le's+1 q&(e s+1 qlpkle's p& (36)

defines a matrix representation of the function pi. Equations (20) and (22) are used to generate the exon
sion formulas:

p
p le;s, p& = Q a [IqS(k)(s+21+1)]' ls+l+1, l),k ' '

) spE

q
(e;s+1,qlpk= Z a

1 h[lqS(k)(s+2h+2)]'I'(s+h+1, h+1l,k
~ 0 s+1,q;h

(36)

and these in turn yield formulas for the matrix elements of pk..

p
(e;s+1,qlphle;s, p) = Z a [NS(k)(s+2l+1)]'I'(e;s+1, qlIls+l+i, l)k s, p;l

a h[iqS(k)(s+2h+2}]'I'(s+h+1, h+llIle;s, p& .
t t

(37)
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(s+ h+1, 6+ 1 lfle;s, p) = 0, 6+1 &p;

(e; s+1,qlf is+1+1, 1& =0, 1 &q;
(38)

are consequences of the orthonormal property defined by Eqs. (22) and (23) since, for example, Is+i+1, 1)
can be expressed as a linear combination of functions le;s+1, m) with m l. Nonvanishing elements occur
in the right-hand members of Eq. (3V) only for p &&+1 q+1 and q &l &p or, explicitly, only for q =P and
q=p —1. Consequently, Eq. (37) reduces to

(e;s+l, p lp le;s, p) = [NS(k}(s+2p+1)]'I'a /ak s, p;P s+1,P;P

= [NS(k)]'~'(s+p+1)'",

(e; s+1,p —1 lp le;s, p) =[NS(k)(s+2p)]'I'a /aS +,P —,P — S,P;P

= [NS(k)]'"Mp.

(39)

All other matrix elements of pk vanish. Equations (26) and (39) imply the operator equivalence

p = [NS(k)]' '(a +a ).k k -k' (40)

Equations (28) and {29)yield

A +A = [e(k)/e{k)]' '(a + a ) .
k -k k -k (41)

Consequently, p = [NS(k)e(k)/e(k)]'~' (A + A ) .
k k -k (42)

Equation (40) tells us that the coefficient S(k)e(k)/e{k) in Eq. (42) must be interpreted as the liquid-
structure function S(k) generated by the ground-state eigenfunction of HD.

S(k} = S{k)e{k)/e(k) = g'k'/2me(k) = S(k)/[1+2'(k)/e(k)]' ' .

Note that the third item of Eq. (43) is simply a statement of the Bijl-Feynman formula for the energy
e(k) of an elementary excitation of momentum Kk. Eq. (43) yields immediately

c' = c'[1 +2(zv /e)
k 0] .

(43)

(44)

A second limiting form closely related to the preceding one can-be derived from the definition of the inter-
action function u (k) in Eq. (21):

[S (k)/S2(k)]k 0
= mc [1+2(w/e) ] = mc' . (46)

V. GROUND-STATE EIGENFUNCTION OF HD

The condition
A

A- A-4 =0
k k (46)

completely determines the ground-state eigenfunc-
tion of the operator H» Eq. (46) can be solved by
writing 4 in the product form:

(47)

—2D(k) (a a + a )jF =0 .k -k -k k (48)

4'= [ II F-]@ .
k, A &0

With Al Ak expressed in terms of a+k~ and a+k,
Eq. (46) reduces to an operator condition on Fk:

{[1+D(k)'](a«a«+a «a «)+2D(k)'
k k -k -k
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Equation (48) is solved by expressing Fk as a
series in the functions I e; o, p):

F =Q C (k))e;o, P}/4.
0

(49)

The analysis is valid only within limits set by
the separability condition of Eq. (32). In the pres-
ent context, the equivalent condition is

(5&)

This form in Eq. (48), with help from Eq. (26)
and the orthonormal property of I e; o, pj, reduces
it to a system of linear homogeneous difference
equations for the coefficients Cf, (k): DA 1 —DA' &&N. (58)

Equations (26), (4V), and (49) can be used to con-
vert the preceding inequality into

[P(1+D2)+D2]C —PDC —(P+1)DC =0. (50)
p p-1 p+1

The normalized solution of Eq. (50) is

To express Eq. (58) in a form suitable for numer-
ical evaluation, we employ Eqs. (29) and (56}to
show that

C D f [I ——D2)1/2
p

(51) D'/(1 —D') = w'/2e(e+ w+ e) = (w/2e) (59)

Equations (19), (20), (24), and (51) now yield a
completely explicit formula for I'k as a power
series in I pk

and obtain the working condition

t'=- (2v'p) f (w(k)/2e(k)) k dk&& 1,
p

(60)

q!' SkN k

The theoretical description of the improved
ground-state trial function 4 is completed by com-
puting the change 5U in U(r) defined by the ratio
q/4:

Z ~'q) [-D(k))P.
p=0

(52)
5U(r) = N Q„-([S(k)] —[S(k)] ') e

=[(2 v) p) 'f([S(k)]-' —[S(k)] ']e dk. (61)

The closed form

9+q)t PZ ' (- ) = (I,D')q+1
p=0

permits rewriting Eq. (52}as

(58)

We observe that Eq. (61) can be derived directly
from Eq. (16}without invoking the paired-phonon
analysis which is needed here only to supply an
independent computational formula for S(k).

VI. OPTIMIZATION AND VARIATIONAL
EXTREMUM CONDITIONS

( e (k)), 1 e(f) - e(f)
e(k)

~

2N I 2S(l)e(f
(kk &0 )

(55)

The coefficients in Eqs. (55) are obtained from
those in Eq. (54) by using Eq. (29) to show that

D/(1+ D) = (e —e)/2e (1-D)/(1+D) = e/e .
(56)

Note that the summation over the complete wave-
vector space (both I and —I excluding I = 0)
is associated with a compensating factor of —,'.

1/2 D(k)
1+D(k} P AS(k)(1+D(k)) k'

(54)
and Eq. (47) as

The condition 5Ep Ep Ep 0 characterizes the
optimum BDJ-type trial function. The equivalent
statement w(k) = 0 yields immediately

S'(k) = (k'k'/4m) [1-S(k)],
(62)

g'(r)= (k'/4m)&g(r)= ~ V (r')dr'.

Two parenthetical observations on the functional
derivative appearing in Eq. (62) are interpolated
here for the sake of clarity. First, note an ex-
plicit formula" in terms of the two, three, and
four point distribution functions generated by the
starting trial function 4':

(3 }

5u{r' j
g, „=g(r)5(r' —r)+, p (r, a, r+r')

P

+ 2, f [ p"'(r, O, r'+r", r")
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—p'g(r)g (y )]dr- (63) (65)

The second observation is the symmetry property:
The functional derivative is a symmetrical function
of r and r'. The proof is based on a succession of
coordinate changes, all leaving the right-hand
member of Eq. (63) invariant. These are r, 0,

W)

r", r', 0, r', O, r+r', r".
What can be said about the variational extremum

condition V The analysis starts from the formula

S2
fk))%dr '=—)))t

4 fV)).V)rdF ~ fgi drj,12...N 2 4m

(64)

and the variational form

A-2
i) JIB&dr-„„=-.ii)ifilU)y) (

'
~), (y)

Equation (65) states that the expectation value of
H is stationary with respect to small changes in
U if the optimization condition of Eq. (62) holds.
The statement is exact since no approximations
are made in passing from the BDJ-type trial func-
tion to Eqs. (62) and (65). In particular, the
separability condition is trivially satisfied since
u)(k) = 0 implies q)'=q'.

VII. EVALUATION OF S'(k) AND NUMERICAL
RESULTS AT MASS 4(48ej

The basic problem on which we now focus at-
tention is the numerical evaluation of S'(k) and
g'(r). We begin the discussion by representing
S'(k) as a linear functional in the two-, three-,
and four-particle distribution functions generated
by 4''

S (» = (I/» fq"
I pk I'[V*(»."»-&0

I
V*I o &) dr12

= V*+ (2/» f [p (123)—p g(r }g(r )]e' V*(r ) dr

+ (I/2» f(P (1234)-pg(r»)g (r~) [I+4k(r») ]}e ~V (r») dr»34 . (66)

Note that terms in p'g(r»)g (r»} and p'g(r») g(r„)
x h(r») cancel against each other, but serve the
useful purpose of reducing the three- and four-
point integrals separately to the order of magnitude
of X'. The available symmetrical approximate
forms for p&') and p ') are found to be inadequate
in the evaluation of S'(k). For example, the super-
position and other simple approximate forms yield
S'(0) 00, implying e(0+) 40. Therefore, we have
turned to other procedures which do not employ
the three- and four-particle distribution functions.

First, we wish to point out and stress that avail-
able practical techniques make possible the direct
numerical evaluation of g (r I P) for moderately
large values of ¹

' The method of molecular
dynamics has already been applied to evaluate
g(r) generated by BDJ-type trial function for a sys-
tem of 864 particles. y" The extension to com-
pute g(rl P) presents no additional problems or
complications. Numerical results for two or
three values of P in the range in which g(r I P) is
nearly linear in P would make possible the evalua-
tion of g'(r). From g'(r) to S'(k) is an easy step.
We hope that this possibility of achieving a close
approach to the optimum BDJ-type trial function
will be realized in the near future. Until then, it

U C(r)+ pV*(rlHNC)=lug(xl p) —P(r lS),
(67a)

Ã r [S(kiP)-I)'-
(2v) p S(klP) (67b)

V*(rl HNC) =~(~)- (ff'/4m)n, U (r); (6'rc)

U (r}+pV*(rl py) = Ing(rl p)- in[1+ P(rl S)], (eea)
p3'

V (rlPy)=v(r)- (f'/4m&U (r) . (66b)

The Bogoliubov- Born-Green- Kirkwood- Yvon
(&&GKY) relation can also be used to evaluate

is necessary to rely on less direct and accurate
procedures to obtain some idea of how far pres-
ently available trial functions are from the opti-
mum.

The methods to be discussed are based on ap-
proximate relations expressing U(r) as a functional
in g and S. These relations are (i) the hyper-
netted-chain (HNC}»)"(Sec. VII A} and (ii} the
Percus-Yevick (PY)" (Sec. Vii 8):
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S'(k), but since no numerical results are available
we do not develop the theory

A. HNC Relation: Method and Results

The operation of taking the derivative with re-
spect to P evaluated at P = 0 is applied to both left-
and right-hand sides of Eq. (6Va) with the result:

pg(r) V'(r~HNC)=pg'(r}

[1 S (k}]
+(k)

(2s)' ' S'(k) (69)

S'(k)
L(k) = s( )

(Vo)

Next, both members of Eq. (69) are converted into
the associated Fourier transforms. %'ith the nota-
tion

convergence of the iterative process was induced

by a simple geometric projection technique. The
function V~ is obviously an extremely poor starting
approximation since V, is negative, while L(0)
must be positive to fit the physical relation L(0}
=me' [Eq. (46)].

Numerical results for liquid 4He at p =0. 0218 A '
are displayed in Figs. 1-3. Solid curves in Fig. 1
represent L(k) and Vg. Experimental and theoret-
ical results for the liquid-structure function ap-
pear in Fig. 2. Observe that the shoulder below
k = 1 A ' in S(k) is almost completely absent in
S(k); also R (k) has a higher first maximum. The
interaction function tv(k) is plotted as the solid
curve in Fig. 3. One test of internal consistency
is met at an adequate level; 6=[(1/m)L(0)]'+=219
m/sec, not far from the experimental starting
value of 238 m/sec. The energy shift 6Eo=E, —Eo
[Eq. (33)] and the separation parameter ( [Eq. (60)]
have the values

'5E0= 0.69'K,

Va = p f e g(r) V (r
~

HNC }dr, 5 =0.029 (V2)

L(k) = V'+ J [1—S(~ k+ h
~
)]

x [1—S'(k)]L(k)dk . (Vl)

the resulting linear inhomogeneous integral equa-
tion for L(k) is

The function g(r) can be computed as the Fourier
transform of S(k). However, in practice, S(k) is
not determined with sufficient accuracy for large
values of A to produce sensible behavior of the
Fourier transform for small values of r[g (r)
&0, g(0)=0]. To overcome this difficulty we iden-
tify ()U(r) with

The question of uniqueness is considered briefly
in Ref. 8, where an inequality is derived which
proves that L(k) is unique if S(k) ~ 1. In the actual
physical situation S(k) oscillates about the asymp-
totic value 1 and the argument developed in Ref. 8
does not prove uniqueness, but does make it highly
plausible.

In the actual numerical evaluation the entering
functions U(r), g(r), and S(k) are taken from a
recent theoretical determination by Massey and
Woo. We have modified the given S(k) slightly
so that it conforms to the physical requirements
at the origin [S(k) ~ ffk/2mc, 's c = 238 m/sec, the
experimental velocity of first sound while main-
taining the correct normalization [g 0)=0]. The
modification (confined to the region k & 0. 2 A ') is
simply a small vertical displacement so that the
computed curve joins on smoothly to the straight
line with correct slope passing through the origin.
The slight change in normalization generated by
the modification requires essentially invisible
changes in S(k) elsewhere.

Equation (Vl) can be solved by an iteration pro-
cess using the function —,

' e(k) QS(k)]-' —1) as a
starting approximation for L(k) in the integral term
[good if S(k) is close to the optimum form]. Rapid

and use the HNC relation directly to give

50—

40 ~

30
hC

20

0

-[0—
I

2

k(A )

I

4

FIG. 1. HNC and PY approximations for I (k) and

Vk. solid line L(k), HNC version [Eq. (71)); dashed
line Vk, HNC version [Eqs. (6Vo) and (VO)); dot-dashed
line I 0), PY version [Eq. (75) ]; dotted line V~, PY
version [Eqs. (6Sb) and (70)].
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FIG. 3. Interaction function sv(k) in first and second
iterations of the paired-phonon analysis: solid line HNC,
1st iteration; dashed line HNC, 2nd iteration; dotted
line PY, 1st iteration.

2
k('A ')

FIG. 2. Experimental and theoretical results for the
liquid-structure function of liquid He at p = 0.021 A.

ONeutron diffraction, 1.06'K [D. G. Henshaw, Phys,
Hev. 119, 9 (1960)]. a x-ray diffraction, 1.4'K [W. L.
Gordon, C. H. Shaw, and J. G. Daunt, Phys. Chem.
Solids 5, 117 (1958)]; dashed line Starting form (Ref. 5)

S(k), solid line HNC, S(k) [Eq. (43)], dotted line PY
S (k) [Eq. {43)].

w(k). The second iteration yields an additional
energy correction X '5E0= —0.038'K and a sep-
aration parameter $ = 0.0005. The total energy
correction is —0. 69 —0.04= —0. 73, bringing the
expectation value of N 'H down to —6. 7 'K/atom
(compare with the experimental value —7. 2 'K/
atom).

Because the HNC relation is an approximation,
it is worthwhile to look at alternative procedures
for estimating 6E0. Here, a suitable notation is
helpful. Let

gHN~(r)=g(r)exp[6fl(r)+P(rl~) f'(rI~)] ~

Deviations from the function defined by the Fourier
transform of S(k) are negligible except in the region
below r= 3 A, where g(r) is extremely small.

The entire calculation was repeated using g (r)
as the starting function. In this second iteraction
of the paired-phonon analysis all changes are al-
most negligible, indicating a close approach to an
"optimum" trial function. The quotes call atten-
tion to the fact that the HNC relation is approxi-
mate. Numerical results for the new version of
w(k) are plotted as the dotted curve in Fig. 3. The
optimization condition w(k} = 0 is very nearly satis-
fied by g (r), as is evident from comparing the
first iteration and second iteration versions of

N '(KE) =(k'/Sm) J Vg (r)*VU (r)dr,
Xq g X

N '(&'E& = 'pfg -(r)~(r)dr. (74}

Numerical results for several different sets of
trial functions are listed in Table I.

In the first three lines, U in each line is com-
puted from the given radial distribution function
by solving the BBGKY equation with the Kirkwood
superposition approximation for P &". Line 2
shows a small energy shift in the wrong direction.
Lines 4 and 5 involve only the HNC approximation
and exhibit an energy shift of —0. 64 'K/atom
nearly identical with the shift generated by the
first iteration of the paired-phonon analysis [Eq,
(72)]. This last result can be associated with the
identity of optimization and variational extremum

TABLE I. Estimated energy quantities for He at p = 0.0218 A.

Trial functions

g«), U«I BBGKY, KSA)

HNC(+)' Ub'I BBGKY, KSA)

g PY«), U(&lBBGKY, KSA)

«") UHNC «lg)
g HNC (+) ~ UHNC « l g HNC)

g«), UPY«lg)
gPY(r), VPY(rig PY)

Unit is ' K/atom.

(KE)

14.06
14.78
14,36

16.63
16.64

13.45
13.94

N (PE)
—20.03

20.69
—20.68

—20.03
—20.69

—20.03
—20.68

N (H)

-5.97
-5.91
-6.32

-3.40
-4.04

-6.62
-6.74
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conditions which is maintained when the exact
U(r Ig) is replaced by UHNC (r I g) in both the
paired-phonon analysis and the formula for the
expectation value of H[Eqs. (64) and (84)]. The
proof that the substitution of UHNC for U does
not invalidate the identity of the two conditions is
given in Sec. IX.

B. PY Relation: Method and Results

The operations which generate Eq. (71) for L
from Eq. (67) are now applied to Eq. (68) with the
result

L(h)= V„*+[(2w) p] ' J R(lk+hI)[1 —S (k)]L(k)dk,

To compute gpY(r) we identify 6U(r) with Upy
(rI g~) UpY(r I g) and use the PY relation to
give

g (r) =g(r)([1+P(r IS)]/[1+P(r IS)]je . (77)
PJ

The remarks preceding and following Eq. (73) ap-
ply here.

The second iteration of the paired-phonon analy-
sis now yields N '5E, = —0.036 K and $ = 0.0011.
Again the agreement with the corresponding HNC

results is close.
In Table I, the results for alternative methods of

estimating N '5E, are consistently in the right di-
rection, but small (- 0. 35 'K from lines 1 and 3;
—0. 12 K from lines 6 and 7).

R(k)=p J e (1-e» )dr. (76)
VIII. NUMERICAL RESULTS AT MASS 3 ( He)

N-'eE, =0.68 K,
(= 0. 026,

(76)

Numerical results for 4He at p = 0.0218 A ~ are
shown in Figs. 1-3. Dash-dot and dot curves in
Fig. 1 represent L(k) and V&, respectively. The
liquid-structure function 8 (k) is plotted as the
dotted curve in Fig. 2. Here the PY version is a
bit closer to the experimental points than is the
HNC version. The interaction function w(k) ap-
pears in Fig. 3 as the dotted curve. Here the two
versions of w(k) differ in detail, but are quite
similar in magnitude and range of large values.
The two versions of L(k) in Fig. 1 differ substan-
tially and the difference favors the HNC version.
The difference is principally due to the fact that
exp U(r)] —1 falls off more slowly for large r than

g(r —1. When the correlations generated by the

zero-point fluctuations of the sound field~' are in-
cluded in U and 4, the function exp[U(r)] —1 varies
as r ' for large r while g(r) 1goes a-s r '. As a
consequence R(k) varies as k ' for small k while
S(k) —1 is a linear function of k.

Now the energy shift and the separation param-
eter have the values

N 'GEO= —0.25 K,

$ = 0.0060,

N 'GEO= —0.50'K,

( =0. 019

(HNC)

(PY)

(78)

The second iteration was carried through in the
PY approximation with the results

N-'eE, = -0.049'V,

The ground-state boson-type solution of the
Schrodinger equation for the N-particle 'He system
serves as the correlation function in recent studies
of liquid 'He by the method of correlated basis
functions. " " Variational calculations by Massey
and Woo' and by Schiff and Verlet' give results
for U(r), g(r), S(k), and E, in the BDJ-type trial
function space. We have applied the paired-phonon
analysis to the 'He system at the equilibrium den-
sity p=0. 0164A ', taking the Massey-Woo deter-
mination of g(r) and S(k) as starting functions.
The first iteration gives the results

both close to the corresponding HNC results. $ =0.0021,
(») (78)

TABLE II. Estimated energy quantities for He at p=0.0164k.

Trial functions

g(r), U(rl BBGKY, KSA)

g PY(r), U(rl BBGKY, KSA)

g«» UHNC«~g)

g(r), UPY(r)g)
g PY( ) UPY( ~g PY)

N (KE)

12.32
11.96

13.10

11.88
11.39

N (PE)

—14.41
—14.56

—14.41

—14.41
—14.56

N" (H)

-2.09
—2.60

—1.31

-2.53
-3.17

Energy unit is ' K/atom.
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with both numbers smaller by an order of magni-
tude than the corresponding numbers of the first
iteration.

Results for energy quantities by alternative meth-
ods are listed in Table II. Lines 1 and 2 give an
energy shift of —0.51 'K/atom; lines 4 and 5 give
—0.64 'K/atom. These estimates are moderately
close to the total shift of —0. 55 'K/atom generated
by the paired-phonon analysis in the PY approxi-

mation.
We conclude this brief report on a formidable

array of calculations by stating that the over-all
similarity of the physical results generated by the
HNC and PY relations encourages us to expect
rather similar results from an accurate numerical
evaluation of the 3(N- 1) dimensional integral for-
mula for Sg(k) by the method of molecular dynamics,
or by any other suitable numerical technique.

IX. OPTIMIZATION AND VARIATIONAL EXTRElNUM CONDITIONS IN THE HNC APPROXIMATION

We use Eqs. (62), (67), and (69) to derive a statement in which the two-particle correlation function U

does not occur. First Eq. (67}generates

1 Vg(r) 1 ik ~ r 1
g((ggc(r]lg)=&g(r)( ( )

—( —
( )

—
(V ), v ( —

g(g)
g'g)v. (80)

Substitution from Eq. (62) into Eq. (69) produces the explicit statement

g. r) (&r)~(r] )=g(Vv-g(r)(„) —() ~
( ). v' "(g(„)) [(-g(g)]g)v

Finally left- and right-hand sides of Eqs. (80) and (81) are summed to give the desired relation

(81)

2

2[g(r) —l]gg(r)+ ( ) =, [v (r) —v(r)],

2
4m 1 [ ik ~ r k 2 1 ~ ik ~ r 1e'" (2v)'p~ '

S(k) [ ( }] (2v)' )
' S(e)'

(82)

Equation (82) is a highly nonlinear differential-integral condition on g(r). We do not know that the equa-
tion possesses a solution or, if a solution exists, that it has sensible physical properties. In this context,
something can be learned by using the experimental information on g(r) and S(k) to study the interrelations
of the zeroes and stationary points of g(r) —1 and the zeroes of the right-hand side. Let rl, r3, . . ., r2„+1,
. . .designate successive zeroes of g(r) —1 and r2, r4, . . . r2„, . . .successive positions at which g(r) is sta-
tionary. Equation (82) requires

d
--(-1) ~, {v(r) v(r))-, r=r2g s+1 4~ 1/2

dr S2 ' 2@+1 '

[1-g(r)] 2
=

2 [v(r) —v(r)], r=rdg 2m
dr2 82 2n (83)

&p.

The sign factor in the first: line of Eq. (83) fits the requirement that the slope at the first crossover (r= r, )
is positive and also that it reverses sign at successive crossovers. The inequality in the second line of
Eq. (83) involves the special (but highly plausible) assumption that g(r) is stationary at only one point be-
tween successive zeroes of g(r}—1. These relations imply that v- v has an odd number of zeroes between
a crossover point (r=r2„1) and the following stationary point [r=r2(„+1)]. We have estimated v(r)
from the observed liquid-structure function and check Eq. (83) at a semiquantitative level out to the second
crossover (r, -4 5A). Thi.s modest success may be cited as evidence that Eq. (82) determines a function
g(r) with reasonable physical properties.
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We are interested in the variational extremum properties of the right-hand side of Eq. (64) when the
correlation function U(rig) is replaced hy UH C(rig):

h2
8(plHNC)-=I Vg VU (rig)dr + 1gvdr

Np 4m'

1 k~ 1
t 2 [S(k) —1]2

=4 &g —1 dr+4 2 32 k
& &~

dk+ gvdr . (84)

The variational form is

2—6$ (pl HNC) =
} 2[g(r) —1]bg(r) + + 2 g(r)[v(r) —v(r}] dr,

a-2 ['6g(r) (Vg)' 4m
Np 4m gr) (86)

and the right-hand integral is seen to vanish if the optimization condition of Eq. (82}holds. This verifies
the statement made in Sec. VII in connection with the discussion of lines 4 and 5 in Table I. In summary,
the HNC approximation maintains the direct connection between the optimization condition of the paired-
phonon analysis and the variational extremum property of the expectation value of H. This connection is
a special property of the HNC approximation; it does not hold for the PY form.
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