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The linearized hydrodynamic equations of motion for a thin, flat, superfluid helium film are
derived in some detail from standard two-fluid hydrodynamics. Interactions of the film with

both the He vapor and the substrate which are in contract with it are included and discussed
in detail. Boundary conditions for both the film-substrate and film-gas interfaces are de-
rived. It is indicated how one may construct the equations of motion for the entire coupled
system (gas-film-substrate). The equations are actually constructed and solved for the case
when a certain parameter is small, which includes all the third-sound experiments on un-
saturated films. A dispersion equation is found which is exact in the limit of vanishing fre-
quency, and which is eminently suited to describe both the velocity and the attenuation of third
sound in the regime of unsaturated films. No hydrodynamic instability is found. Results for
the attenuation are shown to be in good agreement with preliminary experiments on unsaturated
He films.

I. INTRODUCTION

As a result of increasing interest recently in
the properties of third sound in thin He II films, '
we have undertaken to reexamine the theory of
that phenomenon with the intention of trying to re-
solve some difficulties that were present in its
original formulation by Atkins. ' Those difficulties
had to do with the theoretical expression for the
coefficient of attenuation of third sound, and were
of two types: (i) The attenuation became negative
for films that were too thin, i.e. , it changed into

amplification. If this were correct it would imply
that the film was then unstable against perturba-
tions of its shape. Such speculations have indeed
been made. ' (ii) Even for thicker films, where
this did not happen, the values predicted for the
attenuation coefficient were much less than those
observed. '" Since the attenuation effects in Atkin's
theory' arose from the reciprocal processes of
evaporation and condensation of He atoms between
the film and the gas, we suspected that these pro-
cesses had not been adequately dealt with in that
theory. In this paper, we reformulate the hydro-
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dynamic equations for the He film, taking care to
include all hydrodynamic and thermal interactions
with both the substrate and the He gas that are in
contact with it. Because we do this, it is unneces-
sary to make any assumptions about how the evap-
oration depends on variables of the film; it de-
pends, in fact, on variables of both the film and
the gas. Therefore, we have to consider the equa-
tions of motion not only for the film but for the
gas and substrate as well. We also need to know
the boundary conditions at the film-gas interface
and at the film-substrate interface.

In Sec. II, we derive the equations of motion for
the film. In Sec. III, we discuss the equation of
motion for the substrate and its solution, as well
as the boundary condition with the film. In Sec.
IV, we do likewise for the gas. In Sec. V, we use
the results of Secs. III and IV to solve the film
equations explicitly for the case of unsaturated
films. In Sec. VI, we calculate the velocity and
the attenuation of third sound from the results of
Sec. V, and compare the predicted values of the
attenuation with the available experimental results.
In Sec. VG, we discuss and summarize the results
obtained and indicate further avenues of research
to be pursued. In the Appendix, we use kinetic
theory to derive expressions for the mass and
thermal fluxes through the boundary between a
liquid and its vapor that are in mechanical but not
in thermodynamic equilibrium with each other.
This is required to obtain the boundary conditions
at the gas-film interface.

II. EQUATIONS OF MOTION FOR THE FILM

For simplicity, we will restrict our geometry
to two dimensions, as described schematically in
Fig. 1. (Although it would be straightforward also
to include the third dimension in all of our equa-
tions, it would make the notation cumbersome. )
An imaginary planar surface y =y~ has been intro-
duced in the gas, at a distance from the film suf-
ficiently large so that any inhomogeneities due to
surface effects have died out, but sufficiently
small so that the gas there is still in equilibrium
(locally) with the gas at the surface of the film.
This is possible because the van der Waals forces
exerted by the substrate and film on atoms of the
gas —the forces that bring about the inhomogenei-
ties —become negligible at a distance much less
than the mean free path in the gas, over which
equilibrium is assumed to be maintained at all
times.

The equations of motion for the film are derived
from the usual linearized equations of the two-
fluid model, with the help of the following assump-
tions: (a) As in Atkins's theory, ' the liquid film
is assumed to be incompressible, so as to elimin-
ate simple compression waves. (b) The viscosity
is assumed to have a negligible effect on vertical

IMAGINART REFERENCE PLANE

IIe VAPOR

He FILM

&++&SUBSTRATE IF'
y = h(x)

FIG. l. Schematic drawing of a vertical section of
the helium film.

where h(x} is the film thickness at the point x, and

1 h(x)J (x) =
( }fo cT (x~ y)dy

motion, but to be all important for horizontal
motion, because of the thinness of the film (i.e. ,
the film thickness is assumed to be much less
than the viscous penetration depth in the film).
These last effects are taken into account by as-
suming, also after Atkins, ' that there is no hori-
zontal normal motion in the film, and by otherwise
ignoring the equation of motion for the momentum
density. (c) We neglect thermal conduction in the
horizontal direction (this is so simple to justify
that we even do so explicitly), but not in the ver-
tical direction. (d) Contrary to Atkins, ' we do not
neglect thermal conduction out of the film and into
the gas and the substrate, nor do we neglect the
transfer of helium atoms between the film and
the gas. These processes are fully taken into
account in terms of the dynamic variables of the
gas and the substrate, where necessary, so that,
in order to have a complete set of equations, we
will eventually have to consider equations of mo-
tion for variables of the gas and the substrate, too.
These equations are discussed in the following
sections.

Every equation for the film is obtained by inte-
grating a two-fluid equation over the vertical co-
ordinate (the thickness), so that we are finally left
with equations of motion for an effectively two-
dimensional film. In our geometry (see Fig. 1)
this becomes a one-dimensional problem: only
the x coordinate remains in the description of the
film. Throughout the following discussion the
subscript f will identify film variables, the sub-
script g will serve similarly for gas variables,
and the subscript sub for substrate variables.

Applying the above principles to the mass con-
servation equation div Jf= 0, where Jf is the total
mass current in the film, and remembering that
there is no mass flowing into the substrate, i. e. ,
Jfy (x, y = 0}= 0, we write

0= Jo divJ (x, y)dy =J' (x, h(x))
h(x) . -

sJ (x)
+h(x) —+ —[J (x)-J (x, h(x))],
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The last term in (1) is of second order in small
quantities (both Sh/ex and Jy are small) and will,
therefore, be neglected, as will be all second-
order terms.

To conserve mass at the film-vapor interface,
the mass current in the film towards the interface
must equal the mass current in the gas flowing out
of the interface, if both of these currents are
measured in a frame of reference that moves with
the interface. In terms of quantities measured in
the laboratory frame, this condition becomes

Z (x, a(x))-i(x)p(, a(x))

(x, y )-h(x)p (x, y ) .
gy

' r g ' r (2)

J =p v +p vss nn'

where ps and p„are the superfluid and normal
mass densities; vs and vn are the superfluid and
normal velocities. We are assuming vnx -—0 (no
horizontal normal flow); hence

Here, pp and p& are the total mass densities in the
film an8 gas, and J is the mass current in the
gas. The functions on the right-hand side refer
to the gas at the reference plane. Their values
are different from what they would be at y =h(x),
but the combination that appears on the right-hand
side has the same value, due to mass conservation
in the gas. Unless otherwise specified, functions
of the gas will always be taken at the imaginary
reference plane rather than at the interface itself.

In two-fluid hydrodynamics, the mass current
is usually written as a sum of superfluid and nor-
mal contributions

( ) Jg(x, y)

In defining vs, we have again used the assumption
that vnx =—0.

The second-film equation is derived from the
linearized entropy equation of two-fluid hydrody-
namics'

8—(p s )+div p s v -x f
~

=0VT

where sy is the entropy of the film per unit mass,
xy is the thermal-conduction coefficient for the
film, T is the stationary equilibrium temperature,
and Ty is the oscillating temperature of the film.
When this equation is integrated over the film
thickness, we get

d h(x) ~

0= —f p s dy-kp (a)s (h)+ p s v

IIT i it(*)& ii

I, I BTy)
h(x) '

0
0 T ~x

(4)
In order to develop this further, we must look at
the consequences of energy conservation at the
two film boundaries.

At the film-vapor interface, we must have equal
energy currents flowing in and out of the interface,
in a frame of reference moving with it. This
leads to the following equation, in terms of labora-
tory frame variables:

=p vfx s sx

Combining (1) and (2) and taking this into account,
we get the following equation of motion for h:

E
p, (J' —hp )+ Ts p (v —h) —x f

y=h

p+ Ts p v —h) —a gg k'y 8 e )' X=Y,

(5)

&v (x)
i (x)p (x, a( ))+a(x)p ( ),'

+p (x, y )[v (x, y ) —h(x)]=0 .
g r g3'

and

a(x)
p (x)=h( )f p (x, y)dy,

(x)
() fx

p (x)
s

Here we have included detailed reference to the
position variables; ps is the superfluid density
averaged over the film thickness

where sg is the entropy of the gas per unit mass,
T& is the oscillating temperature in the gas, v&
is the thermal-conduction coefficient in the gas,
and p, is the stationary equilibrium value of the
chemical potential. In writing (5) we neglected
terms that are of second order in small quantities.
In this connection, temperature and chemical po-
tential differences between the film and the gas
are taken to be small in the first order. When
(2) is substituted into (5) we can rewrite it as

(
BT

Ts p (v —h) —&f sy f sy y pg
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8T
Ts p (v —h)-xgz gy

r
(6)

the (complex) velocity of third sound. Then the
last term of (9) is smaller than the second term
by a factor of the order

At the film-substrate interface, energy conser-
vation requires that

81'f sub
K = K

sy sub syy=0 y=

where Tsub is the oscillating temPerature of the
substrate, and Ksub is its thermal-condition co-
efficient.

We now write

S

2
BJKf/p ChC3

For lack of better experimental information, we
approximate xf/Ch by pf, the shear-viscosity
coefficient of the film, whose value is known. We
thus find that (9') is very small compared to 1 in
all of the experiments conducted to date on third
sound' '; therefore, we will ignore it. What re-
mains of (9) may be combined with (3) to yield

8V

hp ChT —hp TSs 8x

T
=p (h)Sh+hp C„T (8)

where A is the area of the film, Sf is its total
entropy, pf is the mass density of the film aver-
aged over the thickness (as distinct from pf, which
is taken at the film surface y = h),

8+
+ LP V —h) —K

gy g 8y

8T
sub '

+K
sub 8y y=0

(loa)

BS
S—= [p (h)A]

Bh

is the partial (as distinct from average) entropy
per unit mass of the film, and

where

'
Z /sx Z,

K 8T 87
g g sub sub

0 (10b)L ay L 8yy=y y=0

L= T(s -7)-
g

p hA 8T

is the average specific heat per unit mass of the
film at constant thickness. Substituting (6)-(8)
into (4), and remembering thatvnx—= 0 and that
v = 0 at y = 0, we get

/ 8T
p TEh+hp C„T + Ts p (v —h) —zf f h gZgy Zsy

r
8 T

sub 8y 0 J 8xJ

In order to discuss the magnitude of the last
term, which arises from horizontal thermal con-
duction, suppose that Tf oscillates periodically
with a frequency co and wave number k, related
to each other by

is the latent heat of evaporation from the film per
unit mass. This is the equation of motion for Tf.

The third equation for the film is obtained by
integrating the x component of

v +V[P, -KP div(v -v ) —f divv ]=0, (11)s f 3s s n 1

where f, and f, are coefficients of bulk viscosity, '
and pf is the oscillating chemical potential of the
film, to get

h(x) d h(x)
d$ 0 fx ' df s s 0f d (x, y)dy = —[h(x)p (x)v (x)] = — J dy

sp (x, y) s'(v -v )
x p (x y) —L3p (x y)

s'v s(v —v ) sv h(x)

f3P '
8 +k&P

(12)
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We can show that all the terms in this equation
that involve fy or f, are negligible: Using the
symbol=to denote equality in order of magnitude,
we note that v = v =h. From (3), we then find
that sy ny

rium part p, , an in-phase part pf (in pha. se with

vsx), and an out-of-phase part p, From the first
of these and from (12'), it is clear that

Bv
SXh= —h = —ihkv «v

BX SX SX
(12 ')

Bp, . Bp, .i i= ihkv' =- ihk
By sx Bx Bx

where k is again a typical wave number of a peri-
odic disturbance in the film. The last inequality
presupposes that the wavelength of the disturbance
is always much larger than the film thickness.
We assume, again for lack of better information,
that 11= ps/3 = qf/pf, and also that ps is nearly
constant across the thickness of the film except
over a distance / from the surfaces, where it
varies as

P P

By

The healing or correlation length / is of the order
of 1 atomic layer, ' and this is always less than half
the film thickness, 2 h. Applying these considera-
tions, we find that all of the terms of (12) that in-
volve either fy or f, are of order

rif (d/Pf cs

as compared to the left-hand side. As we have
seen, this quantity is very small compared to 1,
in all of the experiments conducted to date on
third sound, ' ' hence these terms will be ignored.

In order to deal with the one remaining term on
the right-hand side of (12), we now turn to the
other component of (11), focusing our attention on
the phase relationships of the different terms. In
doing this we assume that derivatives of quantities
along y are in phase, while derivatives along x are
out of phase with the quantities themselves. Time
derivatives are, of course, out of phase. As a
consequence, the equation for vsy can be split up
into two separate equations:

8 p. .
v +

Sy

8 p, 8'(v —v ) 8'(v
0 sx nx sy ny

By 3 $ BxBy

2v 82v
nx ny 0

BXBy ~ By

where we have written pf as a sum of an equilib-

and it is also clear that what is involved in the x
component of (11),i. e. , in (12), is essentially p, ;.
Therefore, we can neglect the y dependence of pf
and take it outside the integral in (12), thus getting
the following equation of motion for vs.'

ap ()
V +

S BX
=0 (is)

For a description of the thermodynamic proper-
ties of the film we use the variables Tf and h, ' in
terms of which we can write a differential equa-
tion of state:

dp, = —SdT +fdh (is')

In this equation f is the van der Waals force ex-
erted by the atoms of the substrate on atoms of the
film, per unit mass of the film. Using (13 '), (13)
takes the following form:

BT
Bh

v —S +f —=0
s Bx Bx

(14)

-set+ zkx

f 1

This is a harmonic wave propagating through the
film in the positive x direction with a (complex)
velocity

which is the equation of motion for vs.
Equations (3), (10a) [or (10b)], and (14) are the

equations of motion for the film, and should be
compared with Atkins's equations (8), (9), and
(12), respectively, of Ref. 6. The differences that
appear are: (i) the evaporation term K(Tf T)is-
replaced in our equations by pg(v&& —h); (ii) we
have additional terms in (10a) describing thermal
flux to the gas and to the substrate; (iii) the
thermodynamic description of the film is different
(e. g. , the pressure is not an independent vari-
able), leading to a different form for the vs equa-
tion; and (iv) the dependence of film entropy on
film thickness is taken into account, leading to
the appearance of S instead of sf.

We will be looking for wave solutions to these
equations, i. e. , solutions of the form
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C = (d/k
3

III. EQUATION OF MOTION AND SOLUTION
FOR THE SUBSTRATE

and the real part of the square root is taken to be
positive.

The question of whether an equation of the type
(16) is applicable, is answered by comparing the
mean free path for thermal conduction,

The only substrate variable appearing in any of
the film equations is Tsub, which satisfies a dif-
fusion- type equation

C T =K V2T
sub psub sub sub sub

(16)

- icot+ ikx+ qy
sub sub 1

=T+T 8 (17)

where Req & 0

and where k and &o are the same as in (15). The
condition Req & 0 ensures that any disturbance in
the substrate dies out as one moves away from the
film. The substrate is assumed to be infinitely
thick (i.e. , compared to q '}so that there are no
reflections to worry about. %e find for q the
following dispersion equation:

c -2 —q /(d =fp bC b/(dKsub p sub sub
(18)

Here psub is the mass density of the substrate and

Cp sub is its specific heat at constant pressure.
Since we are interested in solutions that corres-
pond to a wave traveling through the film in the x
direction, we look for a solution to (16}of the
form

l =3K p Cf sub sub psub sub

with the thermal diffusion length,

l: (K (dp C )
d sub sub p sub

Here csub is the phonon velocity in the substrate.
Putting in the numbers for a glass substrate at
1.5 K, we find that even at a frequency of 20 kHz
(the highest used in experiments to date') ld is 50
times greater than lf, which means that (16) can
safely be used. However, for the low frequency
(100 Hz) used in some experiments, '

ld becomes
a few millimeters, in which case it may be com-
parable to the thickness of the substrate. In that
case the detailed geometry of the substrate would
have to be considered, as well as boundary con-
ditions on its other surfaces, and one would not be
able to assume the simple form (17) for the solu-
tion of (16).

IU. EQUATIONS OF MOTION AND
SOLUTION FOR THE GAS

The equations of the gas that are required are
the linearized equations of hydrodynamics includ-
ing thermal conduction and viscosity; namely,

The boundary condition at the film-substrate in-
terface is

Bp
+ p divv =0

BT
—K =B (T —T )

sub sy 0
1 sub fy=0 y=0

(19)

Bv

p + VP —'q V v —(0 + —, r) )Odtvv =0,
g Bt g g g g 'g g

(22)

where B, ' is the Kapitza resistance (thermal
boundary resistance) at the interface. Substituting
(17) and (15) in (19), and using (18), we can solve
for Tsubl in terms of Tf l. We can then write,
instead of (19),

Bs

p T —K V'T =0;
g

and the equation of state, which we take to be that
of an ideal gas,

BT
sub

sub By y=0

P =p&8»m. (22)

where

1 1 b—=- —+ —uoK p C8 8, c, sub sub p sub

—1/2

(21)

Here P is the pressure of the gas, m is the mass
of one Ae atom, kB is Boltzmann's constant, and

and 0 are the shear and bulk viscosity coeffi-
cients o the gas. From considerations similar
to those made in Sec III, we look for a solution to
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(22) where all the variables have the form have expanded the second- and third-mode solu-
tions in powers of the parameter

~here Req &0

(24)
» (d/p C

g Pg'
(27)

Substituting this form in (22} leads, of course, to
the general dispersion equation for small ampli-
tude waves in the gas:

which is of the same order as

'g (d/p c
g g

(25)

0=(x-ip /(drl ) x'[l. —(i(d/& )(& +~an }]--~'g g g'g
g Pg Pg' g

g ~~ g Pg
K 4) K c C g g -' K 4)c

Pg g
(25)

where x =- c, ' —q'/(d',

c is the velocity of ordinary sound in the gas, Cpg
and Cvg are the specific heats of the gas at con-
stant pressure and constant volume, and

y=—C C
pg vg

ln view of (23), c is given by

c'=yk T/m

Equation (25) implies, besides ordinary acoustic
waves, a viscous wave and a thermal-conduction
wave. Which of these are excited in any given
situation depends, of course, on the specific de-
tails of the situation. In our case, a general
linear combination of the three modes will be as-
sumed to begin with, since it is not clear a priori
that any of them can be ignored in the final solu-
tion. The three modes have the following disper-
sion equations:

M: x =ip /&oq (viscous mode)
1 1 g g

Both are very small for all the frequencies that
have ever been used in thin-film experiments, '
and we will henceforth always ignore terms of
this order as compared to unity.

The hydrodynamic equations are applicable
whenever the wavelengths involved in the various
modes are large compared to the mean free path
for thermal conduction in the gas:

i =-(3» /p C )(m/3~ T)'" .
g Pg'

p p CgT, g Pg
g T g'TO/m g3 ' (29)

~T K

—K = T + K co ———T, 30g
g 8$ Co2 g g Co3 Co2

The wavelengths involved are the viscous penetra-
tion depth (qg/2(dpg)'I'for the mode M „ the ther-
mal-conduction length (»g/2(dpgCp )'~' for M2, and
k ' for M, . All three are much greater than /g.

In each of the three gas modes the amplitudes of
the various oscillating quantities are r elated to
each other in a definite way, so that one can ex-
press any variable of the gas in terms of three in-
dependent amplitudes. We will denote by suffixes
1, 2, and 3 amplitudes that belong to one of these
modes, while primed variables will denote the
sum of all three contributions. In terms of the
amplitudes vg~, Tg, and Tg3, so'me of the gas
variables which we shall need are written as fol-
lows:

M: x =(ip C /» (d)[1+0(» (d/p C c')]
Pg

(thermal- conduction mode} (25)

01 01 02
gy c gx T 02 p c '

g 3

)'ic* L—,'
q —(( '& g )l(y )))x g

1 —q C

M x =1/c'+(i(d/p c')[(y —1)» /C +r +~g ]Pg

[1+O(» &o/p C c')] (acoustic mode)
g Pg'

T ic01TC
+

T ic TC u —ic —,, (31)03 pg 02

Rather than write the exact solutions of (25), we where u') —= (1/c 1/c2)'I' Reu'&2 & 0 (32)
3
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l./c .= (1/c ' —x.)'&; Rec .&0
Oi 3 i ' Oi

i=12 3 . (33)

theory arguments that the net mass flux from film
to gas, J~, is given by

When not only (27) and (28), but also the param-
eters

J (1 —p /p ) = 2p (m/2' T)'/2
M g g

x [p, —p +(s —h /2m)(T —T )], (38)f g g & g
h &u/p C c ', q ~/p c3gPg3' (34)

while the net thermal flux from film to gas Jq is
given by

are small, we can write more explicit expressions
for some of the gas variables. In this way, in-
stead of (30) and (31), we get

BT'
= —ie (~vpC ) Tg . iv/4 1/2

g~y g gPg

x(T —T )

(
9 8)

+[K (dQ +ie (K (dp C ) ]T, (35)1/2 . iv/4 1/2

g g gPg
Tr

01 p . i&/4
c gx p Cp

p' +ie
g Pg'

Here u is the oscillating chemical potential of the
gas. e two boundary conditions are obtained by
setting J~ = pg(vgy —h) and Zq = —g sZ'/ey at the
film-gas interface. Using the differential equation
of state for the gas,

1/2
. 1/2 . im/4 g

)+ iu TC —ie
Cpg pg pg

—ie 2
P c3

(38)

1
dp. =- s dT + —dP

p

k k Tdp
—s+ —dT +

g teal g pal pg
(38 )

where terms, like (34), have been neglected as
compared to 1.

Since the gas variables depend on three independ-
ent amplitudes, we need three boundary conditions
at the film-gas interface in order to determine
them. One of these is a condition on the horizontal
velocity in the gas vgx. The horizontal superfluid
flow in the film is assumed to take place without
any impediment from either the substrate or the
gas. Consequently, there is no restriction on

—vgx. But the horizontal normal velocity in
the film must join continuously with the horizontal
velocity in the gas. Since we have assumed in
Sec. II that v~x =—0, we must now also require

k k Tp'
T +fhB g

2pal g m pg
(40)

8T l
L 9 B= —A

g By — T 2m fl

and the analogous equation of state for the film
Eq. (13 ), we find that for small deviations from
equilibrium the following equations must hold at
the gas-film boundary:

5gx=0 (37)
7 B f+ ——T
2 m g

k Tp'—+fh
m p 1- (41)

at the interface.
The other two boundary conditions arise from

conservation of mass and energy at the interface.
In the Appendix, we show from simple kinetic- where A =— —,

'
p (h T /m2s)' /2

g B (42)
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V. THIRD-SOUND SOLUTION IN UNSATURATED FILMS

In order to look for the third-sound solution, we assume the form (15) for variables of the film and use
the expressions (29)-(31) for variables of the gas. We must consider the equations of motion for the film
(3), (10b), and (14), as well as all of the boundary conditions with the substrate and the gas. The boundary
condition at the substrate (20), as well as one of the boundary conditions with the gas, i.e. , (37), can be
incorPorated in the other equations very easily to determine Tsub and vg„. %e arethus leftwith. ive nontri-
vial homogeneous linear equations for the variables hi~ vsl, Tf1, T&, and T&3. In general these equations
are too complicated to warrant the effort needed to get an explicit analytic solution. Moreover, once ob-
tained, that solution would in general be so complicated as to lack any practical value. But when c, is
large enough so that

K v/p C c 2«1 and
g P8' 3

'g &u/p c 2«1 (43)

the equations can be sufficiently simplified to make an explicit solution worthwhile. This condition is
satisfied when v/c, is small enough, which it always happens to be in the unsaturated film experiments
of Rudnick's group. y

Under these conditions the equations become

(1 —p /p )h —(hp /c p )v —(e /TC p )(p C s /&u) T'-(u C gu)(p /p )4 T =0is/4 1/2 , 1/2
g f 1 s 3 sl Pgf gag ~ P g f la3 (44}

h —(hp /c p )(1+TS/L)v —(1/p L)(iB/&@+p hCh)T —(e /p L}(p C i& /u) (T'-J2T 3}=0, (45)
iv/4 I/2

1 s 3 f f h alger g

v +(S/c )T —(f/c )h =0 (45)

[1—(i&uP /4Af)(1 —p /p )]fh +(L/T —k /2m)T +(k /2m)[1 —(i&a/2AC )e (p C K /&u)g f 1 1 & PZ g pZ Z

x (1 —p /p )]T' —(i »u'P C /4A)[J (1 —p /p ) —4iA/P u'I']T =0sf g rpr I g f g
(47)

fh +(L/T —f k /m)T 1+j k /m[1 —ag (i&em/Ak )e (p C s &u) ] T'iv/4 1/2
g Pg g

—C $1- (i&uZ /AC }e (p C s /~} ] T =0,is/4 I/2
P 2 Pg' g' PR g

where 8 =—1 —(1/c )e (uq /p u)' —(TC ) 'e (&us p C u) +O(K ~/p C c ) y

2 iw/4 , is/4 1/2 2
Pg' g'PR 3

(43)

(49)

Z =-1 —e ((o«u/p C ) +0(~ (o/p C c3 )
is/4 1/2 2

P8
(50)

The Eqs. (44)-(48) were derived from Eqs. (3), (10b), (14), (40), and (41}, respectively, by straightfor-
ward substitution from (15), (20), (29), and (35)-(37). When their determinant is set equal to zero, the
following dispersion equation results for c3.

s TS 2 TS 3 TS g TS 3 TS TS



i88 THIRD SOUND IN THIN He II FILMS 379

Pg
(51)

where J'3 =—Jl —(XM7/u'~'f )p /p

J =J +((dZ7/u'12f)(- (p /p )TS/L+1+ TS/L)

9 B g 9 f TS g 9 g i&uT 9 iB

9 B g 6 9 f TS
1 g 9 g huT iv/4 g Pgg

32 L Af i J' p L p J p 16AL
4 g f

J =-1-a9 (i&em/Ah )e' (p C ~ /(u)'",
Pg g

J' =-1-(i'' /AC )e (p C ~ /(oP"gPgg

J -=J (1+TS/L)+(&oJ /p C u'+L)e (p C z /&oPI'
8 1 g Pg gPgg

P - i(oZ . P C ~ 1/2- 4~ p C ~ 1/2
g J &u

1
2 iv/4 g Pgg 2 iv/4 g pgg

9 p 1+ uu2f AC +I' C u'" (d
Pg g Pg

X —= 1 —hfP /c3 Pf
—Pgpf (52)

Over the whole region of unsaturated films investigated by Rudnick's group'~ ' all the J 's are very
nearly 1, while X is of the order 1. Consequently, an excellent approximation to (51) is then

(hfP /c p )(1+ Tp/L) =1+(Tf/p L )[i@'ur+p hC +e (p C v /ur) l
2 2 2 . iw/4 1/2

s 3 f f f h gPgg

It is not difficult to convince oneself that this is also the correct dispersion equation in the limit (d -0. No
inconsistency is involved in taking this limit, because even though c, -0, the ratio u&/c, also tends to zero,
[according to (53) and (21)] so that (43) is satisfied in the limit.

Because ReB &0 [see Eq. (21)], it is clear that lm(1/c, ') & 0. Consequently, since Re(1/cs) has to be posi-
tive, we find that wherever (53) is valid,

lm(1/c, ) & 0

which means that the third-sound wave is attenuated. This is in contrast with the expression obtained by
Atkins, ' and modified slightly by Goodstein, ~ which predicts that lm(1/c, ) & 0 for sufficiently thin films.
There have been speculations that the latter result may indicate an inherent hydrodynamic instability of
the film when it is thin enough, thus explaining the abrupt disappearance of third sound or superfluid flow
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that has been found to occur in such films as soon as their thickness is reduced below some critical
value. '3'3' What we have shown here is that hydrodynamically the film is perfectly stable against small,
low-frequency perturbations of its shape.

The amplitudes of the various oscillating variables in the third-sound wave are related to each other as
follows:

c = (hf/c3 }(1+TS/s1 3
(54)

/T= —(hf/L)h /h (55)

i(dp 1. 1 —p p C z 1/2 I

Tf T T f f TS Tf iB iv/4 g pgg 4L 1+TS/L
P fl fl 16Af 1 ~ TS/L L P L' f 6 6 /L1 —p /pf g f

(56}

pc K 12
L f 1 TS g TS Tf iB jv/4 g pg g

g3 flu'fmf TC p 1+TS/L L p L p L' (u f h (d
PA'

x 1 — 1+— (57}

The first of these is nearly the same as the relationship found by Atkins, ' since it depends mainly on the
mass conservation equation. The second one is quite different from Atkins's' result, however, and it
means that the amplitude of the temperature oscillations inherent in a third-sound wave will be much
larger than his expression mould lead us to believe. The third and fourth relationships are of interest
mainly in order to show that

T' —Tfl fl and T 3«T (58)

Let us now calculate g —p, using (13'), (39'), and (29)f
=fh + (L/T)T ' —C T —S(T —T')f g 1 g pg g3

Keeping only the leading terms in the coefficients of (48) and rsing the fact that Tf = Tg, we now find that

pf = pg, too. With this hindsight we now know that instead of (38) and (39) we could have used

Tf-T, (60)

as boundary conditions to get the solution that we got.
The second inequality in (58) serves to motivate a reexamination of the roles of the various external

modes in the makeup of the third-sound wave. Making use of (57) we find that, a posteriori, all of the
T 3 terms in Eqs. (44} and (45) are very small. Likewise, Ml only makes a contribution that is implicit
in the coefficient J1, where it only amounts to a small correction. If we completely ignore all of the T&3
terms and if we set Tg= Tf, Eqs. (44)-(46) become a complete set of equations for hl, vs 1, and T
whose solution again leads to the result (53}, albeit in a less tortuous way. From the final result 53), it
is also clear that the only external modes that play a significant role in determining the dispersion equa-
tion for third sound are M2 in the gas and the thermal conduction mode in the substrate. We wish to
stress very strongly that this does not imply that M1 and M3 are not excited in a third-sound wave. They
have to be excited in order to satisfy the various boundary conditions. In Table I, me list the principal
contributing modes to amplitudes of some of the gas variables in the third-sound solution presented here.
This listing describes conditions near the gas-film interface. Further away, the relative importance of
different contributions changes of course, since M1 and M2 decay over a much shorter distance than M3.
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VI. COMPARISON OF THEORY WITH EXPERIMENTS

381

If we substitute some numbers into (53), we find first that, in the experiments by Atkins s group on nearly
saturated helium films, all of the terms on the right-hand side are very small except for the unity. Since
TS/L is small, we find for the velocity of third sound nearly the same result as Atkins. ' The result for
attenuation is entirely different, however, even in its frequency dependence. In absolute value it is about
two orders of magnitude less than the experimentally observed attenuation, and, besides that, it increases
for decreasing film thickness, also in contradiction with experiment. In view of some of the approxima-
tions we have made to get (53), it is probably not applicable to most of the saturated-film experiments, so
that the disagreement may not be significant.

When (53) is applied to the thin unsaturated films that were used by Rudnick's group, ' the situation looks
much better. Since the frequencies used are higher and the films thinner, we calculate larger values for
the attenuation. Also, for the thinnest films observed, the calculated velocity is considerably different
from what one would expect if one neglected the interactions of the film with the gas and substrate.

Since we do not wish to discuss here the problem of what p~ should be for thin films, we present our
results in a way independent of ps. We neglect the term (~sub'/c3)' in (21) [it gives a rather small con-
tribution in the experiments we are citing], as well as the term hChpf (Tf/L pf) in (53) [it is negligible],
and write (53}as follows:

hfP 2 tc p C 12 K p C 12
s Tg Tf iv/4 g g Pg sub sub Psub1+ = 1+ 2 e +c p L L pf &d CO

iv/4 sub sub Psubp C 1/2 -1
xB& B~ —z~e (61)

%e define c30 y

(hf p /c 'p )(1 ~ TF/L)2 = 1 (62)

'phen the right-hand side of (61) is enough to determine the ratio c30/c3, while c30 itself depends on ps.
Since the (real} velocity of third-sound u3 is given by

u =[R,e(1/c )] '= (- / )

while the coefficient of attenuation n is given by

n =—2&@Im(ca ~) = c~ ' x 2u Im(c3O/c3)

we present our results by plotting the two quantities u, /c„-=1/Re(c»/c, ) and o.c» = 2~1m(c»/c, ) as functions
of the film thickness h. This has been done in Fig. 2 for T = 1.51 'K and for two frequencies 1 kHz and
5 kHz. Despite the appearance of 8, in (61), which cannot be neglected, a is still approximately propor-
tional to u'~, except for the thinnest films.

We can compare our calculations to measurements published in Ref. 2 if we take into consideration the
fact that the results given there are for the coefficient of attenuation of the amplitude of third sound, "
rather than the energy or amplitude squared, which is the form of our results. In order to compare with
our results, therefore, we double the results from Ref. 2 to get

Q expt=0. 6 cm ' for v=1 kHz (v —= (u/2v)

0. =36 cm ' for v=20 kHz
expt

when the film is six atomic layers thick and T = 1.5 'K. Since u, =- 3000 cm/sec under these conditions, ' '
we find from Fig. 2(b) that our calculation gives, under the same conditions,

n = 1cm ~ for v=1 kHztheoret
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From the approximate proportionality to v' we get also

e = 4. 5 cm-' for v=20 kHz
theoret

These are in good agreement with the experimental results.

VH. SUMMARY AND DISCUSSION ACKNOWLEDGMENTS

TABLE I. Principal contributors to various gas
variables.

Gas variable

aT
T p ' ay

Principal contributing modes

Mg, Ms

Mg, M3

We have derived the linearized hydrodynamic
quations of motion for a thin superfluid (i.e. ,
atisfying the equations of two-fluid hydrodynamics)
ilm in contact with its own vapor on one side and
~ith a flat solid substrate on the other side. These
quations were solved explicitly for the case of a
eriodic wave propagating horizontally in an un-
aturated film. Inclusion of the interactions with
he substrate and the gas was found to be absolutely
ssential in order to get a stable solution. A
:imple dispersion equation [Eq. (53}] was derived
hat is valid in the regime of unsaturated He films,
.nd over a wide range of frequencies, including
hose used in all the unsaturated-film experiments
t:o date. ' This equation becomes exact in the
.imit of zero frequency. Some numerical results
obtained from this equation were presented and
ound to be in agreement with preliminary mea-
surements of the attenuation in unsaturated films. '
Equation (53) was found to disagree with experi-
mental results on the attenuation in saturated
films. ' However, in the experiments described
in Ref. 1, the assumptions of (43) are not always
satisfied and, even when they are, some of the
other assumptions made to get (53}are not (e. g. ,
not all the J's are equal to l). As a consequence,
the algebra becomes much more complicated, and
it is probably unprofitable and unilluminating to
seek an explicit solution. Rather than do that, one
should go back to the original equations (3), (10b),
(14), (40), and (41), and use (30) and (31), rather
than (35) and (36), to substitute for the gas vari-
ables. The resulting equations should then be
solved numerically in the regime of saturated
films.

This work was motivated by the very beautiful
experiments performed by Dr. I. Rudnick and his
associates, Dr. R. S. Kagiwada, J. C. Fraser,
and Dr. E. Guyon. I am indebted to all of them
for providing the experimental background for it.
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FIG. 2. (a) Plot of u3/c30 versus film thickness at
T = 1.51'K and frequencies of 1 kHz and 5 kHz. (b) Plot
of nc30 versus film thickness under the same conditions.
The right-hand side of (61) was used to calculate these
functions. Most of the physical constants required to
evaluate them are standard published data. B~ was
taken from K. Fokkens, K. W. Taconis, and R. DeBruyn
Ouboter fPhysica ~32 2129 (1966)], where it is given for
thin helium films on a copper rather than a glass sub-
strate as used in Ref. 2. For f we used [see Ref. 2
and W. D. McCormick, D. L. Goodstein, and J. G. Dash,
Phys. Rev. 168, 249 (1968)]f—= ap, c/ah, where p =~ lk

3
u

-o/h, and 0 = 87 k~/m, when h is measured in atomic
layers.
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But most of all, I am indebted to Dr. Rudnick for
his constant encouragement, and for many helpful
discussions that we had while it was in process.

APPENDIX: KINETIC THEORY OF MASS AND
ENERGY TRANSFER BETWEEN LIQUID AND GAS

Consider the case of a one-component system
which includes a liquid and a gas phase separated
by a stationary interface. The liquid and the gas
both move perpendicularly to that interface with
the velocities uf and ug, respectively (see Fig. 3).
Suppose further that the mechanical pressure is
the same on both sides of the interface (other-
wise a shock wave would develop), but that there
is a discontinuity in the temperature and the chem-
ical potential. Our problem is to calculate the
net mass and energy fluxes, JM and JE, respec-
tively, through the interface.

To that end we will calculate separately the out-
going currents from each phase. The currents
flowing out of the gas, J~g and JEg, are given
by simple kinetic theory as

Z& =2P (Tf)(k T /2') +&~ P(T )u . (A4)
l 1/2

Here the subscript l refers to the liquid, T~ is
the temperature of the liquid, P~(TI ) denotes the
saturated vapor pressure at the temperature T~,
and p [Tf, P~(TI)] is the gas density at tempera-
ture Tf and pressure P (Tf) .

We now calculate the net mass and energy
fluxes from liquid to gas:

J =-J —J
JE=-JE -JE

noting at the same time that u~ and u& are given by

I M l

"g-'M»g

where p& is the mass density of the liquid. Using
these expressions and expanding to lowest order
in (Tf —Tg) and Pq(TI) —Pg, we find

J =P (m/2' T ) —2p u
p (Al)

1/2
M g Bg gg'

Z g=2P (k T 2~m) 2 aP „, (A2)E g 8 g g
when u& is small. Here P&, p, and T are the
actual pressure, density, and temperature of the
gas. For the liquid, simple kinetic theory is not
directly applicable. We will assume, however,
that the currents out of the liquid are unaffected by
variations in the pressure, and are the same as
they would be if the liquid were in equilibrium with
its vapor at the same temperature. This leads us
to expect the following forms for JM~ and JE~, the
mass and energy currents out of the liquid, when
u~ xs small:

5kBT 1 kBT

Q E 2 m M 2 2'
9P

&& P (T )- P +- —(7 —7 ),v l g 2 T l g

(A5)

(A6)

=P (T )(m/2' T ) + 2 p T, P (T )]u,
1/2

v a t

(A3)

L IQ0 ID

f, Uf

5tat)onary

~Interface

GAS

g' g' "g

FIG. 3. Schematic drawing of a single component
gas-liquid system not in thermodynamic equilibrium.
Both mass and energy are transferred across the phase
boundary, and both phases aPe drifting in a direction
perpendicular to the interface. The interface itself is
assumed to be stationary.

where the subscriptless variable T refers to
either T or T&, which are assumed to be very
close to each other. As defined by (A6), Jq is
just the thermal flux from liquid to gas.

When we replace the liquid phase by a thin ad-
sorbed film, the only difference, besides replac-
ing Tf and pf with Tf and p is that instead of
P Tf) we have P ( Tf, pf) appearing in the equa-
tions [for a given Tf, a film can exist in equilibri-
um with its vapor at any pressure up to P~(Tf)].
It is convenient then to rewrite (A5) and (A6) in
terms of the chemical potentials p and p. of the
gas and the film, rather than in terms of the

g

pressures, by using the differential equation of
state of the gas

dp = —s dT +(p ')dP ~-
In this way we get
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+ s ———T —T9 I3

g 2 m f g
(A8)

jF

+ s —
2

(T —T ), (A'f)
g 2m g

p k T 1 2-

Q 2 2' ~ g

to first order in (T —T ) and (p, .—p, ).f
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The molar volumes of liquid mixtures of He in He up to 10 molar% have been measured to
22 atm pressure and to 50 mK using a dielectric technique. The single-phase measurements
provide a determination of the Bardeen-Baym-Pines (BBP) parameter n under pressure. A

weaker pressure dependence is found than in the measurements of Boghosian and Meyer. The
ground-state kinetic energy for pure He is deduced from e. The two-phase measurements
indicate that the solubility at 50 mK of He in He rises from (6.6+0.1)% at P=O to a maxi-
mum of (9.5 +0.12)% at 10 atm; it then drops to (8.3+0.14)% at 22.5 atm. This behavior is
found to be consistent with the BBP effective interaction theory using the Ebner potential.

I. INTRODUCTION

In this experiment, we have measured the molar
volumes of dilute mixtures of He' in He' and of
pure He' at pressures above the saturated vapor
pressure and at temperatures down to 50 mK. The
molar volumes are determined by measuring the
dielectric constant of the helium with a capacitor

which is part of an oscillator tank circuit. We
then use these molar volumes to determine the
solubility of He' in He' at 50 mK and the relative
excess volume of Hes in He' at pressures up to 22
atm. The latter differs considerably from the
measurement of Boghosian and Meyer. '

Dilute mixtures of He' in He' have been the sub-
ject of very intense study, both experimentally and


