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In earlier work, we obtained the higher-temperature xnelting properties of He with the
solid in the paramagnetic range. The exchange-coupled solid was assuxned to become anti-
ferromagnetic below its spin-ordering temperature. The thermal excitations of the perma-
nently paramagnetic liquid were described in terms of its spin and nonspin degrees of free-
dom according to a theory of this phase elaborated in early work. Recent accurate measure-
ments of the melting properties of He permit a critical comparison of theory with experi-
ment. With complete spin disorder in the solid at melting, at even the lowest texnperature
reached in the measurements, the latter confirm the satisfactory accuracy of the theoretical
entropy of the liquid at melting. We now use the asymptotic xnolecular-field-theory model to
extend the description of melting He into the antiferromagnetic range of the solid. The
effect of the magnetic transition at melting allows one to locate the texnperature at which this
transformation begins. The low temperatures attained by adiabatic freezing, which we
studied previously, are shown to have a theoretical lower limit of about 0.5 m'K. This is
identical with the low-temperature maximum of the melting pressure or the end of the anom-
alous melting phenomenon which starts at the melting-pressure minimuxri around 325 m'K.
The characteristic cooling on adiabatic freezing over the indicated temperature range is,
nevertheless, far from exhausting the physical content of the remarkable melting anomaly of
He . It is thus proved that the cooling effect permits the verification of the theoretical melt-
ing pressure down to the upper reaches of its indicated low-temperature limit. This is shown

to be feasible without the measurements of the still unknown very low temperatures. This
verification procedure determines the latter unambiguously through the intermediary of the
entropies of the liquid and solid at melting; the functional arguments of the accurately mea-
sured melting pressure changes between initial and final states of the adiabatic freezing pro-
cess. A thermodynamic standard of temperatures, down to very low temperatures, has been
obtained thereby. This should open up a new field of experimental investigations where, here-
tofore, in the absence of its direct and accurate accessibility, the concept of temperature
seemed to lose some of its significance. The thermodynamic He melting-pressure thermom-
etry, at the very low temperatures, may reasonably be expected to initiate and guide the
charting of the submillidegree range, which at the present time and on the basis of the results
obtained in the present work becomes accessible only by magnetic cooling.

I. INTRODUCTION

Our recent work' on solid He' was restricted to
that temperature range where this solid exhibits
nuclear paramagnetism. This limitation could be
justified on the following grounds. %ith the
possible exception of a small temperature interval
of a few hundredths of a millidegree absolute
above the spin-ordering temperature of the solid,
its thermal properties could be calculated exactly
in terms of an assumed interatomic coupling
model. The mutual potential energy of atomic
pairs was taken to be proportional to the scalar
product of the nuclear-spin vectors on nearest
neighbors. The technical difficulties arising
from accurate measurements of very low temper-
atures also tended to restrict the useful tempera-
ture range where thermal-property data of accept-
able accuracy and precision could be produced.
Furthermore, no exact theoretical models are,

at the present time, available for the treatment
of solid He' below its expected spin-ordering
temperature at and below melting volumes or at
and above melting pressures. More recently, it
appeared to be of interest to follow solid He' from
its empirically estimated transition temperature,
at melting, down toward the absolute zero,
through the approximate treatments provided by
simple asymptotic spin-ordering models. This
is one of the main topics of the present paper.
Namely, the various very low-temperature ther-
mal properties of solid He', the melting pressure
included, will be evaluated here within the limita-
tions of the molecular-field-theory formalism
involving only the empirically determined equilib-
rium-exchange-energy coupling parameter of
the solid at melting. This was determined experi-
mentally by Adams and his collaborators. ' The
approximate transition or spin-ordering temper-
ature at melting results from an empirical rule
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which has only numerical justification. This rule
appears to represent, to some degree of numeri-
cal approximation, the very much higher transi-
tion temperatures of ferromagnetic and antiferro-
magnetic ionic or electronic systems. '

In our approach, the exact if incomplete theo-
retical description of the paramagnetic solid,
with the assumed exchange-coupling scheme, has
to be joined at the spin-ordering or transition
temperatures to the approximate molecular-field-
theory formalism restricted to the spin-ordering
range of the thermodynamic variables of state.
At melting, continuity of the melting pressure
and its temperature derivative is achieved through
requiring continuity of the entropy and volume of
the solid at the transition point. Above melting
in the compressed solid, the study of which is
reserved for later work, the continuity of the
entropy at the transition line would insure that
of the pressure along the isochores of the solid.
The derivative thermal properties are, however,
discontinuous both at melting and above it along
the transition line. This state of affairs may well
be compatible with the approximate theoretical
derivative thermal properties somewhat below
and with their exact representation somewhat
above the transition temperature at melting or
above the transition line. Over a temperature
range of a few hundredths of a millidegree absolute
below and above the transition temperature, the
present approach may break down, as far as the
derivative thermal properties are concerned.
Critical behavior, if present, would be expected
to become acute only over the indicated small
temp rature range. Its consideration and dis-
cussion is omitted in this paper.

At melting, the situation referring to He' is a
particular case of the following problem. Given
a first-order phase-transformation process
wherein one of the two phases undergoes a higher-
order phase change from a disordered into an
ordered state, the phase-boundary line is modi-
fied by the intraphase higher-order transforma-
tion, the details of which may, in general, be
ascertained through the analysis of the phase-
boundary line. We will digress briefly in con-
nection with this problem to discuss the saturation
vapor-pressure and the melting-pressure lines
of He4 around their respective & points. The
location of the spin-ordering temperature (as in
He'), or of the higher-order transition points,
(as in He'), can in principle be determined
through direct measurements of the temperature
derivatives of the phase-boundary line. In the
He4 case though, this approach appears to be
successful only at melting and not at the vapor-
liquid phase-boundary line as a consequence of
the anomalous behavior of the vapor along this line.

Pursuant to recent work at not-too-low temper-
atures, ' we investigate in detail the full tempera-

ture range available through the cooling process
which accompanies the adiabatic freezing of He'.
The approximate molecular- field- theory model
of the assumed antiferromagnetic solid in the
spin-ordering range leads to the location of the
lowest temperature attainable through adiabatic
solidification of He'. It may be presumed that
models other than the one used here for the spin-
ordering solid should lead to some similar lower
limit of the coldest temperature accessible through
the above process. However, the practical lower
limits are expected to be at considerably higher
temperatures than the absolute theoretical lower
limit.

The adiabatic freezing and cooling of He' will
then be exploited along the following lines. On the
one hand, these adiabatic processes should enable
one to verify experimentally with accuracy the
here-derived melting-pressure line, down to
the lowest temperatures available practically
through adiabatic freezing. On the other hand, the
detailed analysis of the melting pressure of He'
down to very low temperatures will be shown to
open the possibility of He' melting-pressure ther-
mometry. This in turn should lead to the estab-
lishment of thermodynamic temperature standards
at very low temperatures, between about 10-15
and 1.0-1.5 m'K. The existence of such a
thermodynamic standard at such low tempera-
tures is of interest for accurate experimental
investigations at these very low temperatures.
In addition, it may become of significance in the
charting of the submillidegree temperature inter-
val, still considerably beyond the working temper-
ature range close at hand at the present time.

II. MELTING He3 ABOVE THE SPIN-ORDERING
TEMPERATURE OF THE SOLID

In the limit of low-enough temperatures, the
entropy expression of the liquid at melting, '
Sl, M(T), reduces to its asymptotic form linear
in T. This entropy may be combined with the
spin and phonon entropy of the solid at melting,
both describable analytically within the limits of
validity of the underlying models of these thermal
excitations. This then yields an analytic expres-
sion for the temperature derivative of the melting
pressure, dPM(T)/dT, and for the melting-
pressure changes PM(T, ) —PM(T, ), as well as for
the melting pressure itself, Pilaf(T). At increasing
temperatures, only the entropy of the solid is
available in analytical form. ' This was repre-
sented' by

Ss M(T)=SM ~(T)+~M, tn(T)

on the reasonable assumption of the essential in-
dependence of the phonon entropy S~ and the
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magnetic entropy SM ~arising from the assumed
interatomic spin-dependent exchange-coupling
scheme. The small phonon entropy when taken
into account in earlier work was approximated by
that of the asymptotic ideal phonon system. The
magnetic entropy is associated with the inter-
action energy,

L, M L, M, o L, M, ng (4)

with the component spin o and nonspin no entropies,
In the limit of very low temperatures, it becomes
justified to write'

V =-2Js s
U

S ~ ) & (F)(
M, m

—3 Z (+) (c /n+2)x, x= IJI/kT
n=O

(3)

where the (-) factors refer to antiferromagnetic
n

ordering. Tables of the coefficients en are avail-
able~ up to n =5 for the bcc solid under considera-
tion. Additional coefficients up to n = 8 are found
in more recent work. 4

The entropy of the liquid at melting was shown'
to be described with fair accuracy by

of pairs of nearest-neighbor atoms i and j propor-
tional to the scalar product of their spin vectors
s, J being the empirical exchange energy param-
eter which is strongly volume- or pressure-depen-
dent. The residual temperature dependence of this
parameter is expected to be small and will be omit-
ted here. Beside the strictly magnetic approach,
we have indicated earlier' several magneto-thermo-
dynamic effects useful for the experimental veri-
fications of the interspin couplings as well as the
deduction of the sign of the parameter J. In Eq.
(2), a positive J imposes ferromagnetic spin
ordering, a negative J imposes antiferromagnetic
spin ordering, in solid Hes. At the present time,
we are unaware of any determinations of the sign
of J, so that neither type of magnetic ordering can
be ruled out. In the paramagnetic temperature
range of the solid, the formalism can describe
simultaneously either type of spin ordering. Ac-
cordingly, we will carry the notations of both types
of spin ordering, although the numerical evalua-
tions of the thermal properties of interest here
will be limited to the antiferromagnetic solid. The
similarity in the formalisms of the two spin-
ordering processes in their paramagnetic range is
connected with the exact, if incomplete, series
representations of the magnetic and thermal pro-
perties of the exchange-coupled systems. These
series proceed in ascending powers of the unique
natural parameter available in the statistical ther-
modynamics of these systems, namely, I JI/kT
and (-) I J I kT in the ferromagnetic and anti-
ferromagnetic configurations, respectively. As
obtained earlier, ' one has, using the superscripts
(A), (F) for the two spin-ordering processes,

lim S (T)/R =y T, y =-4. 58/('K) . (5)
T small

Both entropy components of (4) have been dis-
cussed in detail. '&' The coefficient y takes into
account approximately the anomalous increase in
the entropy arising from the volume decrease of
the liquid as a consequence of the melting-pres-
sure increase, down to 5 m'K. Below this tem-
perature the expected variations of the density or
volume are likely to be small, and of negligible
effect on the characteristic temperature To of
the spin system of the liquid at melting. T6e
treatment of the entropy Sf, ~(T) is far from
exhaustive. The approximation used for the non-
spin component SL, ~ nz(T) will improve as more
extensive and accurate data become available on
the thermal properties of the compressed liquid.

We have already considered' the limitations aris-
ing from the entropy [Eq. (3))of the solid at melt-
ing, wherein an averaged I Jl value is assigned to
the solid along the melting line, in spite of small
variations of its volume and the ensuing changes
in the ) J) values. As noted earlier, ' improved
theoretical values of the entropy of the assumed
solid model should become available with exten-
sive data on solid melting volumes in the relevant
temperature range, T & T~, T& being the tem-
perature of the minimum of the He' meltirg pres-
sure. From thermodynamics, the temperature
derivative of the melting pressure P~(T) is

dP T S T —S T
L, M s, M

dT V (T) —V (T)L, M S, M

(8)

In our previous work, 'at T&T&, we also as-
sumed, in absence of pertinent data, that the vol-
ume change at melting, 4VM,was constant in a
starting approximation. It was pointed out by
Adams and his collaborators' that in spite of
using an averaged I JMI value and a temperature-
independent, and hence approximate, 4 VM value,
in contrast with the observed moderate variations
of 4VM below T&, the measured melting-pressure
changes were in agreement with those calculated
by us. ' The experimentally explored temperature
range' extended between 17 and 318 m'K. The ob-
servation' of the increase of 4VM by about 5/0 of
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&&S (T)=nS &'&(T)[1+6(~S &o&)/n, s &'&] (fa)

and r&V (T) = nV ' &[1+6(nV &o&)/&V &o&], (Ib)

wherein 6(&VM&o&) is temperature-dependent, we
have

dP & '(T) 1+6(nS &o&)/AS

M dT 1 + 6Q, V &o&)/n, V &o&

M M

for the exact melting-pressure derivative. The
calculated melting- pressure changes resulting
from dPM&'&/dT may agree with the measured
ones if

6(aSM„)I/~M, 6(~VM )I/~VM (9)

its value at T& down to 60 m'K, approximately,
and its subsequent slow decrease remain to be ex-
plained. The calculated melting pressures or,
more exactly, the melting-pressure changes re-
sult from a straightforward integration of the de-
rivative (6), defined, among others, by the theo-
retical entropy of the liquid at melting with the
phenomenological constants entering into the com-
ponent entropies Sg M ~ and SI. M «. Over the
experimentally explored temperature range, the
entropy of the solid at melting is found to be given,
according to (3), by its asymptotic high-tempera-
ture limit of (Rln2) to within less than 2/o. It re-
mains there unaffected, essentially, by the value
of the exchange energy parameter l Jl . Assuming
that the measured melting-pressure variations are
correct, within their experimental errors, the
close agreement between the measurements and
calculations over a relatively wide range of tem-
peratures could come about as follows: In Eq. (6),
the relative correction in EVM&o', the v»ue used
by us, is 6(&VM' ')/&VM&". This must cancel the
relative corrections of ASM"', the theoretical en-
tropy change at melting, or with

Over the explored temperature range, the solid
entropy is almost constant at R ln2, and Eq. (9)
is equivalent to

The entropy of the liquid given by Eq. (4) is thus
slightly underestimated. It should be stressed
again that values of Si, M(T) used in the calcula-
tions are approximate. Over a range of tempera-
tures considered here, the liquid entropy becomes
very small compared with the rapidly falling en-
tropy of the solid, but in the limit of our lowest
temperatures the two entropies again become
comparable.

A detailed comparison of the calculated pres-
sure changes, melting pressures, and derivatives
dPM&o&/dT with those deduced by the experimental
workers' will be taken up later.

In recent work' we gave the equation of the melt-
ing-pressure line of He' from T& down to 5 m'K.
The entropy contribution of the liquid had to be cal-
culated because a valid analytical expression over
the whole range of temperatures did not exist.
With 4VM'0) independent of the temperature, we
rewrite the melting-pressure derivative as

/dT =(I/n, V )[S (T)M M I, M

S ~) (P)( )]M, m

V»ues of S~ M"&(T) were given in graphicai form
down to 5 m K; the entropies SM ~t/l)~ (P)(T) are
given by Eq. (3). It should be not&. d that we will
neglect the very small phonon entropy of the solid
in comparison with the entropy of its spin system
throughout the temperature range considered.
Then the melting-pressure changes resulting from
Eq. (11), with (3), are

4), ( )(„„)P 4), ( )(„) P 4), ( )( )

= (R/r& V ) J [S (T)/R]dT+ (T —T) ln2 —
[&&&

' (x) —Q
' (x )], (12)

where (~)=3(~& I/~) ~ (+)"[c /(&&+I)(»+2)]~"". (i3)

With PM(T&) taken to be' 28. 92 atm, we gave' a graph of PM(T), using 1.25 m'K for ) JM)/k, between
400 and 5 m'K. The melting line was then recalculated from an averaged value of t JM ( k = 0. 7 m'K,
obtained from measurements made on the low-pressure solid by the Panczyk ef al. ' Some of our recalcu-
lated melting pressures were given by Adams and his coworkers' in a graph where the measured pres-
sures were compared with the calculated ones below 80 m'K. The melting pressures were affected very
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little over the experimentally explored temperature range by replacing the larger I JM ] value with the
smaller one. This is as expected, since, according to the melting-pressure expression (12), the contri-
bution arising from the decrease of Ss M(T)below its asymptotic limit is negligible. However, the tem-
perature of the inflection point of the melting line is lowered from about 10.5 to about 7 m K reducing the
value of I J'Ml/k.

At temperatures below 5 m'K, one can use the asymptotic form of the liquid entropy [Eq. (5)] linear in
T. The melting-pressure derivative becomes

dP ' /dT = (R/DV )[yT S -' ( )/R]M M s, M (14)

where To~ T~5 m'K and Ss M (&) are given by Eq. (3). Hence, over the same temperature range, the
melting-pressure changes become

~P &), ( )( „) P 4), ( )( ) P 4), ( )( )M r

where x =
~

J
~

/kT, T ~ 5 m'K, and the Q function is defined through (13).M r'
The transition temperatures of the solid at melt-

ing, TO M(&) and To QF), are the end points on
the melting-line of the loci T,(&)(V) and T,(F)(V) of the
spin-ordering temperatures of the low-pressure
solid He~. As noted in the Introduction, these loci
are defined at the present time through strictly
heuristic relations, such as'

T ' (V)= ' iJ(V)i/k

T =2. 92, T =2. 64.) F)
(16)

At the larger solid volumes, the results2 on J(V)/k
could be represented by the strictly empirical re-
lation

Z(V}V ~ =const, I', = —16.4 .
2

According to recent work by Adams and Panczyk, '
this relation overestimates the numerical value of
J'(V)/k at the smaller volume of 21. 5 cm'/mole of
the solid. These measurements extended the earlier
ones2 down to 13 m'K.

It may be appropriate at this point to compare the
calculated melting pressures or pressure changes
and pressure derivatives with the corresponding
data of Adams and his collaborators. ' These
workers gave only a brief comparison of the melt-
ing data in their communication. ' A more detailed
comparison of the theoretical melting properties
with their measured and deduced values is of in-
terest, because the melting phenomenon of Hes
might possibly be used as a thermometric process
resulting in a thermodynamic temperature scale
at low temperatures. This pragmatic aspect of

melting He' obviously requires a satisfactory theo-
retical representation of the melting pressure

Listed in Table I are calculated values of the
melting pressure PM(T) ~a); measured values
PM(T) ( ) resulting from smoothed data of Scribner
et al.'; and calculated melting-pressure changes
[Plif(T) —PM(Tp)](a) atT& T~, down to 5 m'K.
These are the basic numerical results of the theory
over the indicated temperature range. Indeed, the
theoretical melting pressures themselves are ob-
tained by accepting the empirical-state coordinates

T& —- 326 m'K, PM(T&) = 28. 92 atm,

and combining these reference data with the exactly
calculated differences [P~(T) —P~(Tij)] (a). The
differences [P (T) —Ply(T&)] (d) result from the
smoothed PM T b data and the reference coordi-
nates'

T =318+5 m'K, P ET )=28.94+0. 03 atm.M

The direct comparison of the melting pressures
themselves is somewhat misleading, since the
basic theoretical values refer to melting-pressure
changes. Also, the experimental melting pres-
sures result from a combination of quite accurate
melting-pressure changes with less accurate ref-
erence coordinates. Since the pressure changes
were not published as such, the [P~(T)
—Pfif(T&))(") values of Table I are subject to
large pressure uncertainties, +0.03 atm. It is to
be hoped that in the future, pressure changes will
be given as the basic experimental data.

Within the accuracy of the reference pressure
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TABLE I. He melting pressures, melting pressure changes, and temperature derivatives at medium and low

temperatures.

m'K
300
270
250
230
210
200
180
160
150
140
130
120
110
100

90
80
70
60
50
45
40
35
30
25

24
23

22

21
20
19
18
17
16
15
14
13
12
11
10
9
8

7
6
5

28.933
28.996
29.069
29.170
29.303
29.382
29.567
29.795
29,925
30.068
30.225
30.397
30.585
30.789
31.012
31.255
31.519
31.807
32.120
32.287
3 2.459
32.640
32.827
33.022
33.062
33.102
33.142
33.183
33.224
33.265

33.306
33.348
33.391
33.433
33.475
33.518
33.562
33.605
33.649
33.692
33.736
33.781
33.825
33.868

P (g

atm

29.07

29.36

29,92

30.80

31.26

31.80
32.11

32.45

32.84

33.25

33.38

p (T) =s (r )]'
M M p,

0.01310
0.7561
0.1490

0.2503
0.3832
0.4619
0.6474
0.8746
1.0052
1.1482
1.3056
1.4773
1.6647
1.8692
2.0922
2.3349
2.5996
2.8874
3.2005
3.3670
3.5395
3.7203
3.9071
4.1020
4.1418
4.1816
4.2221
4.2632
4.3036
4.3454
4.3865
4.4283
4.4707
4.5131
4.5554
4.5984
4.6421
4.6850
4.7292
4.7726
4.8165
4.8609
4.9049
4.9484

V' (n -& (& )]
M M p,

0.13

0.98

1.86

2.32

2.86
3.17

3.53

3.92

4,33

4.44

1.192
2.382
4.324
5.814
7.469
8.317

10.286
12.473
13.649
14.982
16.425
17.908
19.589
21.339
23.239
25.357
27.590
29.994
32.572
33.946
35.309
36.747
38.204
39.642
39.940
40.234
40.528
40.821
41.091
41.383
41.672
41.960
42.243
42.578
42.776
43.046
43.301
43.540
43.756
43.939
44.069
44.114
44.008
43.610

atm/ K

4.1

8.2

14.2

21.2

24.6

29.6
32.8

36.3

39.8

42.8

aCalculated.
Measured; smoothed data of Ref. 6.

c
Deduced from data.

Derived from the melting pressure data by the
experimental workers of Ref. 6.

(+0.03 atm}, it is seen that the calculated melt-
ing pressures and pressure changes are in agree-
ment with the experimental values, as pointed

out by Scribner et al. ' It should, however, be
stressed that this agreement between the theore-
tical and experimental melting-pressure lines of
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He is semiquantitative. A more critical com-
parison of the highly accurate melting-pressure
changes with those derived from Eq. (15) is not
possible at present.

The last two columns of Table I refer to the
melting- pressure derivatives. The calculated
ones, (dPM/dT)(a}, result from Eq. (11) while
the (dPM/dT} (d} values have been deduced from
experiment. ' It is not clear at the present time
if these deduced derivatives resulted from the
accurately measured melting-pressure changes
or the less direct melting pressures. As far as
the theory is concerned, the melting-pressure
derivative is a basic theoretical quantity while
experimental derivatives appear to be indirect,
and necessarily less accurate than the pressure
changes that were actually measured. With this
point clearly in mind, there is acceptable agree-
ment between the theoretical and empirical melt-

ing pressure derivatives according to Table I.
We give in Table II the theoretical melting-

pressure derivatives dP~/dT and melting-
pressure changes PM(T) —PM(Ty} for a, reference
temperature T~ of 5 m'K, where P~(Tr) is
33.868 atm by Table I. The temperature range of
Table II extends down to our estimated transi-
tion temperature of the solid, T, = 2.04 m'K.
Over this range and as shown in Sec. III, below
+p analytical expressions are available. At Tp
~ T~ 5 m'K, these approximations, Eqs. (14)
and (15), give dPM/dT and Pfif(T) —PM(T~).
Table II indicates that the variations of these
quantities become smaller and smaller and that
the temperature resolution of a He' melting-
pressure thermometer would decrease at very
low temperatures approaching T,. On the as-
sumption that a pressure resolution of —3~10 '
atm, which was achieved by Scribner et al. ' in

TABLE II. Calculated melting properties of He at the approaches of the spinordering temperature 20 of the solid.

mK

4.80
4.60
4.40
4.20

4.00
3.80
3.60
3.40
3,20

3.00
2.90
2.80
2.70
2.60
2.50
2.45
2.40
2.35
2.30
2.25

2.20
2.18
2.16
2.14
2.12
2.10
2.09
2.08
2.07
2.06
2.05
2.04

[P~(T) —PM (T~) ]
atm

0.00871
0.01738
0.02602
0.03462
0.04316
0.05164
0.06004
0.06834
0.07653
0.08456
0.08851
0.09241
0.09625
0.1000
0.1037
0.1055
0.1073
0.1091
0.1108
0.1125
0.1142
0.1148
0.1155
0.1161
0.1168
0.1174
0.1177
0.1180
0.1183
0.1186
0.1189
0.11926

(-) (dPM/dr)
atm/'K

43.464
43.297
43.096
42.854
42.561
42.206
41.773
41.241
40.582
39.755
39.261
38.702
38.066
37.337
36.497
36.028
35.522
34.973
34.378
33.731
33.023
32.722
32.409
32.084
31.746
31.395
31.214
31.030
30.841
30.649
30.453
30.252

a
Reference temperature T~ is 5.0 m'K.
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pressure- change measurements can still be
maintained at the very low temperatures, the
corresponding temperature resolution may reach

(by Table II) about 10 ' m'K near the spin-order-
ing temperature. The loss of resolution will be-
come pronounced below the spin-ordering tempera-
ture, as shown in Sec. III.

These relations state that the melting pressure and
its temperature derivative are continuous at the
transition temperature Tp. This is equivalent to
stating that the spin-ordering transformation in
the solid at melting is a higher-order phase change.
Equation (11) combined with (20) requires the con-
tinuity of entropy and volume of the solid at T, or

III. MELTING OF SOLID He3

HELOT ITS SPIN-ORDERING TEMPERATURE

' ~ "o'=' M "o'sM- 0 sM+ 0
(2i)

The infinite series in Eq. (3), which gives an
exact representation of the solid-model entropy
in ascending powers of i J~l /kT, is a high-
temperature expression. The calculated en-
tropies become less accurate the closer T gets to
T„ the here-assumed antiferromagnetic spin-
ordering temperature at melting. Since the latter
is estimated to be somewhat less than 3i JMl/k by
(16), the entropy-series expansion parameter is
about —„so that the truncated series (3) may still
approximate the entropy S+(Tp) on the paramag-
netic side of the transition temperature. However,
using the entropy (3) is equivalent to omitting all
critical aspects of the transformation which, if
present, will give rise to an entropy S+(TO)cr
that is somewhat different from the one resulting
from (3). The critical behavior is reasonably ex-
pected to be restricted to a rather small tempera-
ture interval l T —Tpl around T„such as

~

T T,
~

(T,/1-00)-0. 02 m'K . (is)

To obtain the melting properties at T( T„ the
thermal behavior of the liquid and the solid must
be known below the assumed antiferromagnetic
spin-ordering temperature of the solid. In con-
trast with the paramagnetic range, the theoretical
representation of the spin system of the solid be-
low T, is not as satisfactory. There is presently
no proof that the exact high-temperature formalism,
T & T„resulting from the exchange-coupling
scheme, is indeed valid in paramagnetic solid He'.
The temperature range explored by Panczyk et al. '
cannot be used to verify the theoretical model
even to within the first term beyond the asymptotic
term, in the truncated series representation of
the isochores of the paramagnetic solid.

The theoretical model to be used here for the
spin system of melting solid He' below its transi-
tion temperature must be modified so its thermal
properties conform to those imposed by the exact
theoretical model of the paramagnetic solid.
These requirements are contained in the following
relations:

"~ "o'= M."o'

v (T )=v (To), (22)

ti (7)/R=--,'To[o(r)/&x ]', (23)

where o(T)/o, = tanhf [o(&)/o, ) (I/r)],

r=T/T, .

(24)

The limiting values of the relative magnetization
are

o(~)/o, =o, r= 1;
o(~)/o, = I, r = 0 .

(26)

According to (24), the latter limit is being ap-
proached as

lim o(r)/o, = 1 —2e
—2/r

7 0
(26)

which will be used later. The heat capacity is
given as

C (r)/A =y [(coshy)'- (1/r)]

y = [o(v)/o, ] (1/7) (27)

= arctanh[o(r)/o, ]

since the liquid at melting exhibits no phase trans-
formation in the present theory.

Vfe have chosen to use the asymptotic molecular-
field-theory model to describe the antiferromag-
netic solid. If the solid at melting turned out to
be ferromagnetic, the same model would apply
with similar limitations below its ferromagnetic
Curie point, which, by (16) is estimated to be at
1.85 m'K. We will indicate only the relevant
thermal properties of the model. ' The energy can
be expressed in terms of the relative sublattice
magnetization o(T)/o„o(T) and o, being the mag-
netic moment per sublattice at temperature T and
the absolute zero, respectively. The quantity op
is thus the saturation moment on one of the two
sublattices or

dP
lim

T Tp

lim
T Tp+

dP

dT
and the entropy as
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S (r)/R =ln(2 coshy)-y tanhy (28)

Since this asymptotic model acquires the full en-
tropy of Rln2 at To, the continuity condition (21)
requires the entropy of the solid below T, to be

0—

ds dS
4

0+

(s4)

S (r) =[S (T )/Rln2]S (v') (29)

C

with S (Tp)/R=ln2 —3 Z {-}
2

(x ),(30)+ 0 =0 n+2 0

x, = iZJaT, .

To the approximation of the presently known coef-
ficients c„as well as the empirically estimated
value of To [by (16)], one obtains

S (Tp)/R = 0.4518 (sl)

As noted above, we disregard any critical behavior
that might be present. Hence, even if the models
in both the paramagnetic and spin-ordering tem-
perature ranges were justified, the present treat-
ment would break down within 0. 02 m'K of T„as
estimated in Eq. (18).

The entropy (29) yields the corresponding heat
capacity

d P
dT' T&V I. M s M'

and with (34)
d'P

llm dT2
T T

0

lim
T-T

0+

d P
dT

(s6)

Under poor temperature resolution, the melting-
pressure derivative has an angular point at TQ,
and its temperature slope exhibits a A. -type jump,

where both branches of the entropy S and S would
join with positive infinite temperature derivatives
or the heat-capacity branches mould tend to infinity
at T,. Correspondingly, the two branches of the
melting-pressure derivative dP if/dT would join
with negative infinite temperature slopes. Indeed,
by Eq. (6), and assuming a temperature-indepen-
dent volume change at melting ~VM, one has

C (r) = [S (Tp)/R ln2]C (r), (32)

with Co(v) given by (27). Finally the energy Uo(&)
[Eq. (23)] is to be modified according to

'PM
(

~~.
)

('~M)-
0 0

U (&) = [S (T )/Rln2] LT (r) (33) =(-)(1,'T &V )[C (T ) C (T )]

The present treatment of solid He3 in its spin-
ordering range requires two parameters TQ and
S {Tp). In the paramagnetic range, there are
also two empirical parameters in the formalism,
the average I JMI value and the empirical factor
&( ), which give To as a function of IS~I [Eq.
(16)]. As emphasized already, the parameter
r(A) has no theoretical significance at the present
time. At high temperature, the infinite series
representation of the thermal properties of the
paramagnetic exchange-coupled system does not
connect the spin-ordering temperature T, with
the exchange energy parameter I JI .

The omission of the possible critical behavior
of the solid around T, is equivalent to observing
the thermal properties of the solid or the melting
process with poor temperature resolution. If the
resolution is some low multiple of 0.01 m'K, the
critical behavior reduces to a X-type transition
where the heat capacity exhibits a finite discon-
tinuity across T,. One aspect of the critical be-
havior is expressed by the condition

=-(/ ) [ ( )] (s7)

To the approximation of the present treatment,

lim C /R=(S (T )/Rln2)[C (T )/R)s, M— + 0 0 0

=-.'(S (T )/Rln2)
+ 0

= 0.9777

according to the limit —,
' of Co(T0)/R and the numer-

ical balue of S+(Tp)/R given by (31). Withthe en-
tropy given by Eq. (3}, one obtains, reverting to
the heat-capacity series from Eq. (3) and using
(16):

lim C (T )/R= 0.6138
s, M+ 0

0

(39)

which corresponds to a heat-capacity jump across
TQy
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&C (T ) = —0.36398
s, M 0 (40)

Vfith poor temperature resolution, an actual mea-
surement of this jump should yield a value in sat-
isfactory agreement with (40), within the limits of
the models used here.

The formalism of the model given above enables
one to obtain the melting-pressure equation of
He at T & T,. The limitations of the model should
always be kept in mind.

Instead of going directly to an analysis of the
melting process of Hes at very low temperatures,
it is useful to digress and consider a problem
which is analogous to the Hes problem at hand.

Given a first-order phase transformation where-
in one of the two phases in equilibrium along the
phase-boundary line undergoes a second- or
higher-order phase change, is it possible to
locate —at least in a semiquantitative way —the
transformation temperature of this higher- order
phase change through experimental investigations
of the pressure-boundary line'? Clearly, this prob-
lem relates to the location of the spin-ordering
temperature through measurements of the melting
properties of He', assuming, of course, that
very low temperatures can be reached.

The entropy and volume of the phase undergoing
the higher-order transformation remain continuous
at this transition temperature. Consequently,
the boundary line of the first-order phase change
will be modified only in the second temperature
derivative. Rewriting (6) in the somewhat more
general form,

—=(s -s )/v -v ),dP
dT I D I II

(41)

where all quantities refer to the phase-boundary
line, we see that the effect of the higher-order
phase change is to modify the shape of the tempera-
ture derivative of dP/dT through

temperature side. The jump &(dmPM/dT') zs thus
positive by (37) and (40), in the above treatment
The & discontinuity in the solid heat capacity has
its sign inverted in the jump of the second tempera-
ture derivative of the melting pressure across T,.
It is realized that measurements of melting-
pressure derivatives at such very low tempera-
tures may be quite laborious. Still, these appear
to be less laborious than heat-capacity measure-
ments. It should be noted that derivative mea-
surements of low precision may not be very effec-
tive in locating the angular point of dPfif/dT.

It seems interesting to review briefly these
derivatives in the vapor-liquid and liquid-solid
equilibrium of He~ near their X points.

In the vapor-liquid transformation near T&
at saturation, (z) and (zz) in Eq. (41) refer to the
vapor and liquid phases. Here, V, » V„and
Vz '(dVz/dT), the expansioncoefficient of the vapor
along the saturation line Peat (T), is negative and
very large. The positive contribution of the vapor
phase to the product inside the brackets on the
right-hand side of (42) completely swamps the in-
creasingly large heat capacity CII of the liquid at
the approaches of T1, this heat capacity being af-
fected by a negative sign there. It is only at tem-
peratures extremely close to the X point that C»
could cause the second temperature derivative of
the vapor pressure Peat(T) io become negative
over an extremely small temperature range on both
sides of Ty. Actually this interval, I Ty —T I, may
fall within the range of temperature fluctuations for
any reasonable sample volume of He4 which would
exclude the actual observation of an anomalously
large temperature slope of the vapor-pressure
derivative arising from the heat-capacity anomaly
of the liquid phase at its X point. An elementary
calculation yields explicitly with (42)

d2P -C —Csat R vap L
T(v - v )

vap L
d2P 1
dT T(V —V ) iI II L L

RT AT AV
vap

(43)

(42)

In the case of He3, if melting-pressure derivatives
could be measured around To, the low-temperature
resolution measurements should yield these deriva-
tives with an angular point at T„enabling one in
principle to locate T,. The jump at T, in the sec-
ond temperature derivative of the melting pressure
of He' is given by (37) through (40), on the assump-
tion of a temperature-independent 4V~. The neg-
ative melting-pressure derivative of He' is steeper
on the low-temperature side of T, than on its high-

where L stands for the latent heat of vaporization,
with the subscript L referring to the liquid phase.
Around T& sat, (I/RT)»1, so that the second
term inside the braces completely dominates the
first and last terms, with the exception of an ex-
tremely small temperature interval around T~ sat.
The large negative terms on the right-hand side
of (43) arising from the X transformation of the
liquid near Ty, sat are

L V dT
vap
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Here, the very large vapor volume V around

T& renders insignificant the large vaCe of
~
dVL/

dT~ near Ty, sat) leaving only CL to effect a
change in the temperature slope of dP t/dT
around Ty sat. This it cannot do because of
the negative and very large expansion coefficient
T '[1 —(L/RT)] of the vapor along the saturation
line at these temperatures. Hence, the vapor-
pressure curve of He4 remains concave upward,
toward increasing pressures, in spite of the mod-

ifying influence of the liquid around its higher-
order transformation point Ty sat.

The situation is entirely different along the
melting-pressure line of He around the X point

Ty M. Here, one has

&V ; C »C

S»S; ~dV /dT~ »dV /dT
L, M s, M' L, M s, M

Hence, around T~ M Eq. (42) yields

d P
dT2 T(V —V )L, M sM

L, M

j I., M L()'g M- )' I) gz ) j
where

line, as long as the phase that is free of the
higher-order transformation remains normal with
respect to its thermal properties, the pressure-
boundary line will be perturbed by the higher-
order transformation of the other phase. This is
the case with the melting processes of He' and He4,
where this perturbation might be used to locate
the temperature of the higher-order phase change.
If, however, the phase that is free of the higher-
order transformation is thermally anomalous along
the pressure-boundary line, its behavior may
mask any modification of the boundary line due to
the higher-order transformation of the other phase.
This is the situation along the vapor-pressure
line of He around T& sat.

The hcp-bcc transformation of He' was studied
by us recently' in the paramagnetic ranges of the
two structures and represents a situation where
the pressure phase-boundary line separates two
phases which are intrinsically anomalous, both of
which undergo spin- ordering transformations at
different temperatures.

We return now to melting He3. As noted in con-
nection with (16) and (17), the locus of spin-
ordering temperatures of the bcc solid He', T,(P)
ends on the melting line at Tp(PM). A discussion
of this locus will be the subject of later work.

We consider now the analytical representation of
the melting pressure of He at T& T,. Within the
limitations of the approach developed above, one
obtains

&0 (46)

Both terms on the right-hand side are negative
since the liquid has a large negative isobaric ex-
pansion coefficient near Ty M, and the derivative
(dPM/dT) is positive around T& M. The quantity
XT M ls the isothermal compresslblllty coefflclent
of 4e liquid at melting. Since the volume change
at melting, &VM or VL M- V~ M, is positive
around Ty M, both terms inside the curly brackets
on the right-hand side of (44) are positive. With
the rapid increase of these terms at the approaches
of T& M, the second temperature derivative of the
melting pressure increases rapidly, causing the
melting-pressure derivative dPM/dT to develop
anomalously large temperature slopes as T~ M
is being approached either from below or from
above. We see then the feasibility of locating
the transition temperature T~ M through direct
measurements of the melting-pressure deriva-
tives, but not of the melting pressures alone.

Thus, given the phase-boundary line of a first-
order phase transition wherein one of the two
phases at equilibrium undergoes a higher-order
transformation at a point on the phase-boundary

S (T)/R = in(2/[1 —(o/o )2]~~2) (z/o )2(1/z) (47)

One then obtains, with (46),

M "P'- M
"'=

=(R/AV )(—,'y(T ' —T') —[S (T )/Rln2]

&& JT [S (T)/R)dT)I. (48)

The term Io(Tp, T) containing the integral inside
the curly brackets is, with (29),

I (T, T)=(l/R)([T S (T ) —TS (T)]

assuming 4VM to be independent of the tempera-
ture and So to be given by (28). It is useful to re-
write the latter, with (24), as
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-[U (T )-U (T)]J,

where, by (33),

U (T ) —U (T}=', [T -S (T )/1n2][o(T)/o ]', (50)

is the magnetic energy difference between the
states of temperature T, and T, according to
(23)-(25). Using the entropy (47), the very low-
temperature melting-pressure equation is obtained
as

P (T) —P (T )=(RT0/&V )([S (T )/Rln2]

xe(o/o ) +(1 —v')in2+ —,'7
0

x in[1 —(o/oo)~] J ——', yTO(1 —r2) ) . (51)

This shows that the melting pressure continues to
increase over the spin-ordering temperature range
of the solid. However, this increase is not mono-
tonic since the derivative dPM /dT [Eq. (46)] has
a zero somewhat above 0.52 m'K, below which the
entropy at melting of the solid is less than that of
the liquid. Below this zero of dPM /dT, the
melting process becomes normal, and the melting
pressure approaches from above its limiting val-
ue at absolute zero by decreasing very slowly from
its extremely flat maximum at the indicated zero
of the melting-pressure derivative. Using (26),
one finds the exact limiting melting-pressure
change at T & T„

d'P C
s, M

dT TbV (53)

Assuming a constant 4V~, one has

d P
dT T4V

dC
s, M g, M
T dT (54}

pressure-change measurements at very low tem-
peratures could not detect any variation of th'e
melting line, and the melting-pressure maximum
would escape detection. Assuming that melting
He' could be cooled to temperatures below 0.65-
0. 70 m'K, He' melting-pressure thermometry
would become quite insensitive in this region.

It seems pertinent here to give graphs of the
melting-pressure derivatives dPfif /dT and
dPM /d T [Eqs. (11) and (46)], and of the melting-
pressure changes PM(T) —PM(Ty}, Ty being a ref-
erence temperature [Eqs. (12) and (46)]. ln Fig.
1, the derivative curve below 10 m K is shown with
an inset referring to the range below 1 m'K. The
zero of this derivative at about 0. 52 m'K and the
extremum at about 0. 38 m'K are indicated by
arrows. The ordinate scale does not accentuate
the break point of dPM/dT at the spin-ordering
temperature estimated to be 2. 04 m'K. The
change in sign of the curvature of the derivative
function across T, is clear; dP~+/dT is con-
cave upward and dPM /dT concave downward.
This change in curvature is easily accounted for.
Near T„one has Cs pf » Cg I, and, by (35),

itm P (T) P(T )=(RT /-n, V )
T~0 In the paramagnetic range of the solid, the heat

x ([S (T )/RJ[1 —(2ln2)-&] —'yT J (52)
-5i

With the numerical values of S~(T,)/R and y, as
well as the estimated value of T„ this melting
pressure difference is -l 5t-

P (0) —P (T ) =0. 01691 atm.

The melting-pressure decrease between its maxi-
mum and its limit at the absolute zero is about
3. 10 ' atm, to the approximations of the present
numerical calculations. This change is just about
equal to the pressure resolution achieved by
Scribner et al. ' in their measurements of the
melting-pressure variations above about 20 m'K.
Let us then assume that some such similar pres-
sure resolution may be reached at the very low
temperatures. On the high-temperature side of
the melting-pressure maximum, a decrease of
about 3. 10 ' atm is achieved at about 0. 67-0. 68
m'K. Consequently, from 0. 68 m'K to absolute
zero, the most accurate current techniques of

-35-

04 08
m'K

-45

FIG. 1. Temperature derivative of the melting pres-
sure of He at very low temperatures. The inset refers3

to the lowest temperatures, with the arrows at the
temperatures of the inflection point and of the maximum
of the melting pressure.
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capacity Cs f{f+(T) is a decreasing function of T
Both terms inside the parenthesis in (54) are posi-
tive, and

~02

d PM
)0, T &TO (ss)

The melting-pressure derivative dP~/dT is thus
concave upward, that is toward increasing values
of dPf{f /dT.

In order to see the sign change in curvature be-
low T„ it is convenient to consider the region
near T,. It is useful to combine (32) with (27),
where (coshy)' in the latter is written as
I —(&/oo), according to (24), giving

E
O

bC

E

o 0{-
OJ

I

0:
IO 20 3.0

T (m'K)
4.0

K

I

P
W{ tn

3

0
50

C /R = {o/cr,)'[I —(o/o, )']/ r{~-[1 —(o/o, )']j
(s6)

FIG. 2. Melting-pressure variations of He at very
low temperatures.

lim (o/o, )'=3(1 —r)
v 1

(sv)

With o/oo very small near T, or 7 1, on-e finds
with (24), expanding its right-hand side to terms
in [o/o, )1/r]',

our exchange-coupling model.
The energy difference between melting solid and

liquid He, in the limit of absolute zero, is then
with the limit value P'if( T-0 'K) of about 34. 004
atm, and with the earlier value' of 4V~ of 1.20
cm'/mole,

This result is substituted in (56) and with the mod-
ified heat-capacity of the model [Eq. {32)]yields

[E (O)-E (O)]/R=P (0)aVQRs, M I., M

=0.497 'K (6o)

lim C /R = [S+(T,)/R ln2] —,
' (3 —2/~ ).

7 ~ 1
(s6)

'Fhe latter then gives, with (54),

d'P /dT'& 0, T& T (59)

or the derivative function becomes concave down-
ward, toward decreasing values of dPM /dT.

The minimum of dPftd /dT, that is the higher-
temperature inflection point in melting pressure
somewhat below 7 m'K, is just barely visible on
the ordinate scale of Fig. 1.

Shown in Fig. 2 are the melting-pressure changes
PM(T) —PM(T~), Tz being the reference temper-
ature of 5 m K, and 0 & T & 5 m'K. An expanded
scale also shows the differences PM (T) —PM(T, ).
From Table I, the melting pressure at 5 m'K is
33.868 atm, and the melting pressures at T & 5
m K are obtained by simple addition. The melting
pressure at T, is seen from PM(Tr = 5 m'K) and
Table II to be 33.987 atm. With the melting-pres-
sure difference P~{0)—P~(T,), Eq. (52) given
above, the limiting value of the melting pressure
at the absolute zero is just above 34 atm. Various
treatments of melting He' mill yield somemhat
different values for the limit P~(T-0 'K), but the
differences should be small, assuming that the
paramagnetic solid is described on the basis of

The following remarks concern the over-all
shape of the melting-pressure line. Disregarding
the extremely flat maximum of P~(T) near 0. 50
m'K, the calculated shape is similar to that which
would be associated with a fictitious paramagnetic
solid exhibiting no magnetic transformation, but
whose spin system would order in a continuous fash-
ion at the low temperatures. This latter behavior
was assumed in our early work" on the melting
properties of He'.

This concludes the derivation of the analytical
forms of the melting-pressure branches PM+(T),
P~ (T), assuming the liquid remains paramagnetic
and the solid is in the paramagnetic and spin-or-
dering temperature ranges. Our main task was to
describe formally the melting process within the
scope of the models as well as the fem empirical
parameters entering into the formalism. "

We should like to restate the present situation
with regard to the comparison of the theoretical
and experimental melting properties described in
Sec. II. The experimentally explored temperatures
are in a range' where the character of solid He' at
melting is asymptotic. The observed, if unexplained,
temperature variations of & V~ notwithstanding, the
above comparison establishes that the theoretical
representation of the liquid entropy at melting,
Sf, fd(T), is satisfactory. Determinations of this
entropy, above all at the relevant low temperatures,
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TABLE III. The coefficients s~ of the entropy series 0 (&~) of the paramagnetic solid and the coefficients t of the
inverted entropy series x(Tf) giving the final temperature Ty of the solid as a function of the initial temperature Tz of
the liquid in the adiabatic solidification process of He .

Sg

83

S4

S5

S6

S7

S8

S10

1.0

3
2

2.656250
2.762485

19.000391
22.979431
99.681834

t1

t2

t4

t,
t7

t8

tg

0.816497
-0.222222
—0.0869418

0.479424
—0.927876

0.442106
0.280055

—2.733392
2.300026

are not available at the present time. The full
physical significance of a critical comparison of the
calculated and measured melting properties of He'
can only be found at temperatures much lower than
those explored so far.

We now turn toward exploiting the above analysis
of Pfif(T), assuming tentatively, that later modifica-
tions will involve only moderate corrections. In
the remaining part of the present work we will in-
vestigate two practical consequences of the results
obtained above. First, we will extend our earlier
work' on the production of very low temperatures
through adiabatic freezing of He', which dealt only
with the paramagnetic solid. With the modified
molecular-field-theory model of the spin-ordering
solid, one obtains an estimate of the theoretical
lower limit of the temperatures accessible through
this method. Assuming that such cooling is prac-
ticable, it will be shown that a He' melting-pres-
sure thermometer may be used to establish a ther-
modynamic temperature scale, extending from about
1.0-1.5 m'K to above 10 m'K. The existence of
such thermodynamic temperatures could assist
later in reaching the submillidegree range for ex-
perimental investigations of high accuracy. This
lower range will now be shown to be inaccessible
through cooling by adiabatic freezing of He'.

ln2 —S (T)/R

(-) (3c /n+2) (J/kT)
n=0

and in the adiabatic process at hand,

(61)

S (T ) =S (T. ) (62)

or

ln2 —S (T )/R=o(T. ) .= Q s [x(T )]

x=Z tnT ~z2 ~=n+2 .f 7 (63)

The latter series connecting Tf and Tg can be in-
verted to yield

Since the models used to describe the thermal
properties of the solid are entirely different at
T ~ Tp and T& T„ the calculation of the cooling
process in the paramagnetic range of the solid
differs in its details from that involving the solid
in the spin-ordering range, these states being the
final states of the freezing process along adiabatic
paths. In the paramagnetic range, we have, re-
writing the entropy of the solid given by Eq. (3),

IV. PRODUCTION OF VERY LOW TEMPERATURES
ON ADIABATIC SOLIDIFICATION OF He'

Our recent work' on adiabatic freezing of He'
was limited to the higher temperatures produced
by this cooling method. Calculations of the melting
pressure extended only to temperatures T » 5 m'K,
where the solid is still paramagnetic. The complete
derivation of the melting-pressure branches, studied
in the previous sections, with the branch P (T) ob--
tained down to absolute zero, enables one to explore
the full range of temperatures Ty(Tf ) accessible
through complete adiabatic solidification of a given
sample of liquid He' at the initial melting tempera-
ture Tg and initial melting pressure Pftf(T; ).

x(T )=(J /kT )

Z t [o(T.)]
X=1

(64)

where the x(Tf ) series starts out with cr(Tf )'I' as
a consequence of the o(Tf) series starting out
with x(Tf)' in (63).

The series inversion was performed by my
colleague, Dr. Paul Stein. The inverted series
yields Tf with good accuracy. Table III gives both
the coefficients s~, 0 ~2, which result from the
coefficients c~ and the ty coefficients of the in-
verted x(Tf) series. For o(Tf) in (63) and (64),
we have used the theoretical expressions of Sl. ~
(T) on which calculations of the melting pressure
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were based.
From the entropies S L, ~(T) and Ss iii(T), one

can obtain the final temperature Tj (Ti ) indirectly
by inverse interpolation in Ss M(T). These inter-
polated Tf. values differ at most by about 0. 1 m'K
from those resulting from the x(Tf ) series (64),
this difference occurring only where Ss ~(Tf) has
a significant second temperature derivative. This
was to be expected because of the linear character
of the interpolation.

In the spin-ordering range of the solid it is still
possible to invert the series

(5t

F 4I—

05-'
0

o (T.)=ln2[1-S (T. )/S (T )] 0
50 100 l50

T, (rn K)
203 250 300

=x(T ) tanhx(T ) —lncoshx(T ),
x(T )=[o(T )/o ](1/r ); 7 =(T /T ) .

(66)
FIG. 3. The function Tf(T~) characteristic of the

cooling on adiabatic freezing of He, for Tz «300 m'K;
inset: T~ «50 m'K.

T. =—T
imp f p

(66)

This temperature is, of course, the same at which
[by Eq. (6)] the melting-pressure derivative van-
ishes, or where P~(T) has its maximum, and the
second derivative becomes negative. In the present
treatment, this is at about 0. 524 m'K, as already
noted above. The practical lower limit of adiabatic
cooling is considerably higher than Tf ~, because
the required starting temperature T~ of the liquid
is about 10 m'K to produce Tf values below 1.0
m'K. If one rules out cooling by adiabatic demag-
netization, then to produce temperatures below 1.0
m'K by adiabatic freezing only, the initial state of
the liquid at melting will have to be reached by this
same process, thus requiring a two-stage freezing
system. Using demagnetization techniques, the
required initial state of the liquid at melting, for
the adiabatic freezing process, is readily accessible.

Inasmuch as the Tf(Tz) function is of general
interest, we give in Fig. 3 the graph of Tf as a
functionof T; in the range T; &300 m K. The last
point of the Tf curve in the inset of Fig. 3 refers to
0. 65 m'K, which is associated with a T~ of 2. 0 m K.

Here use was made of the entropy S (r) [Eq. (29)],
with So(r) given by (28). The series expansion of
S (&) or So(r), that is of (65), is only valid at x & —,

' v.
In practice, however, a large number of terms of
this expansion is required beyond about x -1 for
satisfactory accuracy. Use of the series inversion
together with the inverted series becomes quite
tedious. As a consequence, below T„ the Tf(Ti)
values have been derived through inverse interpo-
lation.

The absolute lower-limit temperature Tf & attain-
able with the adiabatic freezing process is, of course
Tz ~, the temperature of intersection of the entropy
curve Sg M(Ti) and Ss M(Tf), where

It is seen that as long as Tz - 128 m'K, the final
state of the solid obtained on a complete adiabatic
solidification is still in the paramagnetic range,
that is,

T (T ~128 m'K)& T. =2. 04 m'K.f i 0 (67)

It should be clearly kept in mind that the estimated
value of T, has but indirect connections with either
of the assumed exchange-coupling model or with
the molecular-field-theory model in the spin-ordering
range. Because they are of obvious interest, var-
ious calculated properties are given in Tables IV
and V, such as Tf (Ti), Sg ~(Ti), or Ss i'(Tf),
the initial melting pressures in the form of the dif-
ference Pili(Ti) —P~(TI ), and the total pressure
increase PM(Tf) —PM(Tz), or compression, needed
to freeze adiabatically all of a liquid sample at
melting to solid at melting. We have omitted from
Table V the initial melting pressures which are
available through Tables I and II.

It should be noted that the pressure rate of cooling
is given by ( )(dT/dP~), the neg-ative reciprocal of
the melting-pressure derivative over the range Tf &
& T& Tp. . These rates can be gotten directly from'
Tables I and II, and Fig. 1. The cooling rates are
very large near the extremas T& and Tf ~ of the
melting line. A minimum is reached near 7 m K
at the inflection point in the melting curve where
the cooling rate is somewhat below 23 m K/atm.

According to the spin-ordering model of the solid
used here, the initial temperature of the liquid at
melting must be decreased from about 125-130 to
14 m'K or by a factor of about 9 to reduce T from
2 to 1 m'K. This illustrates the loss of coo ing
efficiency below T, . In models where the temperature
rate of decrease of the entropy is faster than in the
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lim (JgkT ) = (&)'&[ln2 —S (T)/R)'
T.-T (66)

Hence,
dT

lim ~ =-,' [C~ (T,)/R]
T T-T gf i p,

x (In2- [S (T.)/Rjl. ', (69)

which diverges since Sg +Tf)/R approaches (ln2)
as Tz —T~. Equation (66) is the x(Ty) series (64)
reduced to its first term, where o(Tf) is close to
its vanishing limit at T&, the coefficient t, of (64)
being (2/3)'I'.

It is useful to consider the variations of the com-
pression

(~, .)= ( g- (,), (70)

which must be exerted on the initial sample of the
liquid at melting, at Tf and PM(Tf), to completely
solidify it adiabatically and reach the final tem-
perature Ty and melting pressure P~Ty). Since
Tf depends on Tf, if one eliminates, for instance,
T& between 8 P+Ty, Tf) and Tg(Tf), d, P~be-
comes a unique function of Ty. Since Tf and Ty
are identical at T)J, and Ty g, d PM vanishes

molecular-field-theory model, the Tf, to be reached
below T„will fall even more slowly. In the present
model, at Ty & T0, these final temperatures may be
lower limits when compared with the final temper-
atures predicted by other models. This would be
expected particularly in the region close to T,. At

T/ values further away from T„however, the final
temperatures obtained by molecular-f ield theory,
although low, should compare better with the actual
values.

%e have implied that the final temperatures of
interest in the cooling process were at Tf & 10-15
m'K. Strictly speaking, this process extends be-
tween the two temperatures T& and Tf p, , where
the entropy curves Sf, +T) and Ss 8f( T) of the
liquid and solid at melting intersect. According to
the present calculations, a starting temperature
Tf of 300 m K yields a Ty value somewhat less
than 7 m'K. The initial temperature range between
300 and 326 m K, which approximates Tp, , must
then correspond to the Ty range between about 7
m'K and T&. The highest Tz value of Table IV at
320 m'K still yields only a Ty value somewhat be-
low 24 m K. This shows the increasingly steep
character of Ty as a function of Tf, as Tf - T)J..
In the asymptotic range of the solid, the adiabatic
condition (62) yields, ' with (3),

identically at these two temperatures. Further,
since &PM is always positive between its two
zeros at T& and T/ &, it must have at least one
maximum. This occurs at T~ close to 280 m'K or
Ty close to 6 m K.

In Sec. V, we turn tothediscussionof additional
aspects of the cooling process on adiabatic freezing
of He'.

V. MELTING He' AS A THERMOMETRIC SYSTEM
AT LOVf AND VERY LOW TEMPERATURES

%'e propose to show that melting He' might serve
as a thermometric system. Furthermore, this
same system may help to establish a thermody-
namic temperature standard at very low tem-
peratures, from 1.5 m'K upward, where tern-
perature measurements appear to be suspect and

limit the accuracy of experimental investigations.
To use He' as a thermometricsystem, one needs

to know the unique functional connection PM(T).
This connection appears to be well established at
T & 20 m'K by the accurate results of Scribner et al. '
For thermometric purposes, these pioneering data
should be confirmed by independent groups of in-
vestigators. Melting He' is even now almost us-
able as a thermometer overlapping the He' vapor-
pressure thermometer, offering a temperature
standard down to 20 m'K. The present problem
1s to extend this temperature range to much lower
temperatures. This extension will also be of ther-
modynamic character, provided that over this
additional range only properties relevant to the
thermodynamic variables of state of He' are in-
volved in the temperature determinations.

Before entering into the solution of this problem,
let us reconsider the limitations which presently
concern He' melting-pressure thermometry at
very low temperature. As discussed in Sec. II,
the comparison of the measured' and calculated
melting pressures down to about 20 m K is en-
couraging. However, a comparison has not been
made where spin ordering in the solid phase in-
fluences the melting process. As a consequence,
the only justification for using the exchange-cou-
pled solid model results from the characteristic
1/T' behavior' of the derivative thermal property
(8P/8 T)y of isochores in the low-pressure bcc
modification of solid He', in the asymptotic tem-
perature range' T»T, (V). Further supportfor the
model in the paramagnetic range of the solid
comes from the anomalous negative sign of the
temperature coefficient of the pressure (8P/8T)y
associated with the fundamental thermal anomaly
of the spin system of the solid. This refers to
its decreasing entropy on isothermal volume in-
crease, that is,

(71)
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This anomaly extended that of the liquid" and
was subsequently predicted~ to reach out to quite
high temperatures in the solid. The anomaly was
observed recently by Panczyk and Adams" to
reach, at melting, temperatures of over 100 T„
where To is the spin-ordering temperature es-
timated to be somewhat higher than 2 m K. This
is in acceptable agreement with our recent cal-
culation' of the crossing of the locus of the van-
ishing derivatives (sp/sT) ~ or that of the vanish-
ing isobaric volume- expansion coeff icients
[V '(s V/sT)p] of the solid with the melting line
PM (» ~

We will now show that the adiabatic freezing of
He' is well adapted to the establishment of a
thermodynamic temperature standard at very low
temperatures. The problem is equivalent to the
verification of the theoretical melting-pressure
equation PM(T) at those temperatures. If the
theory failed to represent in a satisfactory way
the melting pressure at the relevant low tem-
peratures, the possibility still exists for the elab-
oration of an empirical relationship between
melting pressure and temperature.

We shall attempt to verify the melting-pressure
line PM(T) of He' at the lowest temperatures
with the help of a thermodynamic-state variable
other than the temperature. Let then

(72)

be the formal functional connection between melting
pressure and temperature, as resulting from
theory, and let

(73)

T. 2128-130 m'K,

PM(T. ) —PM(T ) &1.3056 atm,I j M p,

S (T.)& S (T ) =0.452 R.I M z sM 0

(75)

The final states on adiabatic freezing of all the
liquid sample of He' in (75) are

& T =2. 04 m'K,

P (T )-P (T.)=hP (T, T.)&3.750 atm,
(76)' M")-'', M"0'

melting pressure can thus be studied as a function
of the entropy without involving the measurements
of the temperature over that very low range where
it must be determined.

The adiabatic freezing or melting of He' now
provides a direct approach to the experimental
verification or establishment of the melting pres-
sure at the very low temperatures. This approach
avoids temperature measurements in the latter
verification whose function is to determine the
temperatures.

Let Tf, Sf, M(Tg), and PM(Tf) be the state
coordinates referring to the liquid at melting, in
one particular state. According to the results of
the previous sections, these starting coordinates
are fairly well known and are subject to future
improvement. We will first restrict the discussion
to the following initial states of the liquid:

(~)
M M L, M

(74)

which are rigorously equivalent to the functional
connections (72) and (73). There is no loss of
generality on assuming that the inverse functions
gas M(PM) and yl, M(PM) are also well defined.
In the present problem, the melting pressure of
He', the entropy of the liquid and solid at melting
are all functions of the temperature and the vol-
umes of the individual phases or their differences,
and no difficulties are expected in the elimination
of the temperature between them. The predicted

be another measurable thermal property, along
the melting line, belonging either to the solid at
melting yz M or to the liquid at melting pi. ~.
It is reasonable to expect that the elimination of
the temperature between (72) and (73) should yield
the functions

(s)
M M M

It is assumed that one can control, at melting,
both the initial state of the liquid sample and the
final state of the solid sample. In the adiabatic
freezing process, the measured quantities are

T. , P (T. ) or [P (T. ) —P (T )], S (T. ),

wherein the entropy of the liquid SI ~ has been
determined through earlier preparatory measure-
ments and PM(T; ) or [PM(Tf) —PMf, T&)] through
direct measurements of the freezing process. In
the adiabatic compression leading to complete
freezing of the sample, the entropy in the final
state is

and one measures the compression

P (T, T. ) = ~P [S (T )]
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or the functional connection between ~PM and the
entropy SJ,~ or S~ ~. The formalism of the
liquid and solid at melting, with their theoretical
models used above, renders the algebraic elimi-
nation of T between Pf&f (T) and Ss i&f (T) or
Sl, i&f (T) quite tedious. This elimination appears
in Tables IV and V. %e show in Fig. 4 the result
of this elimination which results in the curve of
r&PM as a function of Ss, M (Tf ) or S L, , M (Ti ).
If now the measured ~PM values in terms of the
known initial coordinates cover satisfactorily the
nPi&f (Ss ~) curve, in the range investigated, the
melting pressure over that entropy range is veri-
fied. The knowledge of Ss ~(T) defines the tem-
peratures Ty associated wi(h the chosen initial set of
states of the liquid. The set of cvalues so obtained
refer to the very low temperatures which we set
out to determine, together with the measurements
of the melting pressures PM(T ).

It hardly needs to be emphas&zed that, for sat-
isfactory accuracy, the freezing or melting must
be closely adiabatic. The use of the exchange-
coupled model is the basis of the present theory
of melting, complemented by the formal repre-
sentation of the entropy of the liquid at melting
elaborated by us. ' However, one should clearly
keep in mind that the estimated value of the spin-
ordering temperature T, is not connected with the
method just described for the verification of the
melting line Pf&f (T) at the very low temperatures
and the determination of these latter temperatures.
The temperature T, does not affect the calculated
melting pressures, the compressions r& PM( Tf Ti ),
or the entropy Ss fif(T) of the solid in the paramag-
netic range. It is worth noting again that all cal-
culated thermal properties of the paramagnetic
solid at melting are exact, within the limits of
validity of the exchange-coupled model and the lim-
itations arising from the polynomial approximations
of the relevant thermal properties. Other limita-
tions arise from the empirical nature of the param-
eters entering into the calculation; the omission of
the possible critical behavior of the solid around
T, must be remembered also.

It appears justified to now state the following.
The procedure elaborated here for the verification
of the He' melting-pressure line down to very low
temperatures, to the upper approaches of the ab-
solute theoretical lower limit Tq &

of the adiabaticJ
freezing process, yielded an accurate thermody-
namic temperature standard down to these very
low temperatures. Experimental work at these
very low temperatures was impeded in the absence
of directly measurable temperatures. The thermo-
dynamic standard realized by He' melting-pressure
thermometry down to very low temyeratures should
thus be helpful in experimental investigations in

dT &V
(76)

where & V~ is assumed to be constant. If the
three states indicated above are close enough, it
is possible to obtain a first approximation T " of
the middle state, according to

a temperature range where methods of direct
temperature measurements were absent hereto-
fore.

We must now consider the case in which the
theoretical model of the solid fails to represent
in an acceptable way the observed d PQSs ilf) or
r Pi&f(SI iaaf) function, or the measured compres-
sions ~I'~ fail to conform to the graph of Fig. 4.
This may arise from some Ty value downward or
from a certain Ss +Ty) value down toward lower
entropy values. It should be noted in this connec-
tion that the shape of the EPQSs I) curve is
fixed and is of permanent character and cannot
change qualitatively. That is, the region where
Ss ~ & 0. 62R or Ty & 3.4 m'K [by Table IV] is
well established since Ty is still in the asymptotic
range with respect to the J~/k Ty expansion of
the entropy of the solid. The failure of the ex-
change-coupled model would occur at temperatures
below about 3. 5 m'K.

Let us assume then that down at temperature
Tp, the entropy Ss iaaf (Tp), the n. PM(Ss ~) func-
tion or n, P~(T) and hence P &f(T) have been veri-
fied with acceptable accuracy. The calculated
melting properties may start deviating from the
measured ones at T& Tp. The measurements of
&PQS s M) and of Ss i&f may proceed as at

T& Tp, or Ss ~&Ss QTp) The em. pirical connec-
tion r&.PQSs I) can in principle, be established
with accuracy, since Sf, f&f(Tf ) (the invariant en-
tropy), Pit&f(Tf), and Tf are the initial state co-
ordinates, which must be known beforehand. If
the observed deviations from the theoretically ob-
tained r& PM(Ss M) curve are reasonably small,
the temperatures Ty associated with the states of
melting He' may still be usable. If, however, the
theoretical &P+Ss i&f) connection becomes a. poor
approximation to the observed correlations, the
empirical establishment of the PM(T) and Ss M(T)
functional relations over the low temperatures be-
comes extremely laborious as shown by the follow-
ing considerations.

Let d PQ" S iaaf~», and d. Pilaf'& S
be two states below our defined reference state
[CPM(Tp), Ss M(Tp)]. Both states (I) and (2) are
close to the reference state and let T& & T~" & T&'&.

At the very low temperatures, there is a wide
range of temperatures T &1.5 m'K, where Sl. ~
«Sz ~. One can approximate the melting-pres-

7

sure derivative
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TABLE IV. Predicted behavior of He on adiabatic freezing; the solid is paramagnetic.

367

m'K

320
315
310
300
290
280
270
260
250
240
230
220
210
200
190
180
170
160
150
140
130

or
S, M(Tf)/Z

0.6918
0.6878
0.6839
0.6757
0.66715
0.6583
0.6490
0,6393
0.6299
0.6193
0.6081
0.59635
0.5839
0.5715
0.5576
0.5427
0,5277
0.5107
0.4935
0.4740
0.4529

23.61
12.02
9.18
6.78
5.64
4.84
4.33
3.95
3.66
3.41
3.20
3.02
2.86
2.72
2.60
2.48
2.38
2.29
2.20

2.12
2.04

m'K
23.60
12.02

9.16
6.74
5.57
4.84
4.33
3.95
3.66
3.41
3.20

3.02
2.86
2.72
2.60
2.48
2.38
2.29
2.21
2.13
2.05

PM (T.) —PM (T~)

0.000604
0.002362
0.004119
0.01310
0.02756
0.04885
0.07561
0.1092
0.1490
0.1962
0.2503
0.3127
0.3832
0.4619
0.5495
0.6474
0.7555
0.8746
1.0052
1.1482
1.3056

atm

PM(Tf) -PM(T

4.1517
4.6185
4.7598
4.8574
4.8932
4 90635c
4.9017
4.8845
4.8568
4.8200
4.7746
4.7196
4.6554
4.5818
4.4990
4.4054
4.3008
4.1851
4.0573
3.9170
3.7620

a
Calculated by inverse interpolation in the entropy S~ M (T) .

bCalculated through the series inversion of S M(T) [Eq. (64) ].
The maximum in the compression b, PM arises from its dependence either on

Tf alone or on T~ alone through the connection Tf (T~) or Tz (Tf).

4T (') = T —T(')
P

by (78). Here,

M M M M

(79)

(80)

where T~"& is the initial temperature of the liquid
at the melting pressure PM (Tf'2&), entropy
Sg M(Tf&'&), which yielded, on adiabatic freezing,
the state (LkPM "&, S&M "&). The definitionof PM" &

is similar. Measurements relative to a state close
to the state 4P~"', S ~&" yielding the state
~~'3', Sz ~&" allows one to bracket the new mid-
dle state and obtain T&", with T&'&) T&'&[by use of
(79), with the appropriate variables PM"', PM"'
and Ss M&2&]. This procedure can be applied at
lower and lower temperatures.

The use of (78) and (79) yields initial approxima-
tions to these temperatures T(") & Tp. Once these
temperatures are established, the liquid entropy

at melting can be determined at these temperatures
Unless the theoretical entropies of the liquid are
usable throughout these very low temperatures,
the corrections to the initial temperatures T('"}
can be made only when Sl M(T} becomes empiri-
cally available there. They can then be used to
correct the denominator of (79) by including the
small entropies Sl. M(T}, if such corrections are
warranted. The labor involved in this sort of de-
termination of melting pressures and tempera-
tures is extensive. In the absence, however, of
even a reasonably approximate theoretical repre-
sentation of the melting pressures PM(T) and
entropies Ss M(T) at the very low temperatures,
this tedious method of obtaining thermodynamic
temperature standards cannot be avoided. The
differential-difference approach, indicated by (78)-
(80), can be replaced by an equivalent integration
approach.

Within the limitations of the present calculations,
the set of initial states of the liquid defined by

T. &128 m'K, PgT. ) —P (T )p1. 3056 atm,
(81}

I M '
M f M 0s, M f s, M 0
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TABLE V. Predicted behavior of He on adiabatic freezing; the solid is in the spin-ordering temperature range.

Tz
m'K

120
110
100

90
SQ

70
60
50
45
40
35
30
25

20
19
18
17
16
15
14
13
12
11
10

9
8

7

6

5

3
2

Sl I{T;)/R
or

8 Mgf)/8

0.4312
0.4066
0.3810
0.3532
0.3222
0.2895
0.2543
0.2165
0.1963
0.1763
0.1551
0.1336
0.1122
0.09033
0.08586
0.08138
0.07689
0.07240
0.06709
0,06369
0.05911
0.05458
0.05005
0.04551
0.04097
0.03643
0.03188
0 ~ 02733
0.02278
0.01832
0.01374
0.00916

Tf
m'K

1.997
1.944
1.889
1.827
1.7567
1.6801
1.594
1.498
1.444
1.388
1.326
1.260
1.190
1.113
1.096
1.078
1.061
1.042
1.020
1.005
0.985
0.964
0.942
0.919
0,895
0.870
0.842
0.813
0.780
0.745
0.703
0.651

PM(Tf P-M( ~)
atm

3.5917
3.4057
3.2027
2.9812
2.7400
2.4770
2.1907
1.8791
1.7134
1.5415
1.3614
1.1752
0.9808
0.7798
0.7381
0.6971
0.6554
0.6131
0.5708
0.5285
0.4855
0,4420
0.3992
0.3550
0.3117
0.2679
0.2235
0.1795
0.1361
0.09296
0.05159
0.01574

Calculated by inverse interpolation in the entropy S~ ~(P.

always led to final states, on adiabatic freezing,
defined by

T -T, I (T )-~ (T.)-8.750atm,

' W"f)-' M"0'.s, M f s, M 0
(82)

These coordinates refer to states of the solid in
the spin-ordering range. The method of verifying
the theoretical melting pressure P~(T & T0) through
measurements of ~~(Ss ~}is the same as with
the final states Ss, ~& Ss, M(T0). The bPM(Ss iaaf)

function defines the entropy Ss M(T), which in
turn defines the final temperatures Tf (Ss ~}re-
sulting from the theory. To be complete, we in-
clude in Figs. 5(a) and 5(b) the graphs of the en-
tropies Ss M(T) and Sg M(T).

If the theory failed to represent the measured
~~ values to a satisfactory approximation, the
method just discussed for low temperatures T & T,
IEqs. (78}-(80)j can be used. However, a refer-
ence temperature T& must be known at the start.
As emphasized above, the theoretical melting
pressures in the spin-ordering range are expected
to be poorer approximations to the actual values
than those referring to the paramagnetic range of
the solid.

The temperatures Tp determined through the
melting pressures of Res may be termed thermo-
dynamic, since the physical properties directly
involved refer strictly to the statistical thermo-
dynamics of this element.

It is outside the scope of the present work to
consider technical approaches which might evolve
in He' melting-pressure thermometry. In some
cases, melting He' might be used as a heat reser-
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We will conclude by stating that the lowest tem-
peratures accessible through adiab t' f

e is possibly 1 or 1.5 m K. To reach fractional
and submillidegree temperatures, magnetic cool-
ing must be used at the present time. An im-
provement of the magnetic techn'

roug the combined use of the method studied
in this paper. Vfith magnetic fields of onl

crate strength, very large values of the nmg-
ony

netic adiabatic invariant H/T H be thing the stre
of the applied magnetic field, could be reached.
These remarks assume, however, that difficulties

te
in reaching thermal equilibrium ' th1n e magnetic
echniques are not insurmountabl te a ultralow tem-

ver low
peratures. It seems to us that the the er modynamic
very ow temperature standard provided by melt-
ing Hes could be helpful in charting the submilli-
degree temperature range.

0 0.2 04
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ln2 08
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The linearized hydrodynamic equations of motion for a thin, flat, superfluid helium film are
derived in some detail from standard two-fluid hydrodynamics. Interactions of the film with

both the He vapor and the substrate which are in contract with it are included and discussed
in detail. Boundary conditions for both the film-substrate and film-gas interfaces are de-
rived. It is indicated how one may construct the equations of motion for the entire coupled
system (gas-film-substrate). The equations are actually constructed and solved for the case
when a certain parameter is small, which includes all the third-sound experiments on un-
saturated films. A dispersion equation is found which is exact in the limit of vanishing fre-
quency, and which is eminently suited to describe both the velocity and the attenuation of third
sound in the regime of unsaturated films. No hydrodynamic instability is found. Results for
the attenuation are shown to be in good agreement with preliminary experiments on unsaturated
He films.

I. INTRODUCTION

As a result of increasing interest recently in
the properties of third sound in thin He II films, '
we have undertaken to reexamine the theory of
that phenomenon with the intention of trying to re-
solve some difficulties that were present in its
original formulation by Atkins. ' Those difficulties
had to do with the theoretical expression for the
coefficient of attenuation of third sound, and were
of two types: (i) The attenuation became negative
for films that were too thin, i.e. , it changed into

amplification. If this were correct it would imply
that the film was then unstable against perturba-
tions of its shape. Such speculations have indeed
been made. ' (ii) Even for thicker films, where
this did not happen, the values predicted for the
attenuation coefficient were much less than those
observed. '" Since the attenuation effects in Atkin's
theory' arose from the reciprocal processes of
evaporation and condensation of He atoms between
the film and the gas, we suspected that these pro-
cesses had not been adequately dealt with in that
theory. In this paper, we reformulate the hydro-


