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The power spectrum S(f) of pulse sequences, which belong to the class of Markov processes,
is calculated for the general case of a combined distribution y(8, ~, h) that permits coupling be-
tween the pulse parameters: amplitude h, duration w, and time period 8 preceding or follow-
ing a pulse. Two special cases of coupling are considered in detail with respect to flux-
transport noise in superconductors: (i) With 7'h= const, i.e. , all pulses have the same time
integral, S(f ) exhibits at high frequencies an asymptotic f mdependence regardless of the
particular pulse shape, if the series expansion for the distribution of 7 at small 7 values
starts with a term ~ w~ 1. (ii) A relaxation time 8 proportional to the pulse size wh, and

an exponential distribution for 8 leads to an asymptotic f behavior at low frequencies, again
practically independent of the pulse shape.

I. INTRODUCTION

A widely used method for the study of statistical
properties of more or less random physical process-
es employs the measurement of their power spec-
tra or correlation functions. In many cases, these
processes can be represented by a sequence of
random pulses. The shot noise in vacuum tubes
is a simple example, which may serve here to in-
troduce the basic notation. Each electron travel-
ing from cathode to anode produces an electric
pulse, which may be represented by hy(t) (See.
Fig. 1.) In this example, the pulses have constant
amplitude h and shape y(t) Further. more, the
occurrence of any pulse is independent of all others
pulses. This leads, as in the case of radioactive
decay, to an exponential distribution of the time
period 3 between two subsequent events. The re-
sulting power spectrum has the well-known, sim-
ple form

S(f) = vS, (f)+ Pa2S(f),

where v is the average number of pulses per unit
time, and S,(f) is determined by the Fourier
transform of the individual pulse'.

S (f) =h Fo(f)zo*(f) =
I J hy(t)e

"'«I (2)

The second term of Eq. (1) represents the contri-
bution of the dc component of the pulse sequence.
a=hf+ y(t)dt is the pulse area, and 6(f) the Dirac
5 function. In general the dc term has the form
v'(a)'5(f ), (a) being the average pulse area. It al-
ways occurs and therefore will be omitted in the
following treatment.

Very general expressions for the power spectrum
and the correlation function of random pulse se-

quences have been derived in recent years with dif-
ferent methods. ' ' Arbitrary distributions of the
period u, (S) and pulse amplitude w(h), and even
randomly varying pulse shapes y(t) were taken into
account. The results were obtained under the
basic assumption of a Markov process, i. e. , h,
y&(t), and 3, describing an arbitrary jth pulse of
the sequence, were considered to be independent
of the quantities h& 1, yj 1(t), and Sj 1 of the
preceding pulse.

The assumption of a Markov process, however,
does not prohibit a possible coupling between the
three parameters 3j, yj (t), and h of an arbitrarily
chosen pulse in the series. The important case
of absolute dependence h = h(S&) was calculated by
P. Mazzetti. y It is the purpose of this paper to
consider in more detail the power spectrum of
pulse sequences with correlated pulse parameters.

To simplify, we assume that the shape function
y remains the same for all pulses except for a time
constant 7', i. e. , y (t)=y(t, r&). Furthermore,
since coupling is assumed to occur only between
the parameters 9, &, and h of one and the same
pulse, and not between different pulses, the sub-
scripts can be omitted, as long as clarity is not
impaired.

There are cases of physical interest, in which
a correlation between 3, ~ and h is noticed. For
instance, a strong coupling between the "size"
(&h) of a random event and the following period 3

E. gE

FIG. 1. Pulse sequence with constant parameters 7'

and h.

188



320 C HRISTOPH HE IDE N 188

always occurs when an event produces an inhibiting
effect proportional to the size of the event, on the
following event.

One example is the retarding effect which the
demagnetizing field, created by a Barkhausen jump
in a ferromagnetic material, has on the following
jump. ' ' The change in external magnetic field,
necessary to trigger a new event, is influenced
by the size of the preceding Barkhausen jump.

Flux jumps in hard type-II superconductors
seem to present another example of this type of
coupling between pulse size and period. There
again it appears from experimental observations"
that the change in external magnetic field, either
following or preceding a flux jump, increases with
the size of the jump. These magnetic instabilities
also can occur in an approximately periodic
fashion, "i.e. , the distribution for the periods
u, (3) resembles a, 5 function for dH/dt = const. It
is interesting to note that the experiment in this
case also indicates a constant pulse size: Pulse
size and period are proportional to each other.

Flux jumps in low-~ type-II superconductors
showed a strong reduction of the power density at
low frequencies (f& 100 Hz) essentially proportional
to f', and an f ' behavior for higher frequencies. "
Again, by assuming the coupling 3~ 7h it is pos-
sible to explain the observed spectra, as will be
shown later on.

Another interesting case of coupling occurs when
one of the two parameters & and h is allowed to
vary randomly according to its distribution func-
tion, but the size is kept constant, i.e. , h~ I/~.
Each pulse of the sequence then represents the
transport of a constant quantity, the transit time

being more or less randomly distributed. This
quantity may be electric charge or magnetic flux.
Experiments indicate this type of coupling in the
flux transport noise in type-II superconductors. '~y'

Here, we have the following noise mechanism:
Under the influence of the I orentz force, bundles
of vortex lines are driven across the superconduc-
tor and overlapping pulses of amplitude p/v occur
at the terminals of the superconductor. The
transit time may vary, depending on the local pin-
ning and the viscosity sensed by the flux bundle
of size 3.

This coupling between 7 and h tends to increase
the power density at higher frequencies —pulses
with short duration have higher amplitudes —and
an f ' behavior may be obtained under rather weak
suppositions, as we shall see later on.

Cases like those mentioned above initiated the
study presented in this paper. In Sec. II a rather
general formula for the power spectrum of ran-
dom pulse sequences with possible coupling be-
tween 3, &, and h will be derived. The assump-
tions are: (a) The pulse sequences are considered
to be stationary and ergodic; (b) Parameters of
different pulses are independent; (c) All pulses
have the same basic shape y(f); (d) The pulse
parameters 3, &, h have the distribution y(8, r, A).

The combined distribution y(3, &, h) allows us to
introduce coupling between the pulse parameters.
This will be illustrated by several examples in
Sec. III of this paper. Special emphasis will be
given only to the behavior of power spectra, since
one can obtain the associated correlation functions
by the transformation of Wiener and Khintchine.

II. DERIVATION OF THE POKER SPECTRUM

Assumptions (a) and (b) allow us to calculate the power spectrum in the direct way, used earlier by T.
Lukes. ' We consider first a sequence of N pulses occurring in a time T, and derive the corresponding
power spectrun S&(f). We then take the ensemble average (Sgf }), which in the limit X-~, T-~ is as-
sumed to be equal to the spectrum S(f), obtained from the infinite pulse sequence.

A pulse sequence with N pulses can be represented by (Fig. 2}:

Y (f) =h y(tl, I)+k2y(f-9, )+h y(t 8 —s, 7' )+ ~ ~-+h y(t-3 —3 — —3,& )
1 2 N-1' N

—2vif6 .

&0(f, &.)0

The associated Fourier transform is

I'~(f)= f Q h y(t e.
I. ,~.)-e dt = Z he.li j-1'j .

1 j (4)

where we have e = Z
k=1

(/ r ) f (f )
—2vift

With Eq. (4), we obtain for the power spectrum S (f)N
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s (f) =—
i
F (f) i

=—2, h.
i Fo(f, &.)iN T N T .

1 y 0

N-1 N- m 2wif3. »if {f, 1-e)
h. F (f, 7' )e. h. FO(f, ~. )j+m 0 ' j+mm=1 2=1

E(E 1E)E-m -—2 waif 3. —2vif(e.
1

—e))
h. F*(f,v. ) e h. F (f, &. )ej+m 0 ' j+mm=1 g=1

In order to calculate the ensemble average
(Si(i (f)), we need the distribution functions for
the pair of parameters, &, h, and for e.. We ob-
tain

where A(f) = f f h'iF, (f, &)i'q(&, h)d&dh

&*(f)= f f hFo+(f, ~)))(T, h) d7'dh,

C(f.) = f f f hF, (f, 7)e "'f

q(~, h)= f y(3, ~, h)d3,
0

and u.(e.) = f u 1(&. . —3)ui(3) d3,

with u, (3) = f f y(3„T h)d1dh

(9)

(io)

xy(3, &, h)d3d&dh

2mif6
(f)= f u (e )e de

m 0 m m m

4,(f) = f u, (3)e d3

(i2)

Equation (9) is valid because of assumption (b), by
which also the parameters w and h of any pulse in
the series are independent of the parameters of
all other pulses. The stationary nature of the
pulse sequence ensures that the distribution func-
tion y is the same for any arbitrary triple param-
eter, 3, ~., and h&. This in turn has the conse-
quence, that the distribution for e 1-ej is
the same as for Bm 1. Furthermore, ej
—ej is independent of hj and ~ a.s well as of hj
and 7 . So we can write for the averaging
process

N-1
(s~(f))=—x(J) Z, ((

&*(f )C(f )S(f) = vA(f) 1+A{f)Re
1 ~ (f)

= UA(f )E(f ) (i4)

The power spectrum in Eq. (14) appears as the
product of the pulse density v, the average spec-
trum A(f ) of the individual pulses, and an inter-
ference term E(f). The pulse density v is deter-
mined by the distribution u, (3) alone,

& = (J 3u, (3)d3) '

it can be shown' that g (f) =pi~(f), and that
(f ) tends to zero as m -~. The limit as EE-~, & —~, and N/T- v then gives as the final re-

sult for the power spectrum:

x [B~(f)C(f)g 1(f)+EE{f)C~(f)(I)* 1(f)]

-ri-r g~ ~~
FIG. 2. Pulse sequence with variable parameters 8,

7', and h.

A(f ) is given by the pulse shape and the combined
distribution q(7', h); but it is the interference term
I, in which a coupling between all three param-
eters 8, &, and h will find its expression.

Equation (14) was derived under the assumption
that the correlation exists between the pulse
parameters & and h, and the period 8 immediately
following the pulse. The case of the pulse being
coupled to the preceding period leads to the same
result [Eq. {14)],as is obvious from the invari-
ance of the power spectrum with respect to time
reversal.

S(f) is defined for the frequency range —~ ~f
~+ . In measurements with conventional equip-
ment such as amplifier, filters, and squaring de-
vices, however, only positive frequencies occur.
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Defining S(f}for the interval 0 ~f& + ~, the right-
hand side of Eq. (14) has to be multiplied by a
factor of 2. '

In the following section, Eq. (14) will be dis-
cussed with emphasis on coupling between the pulse
parameters 3, 7', and h.

III. SPECIAL CASES

A. Independence between 0, r, and h.

This condition can be expressed by

y(8, ~, h) =u, (8)v(r)u(h) .

Equations (12}-(14) then yield

s(f) = &h )&IF.(f, )I'&

+ (h'&(lF, (f, r) l'& 1 —p, (f) ' (16)

This result corresponds to other expressions pub-
lished earlier for the continuous part of the power
spectrum. ' ' Inthe case of (h& =0, Eq. (16}re-
duces simply to

s(f) =v(h'&(IF, (f, r)l')

no matter how 3 and 7' are distributed. A very
similar relation was derived by Mazzetti under
the more general assumptions of a random pulse
shape y(t) and a possible coupling between 6 and h.
This simple result, however, is no longer true
in general if 7 and h are coupled, as one can easily
see when calculating the expressions B*and C in
Eq. (12) with the combined distribution q(7', h).
For an exponential distribution u, (6}, the inter-

ference term in Eq. (16) becomes identical to
unity for all frequencies, and with constant ~ and
h we obtain the simple case of shot noise men-
tioned above in Eq. (1).

B. Coupling between r and h of the Form 7h = k = const.

In the following, sequences of pulses with constant area but variable pulse duration and amplitude, will
be studied in some detail. With a pulse shape satisfying the relation y(t, r) =y(t/r), pulses of constant area
can be realized by the coupling &h=const. To simplify, we assume 7' and h to be independent of 8. Then
we can write

y(S, r, h) =u, (8)v(r)(&/k)6(1 —&h/k)

and the power spectrum becomes

(18)

where F,(fr) = —f y — e dt
1 + ~ t —2wift

For statistically independent pulses, i. e. , exponential distribution for 8, Eq. (18) reduces to simply:

S(f ) = vk & I Fo(f+}I &
= uk f I

Fo(fr}
I

v(r) d'r.

With Z,(f ) 2f IF=,(x)I'dx, ~d v'(~)= —',
a partial integration of Eq. (19) gives

S(f) = Eo(f7)v(~)I, — f E,(fr)v'(7) d~ .f 0 0 f 0 0 (20}

Assuming that I Fo(fv) lm has no singularity for f& - 0, and that v(~) = 0. Eq. (20) reduces to

S(f) = —" f E,(f~)v'(7') d~f 0
(21)

To get a first idea of the frequency behavior of S(f), we evaluate Eq. (21) for the rectangular distribution
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v(v) = I/7', for 0 & ~ & ~, ,

v(&) =0, for v& v,

and obtain S(f) = f E (f t)5(v—T ')d7'=—Vttg vk Eo(f7' )
0 0 1

(22)

Pulses occurring in physical applications have a finite size. Thus, we can conclude from Parseval s
theorem'

that E,(fr) will monotonically approach the finite value E for f&- ~. This behavior is schematically in-
dicated in Fig. 3. We arrive at the important result: Independent of the particular pulse shape y(t/r)
the power spectrum given by Eq. (22) exhibits an asymptotic f behavior at high frequencies.

It is on the other hand easy to show, that for f-0 the power density of Eq. (22) will be given by
vt't~) Fo(fv, ) I ', i.e. , the spectrum at low frequencies is essentially not affected by the coupling v tt = const.

These results are a consequence of a more general law. Since E,(fv ) monotonically approaches its
limit E, we can find a value ft = 0 such that E,(Q) = (1 p)E, p -being an arbitrarily small positive number.
Equation (21) then can be written

where 1 —p & p, (f) & 1

Essential for the asymptotic form of S(f) at high frequencies is the distribution v(v) at small v values.
Assuming v(&) = cm'rm, for r-0, we get for sufficiently high frequencies

Since m f Eo(f&)(fr) dw = m(u, (I —p)EA
A m —1 m —1A

0

we obtain 5(f)= c 0 E[tt (f) —mp (I-p)],m+1 m (22)

E0(fr) r)-S/Id, (x(l d~

FIG. 3. Total power Eo(f~), drawn schematically for
a power density Fp(f T) with pronounced minima, such as
produced by a rectangular pulse shape.
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mp, being a constant factor between 0 and 1.
With v(r) ()(:c~r~ for r -0, S(f) therefore asymptotically approaches the behavior

S(f) f (24)

independent of the particular pulse shape.
Equation (24) allows us to calculate the asymptotic form of the power density for all distributions v(r),

which for r -0 can be expanded in power series. The f ' dependence derived above [Eq. (22)] for the
rectangular v(r) is then always obtained if the series expansion contains a constant term. Regardless of
the pulse shape, this spectrum therefore will occur for a wide class of distributions v(r); the exponential,
v(r) = 1/r, exp(- r/r, ) being one such case.

A series expansion for 7 -0 with nonzero cp of course is unrealistic, since pulses occurring in physical
problems always have a finite smallest duration 7', given by the particular process in consideration. Real
power spectra therefore never can exhibit an f ' behavior for f- ~; instead for frequencies f& (2vr, ) ', the
power density decreases faster than f ' and essentially with the frequency dependence given by the par-
ticular pulse shape. This solves the question of infinite total power, which otherwise would arise.
Nevertheless the asymptotic f ' dependence will appear for frequencies f&(2vv, ) ' under the condition that
series expansions for v(7' —r, ) have a nonzero constant term.

It appears from the preceding considerations that the coupling 7'h = const above all tends to eliminate the
influence of the pulse shape on the behavior of S(f) at high frequencies. Another type of coupling, namely,
3 ~Th, affects the power spectrum at low frequencies, also practically independent of the particular pulse
shape.

C. Coupling between 8 and rh

The case of absolute dependence between 3 and

rh, i.e. , 3=g(rh) still allows independent dis-
tributions for two of the three variables. If we
choose, for example, 3 and h as independent
variables, we can write

y(a, r, a)=, (Au(a) —
~& 5((-~ ). (25)

In the following, we will concentrate on the
simple case of the proportionality, 3 o-7h. Also,
we will keep for u, (3) the exponential distribution
1/S, exp(- 3/3, ). This has the consequence, that
the product 7'h also has an exponential distribution.

1. Independent 8 and h

The interference term in this case is zero.
The average spectrum A(f) in this example is

given by

A(f) =2I;~,'/[1+(2'~, )2] . (27)

It is white for low frequencies, and decreases as
f ' at high frequencies. Therefore, we obtain
for the total power spectrum S(f) = ))AI a behavior
~f for f«1/27(30and~f ~, for f»1/2v7'0. For
cy & 1, the pulse sequence has different exponen-
tial distributions for the pulse duration T and
the time interval o = 3 —& between two subsequent
pulses. This case, but without coupling between
0 and &, was treated earlier by Machlup" who
obtained, similarly to Eq. (27}, a white spectrum
for low frequencies instead of the f' behavior.

As an example for independent 3 and h, we con-
sider the extreme situation h=h, =const, as in
Fig. 1. Now the period 3 is proportional to the
pulse length &, i.e. , 3=a&. Assuming a rec-
tangular pulse shape, we obtain for the interfer-
ence term

2. Independent 8 and r

W'ith the exponential distribution for 3 and a
normalized pulse shape y(f/r) we get

I(f ) = 1 —r/(1 —x )

where r is the ratio

(2a)

+(1—n)'[n'+ (1+n')x'+ x']
[n + (1 —n+ n )x ]2+ (1 —n) x6 (26} l&Fo(f ~»

l

*/& lFo(f.) I'} .

with x= 2vfs, .
This expression looks more complicated than

its actual frequency behavior is: For n&1, I(f)
varies ~f' for low frequencies, and tends to unity
for high frequencies. The value of n (for n & 1,
all pulses are separated, for e & 1, they all over-
lap) has no influence on this basic behavior of I(f).
For a=1, all pulses add up to a constant signal.

This ratio is unity for

(n) r = ~, =const.

and (P) f 0-
(a). (n) For constant w, I(f) becomes

I=M/(1 0) . (22)
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As in the example of Sec. III C 1 we note that
I is proportional f' at frequencies f«1/2', and
goes to unity for f»I/2v80. Constant r, of
course, is equivalent to hex:9.

(b). (P) In the limit f-o, F(f7') approaches the
constant value f+~y(t/r)dt/r. The ratio r, there-
fore, tends to unity for all distributions v(&) which
decrease sufficiently fast as & goes to infinity.
Thus, we obtain another important result: The
coupling 3 cf: ~h together with an exponential dis-
tribution for 3 leads to an interference term that
varies as f' at low frequencies independent of the
particular pulse shape and for practically all dis-
tributions v(7) playing a role in physical applica-
tions.

In contrast to the insensitivity with respect to
v(v) and y(t/r), it appears that the noise reduc-
tion by I (f) at low frequencies is rather strongly
influenced by both the particular distribution u, (S)
and the special type of coupling s =g(vh). The

distribution (S/8, ) exp(- S/S, ), for instance, which
was found experimentally for Barkhausen jumps
in ferromagnets, "reduces the power density at
low frequencies only by a factor of 2. The effect
of a deviation from the proportionality Bo= ~h can
be seen from Fig. 4, which shows the interference
term for the coupling A=X3+h, .

Power spectra obtained under the conditions of
Sec. III C 2 b combine the essential features of
case IIIB and case IIIC. The second term of Eq.
(14) is now given by:

(20)

This relation is very similar to that given by
Eq. (19). Both A(f) and I(f) approach constant
values, at low and high frequencies, respectively.
Consequently, the frequency dependence of S(f) is
determined at low frequencies by I (f), and at
high frequencies by A(f) Thus, with. a coupling
3~ &h and exponential distributions for both the
period and the pulse duration, we obtain a power
spectrum, which varies independently of the par-
ticular pulse shape as f' for f« I/2'„and as f '
for f»l/2~, .

There are reasons to believe, that the results
of Sec. III C 2 b are immediately applicable to power
spectra of flux jumps in low-a type-0 supercon-
ductors. Their frequency behavior as mentioned
in the Introduction is very much like that given

10

10
—2

10

0
ho=0

1 0 2
I

10 10

in the last example, and it is possible to describe
the observed spectra rather well by choosing
proper values of 3, and &,." A more detailed
discussion of the experimental results will be
given in a forthcoming paper. The assumption
of the coupling Bfx- ~h together with an exponential
distribution for 3, of course, implies that the
size distribution of the flux jumps also should be
of the exponential type. This indeed was con-
firmed by direct measurement "
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Measurements of Diffusion in Velocity Space from
Ion-Ion Collisions

A. Y. Wong and D. R. Baker
Department of Physics, University of California, Los Angeles, California 90024

(Received 14 March 1969; revised manuscript received 5 May 1969)

Diffusion of particles in velocity space due to ion-ion collisions is measured experimentally
using the spatial ion-wave echo as a diagnostic technique. The experiment was performed in
a highly ionized plasma. The ion-ion collisions are described by a Fokker-Planek term in

the ion kinetic equation. The good agreement between the measurement of the echo position,
phase velocity, and amplitude with the theoretical predictions verifies that the diffusion term
of the Fokker-Planck equation is appropriate for describing the effect of small-angle Coulomb
collisions. The magnitude of the second-order coupling coefficient relating the amplitudes
of the excited waves to the echo amplitude was also measured. The agreement with theory
indicates the validity of the second-order expansion of the linearized Vlasov equation.

INTRODUCTION

It is well known that particles diffuse in phase
space either by self-collisions or in the presence
of randomly fluctuating fields. We wish to pre-
sent experimental data' which point towards the
measurements of such diffusion coefficients for
comparison with recent theoretical calculations.
In this paper we report the measurement of diffu-
sion coefficients due to particle-particle colli-
sions. In a subsequent paper we will report the
effects of diffusion due to ion-wave turbulence.
As pointed out first by Gould, O' Neil, and
Malmberg, ' the ion echo, which is very sensitive
to the retention of phase coherence, can be used
as a diagnostic tool for the investigation of colli-
sional and turbulent phenomena. Subsequently,
several authors' ' have calculated the effect of
collisions and turbulence on plasma-wave echoes
with the use of a diffusion operator of the form

, ID(v)f(v)]
F-P

Our experimental results essentially support their
theoretical calculations and verify the validity of
the diffusion equation for describing small-angle
collisions in a plasma. When compared with ex-
perimental findings of collisional effects on ion
waves by Motley and Wong, ' ion-wave echoes are
shown to be more sensitive to collisions by an
order of magnitude.

The method we use is the second-order ion-wave
echo. The advantages of using the ion-wave echo
are that the propagation speed is essentially den-
sity-independent, and furthermore it is nondisper-
sive. One can increase the density without chang-
ing the basic characteristic of ion-wave propaga-
tion, which is a distinct advantage over the elec-
tron-wave echoes. In a finite plasma, the propa-
gation characteristics of ion waves are essentially


