Relative Molar Volume and Limiting Solubility of ³He in Superfluid ⁴He[†]

B. M. Abraham, O. G. Brandt, * Y. Eckstein, and J. Munarin, ‡ Argonne National Laboratory, Argonne, Illinois 60439

and

Gordon Baym[§] Department of Physics, University of Illinois, Urbana, Illinois 61801 (Received 17 April 1969)

The relative fractional molar volume α of ³He in a ³He-⁴He solution has been determined by a capacitance-measurement technique with a solution which remained in a single phase down to the lowest temperature of measurement, 31.7 mK. The observed temperature dependence at saturated vapor pressure is in excellent agreement with theory. Accounting for ³He kinetic and interaction effects, we deduce that α_0 , the fractional molar volume of ³He at zero (concentration, temperature, and pressure) is 0.286 ± 0.001 . Measurements on more concentrated solutions permitted redetermination of the limiting solubility at zero temperature, with the result $x_0 = 0.0660 \pm 0.0006$.

INTRODUCTION

Adding ³He to superfluid ⁴He increases the molar volume of the liquid, since ³He atoms have a lighter mass, and therefore a greater zero-point motion in the solution than ⁴He. The molar volume V_{94} of a dilute solution of the ³He in ⁴He can be written in the form

$$V_{34}(x, T, P) = V_4(T, P)[1 + x\alpha(x, T, P)] \quad , \tag{1}$$

where V_4 is the molar volume of pure ⁴He at the same temperature T and pressure P as the solution; x is the ³He mole fraction, or concentration. Recently, Edwards et al., 1 reported the value 0.284 ± 0.005 for $\alpha_0 = \alpha(0, 0, 0)$, while, in a prior communication, Boghosian and Meyer² gave the value 0.308 ± 0.010 for the same quantity. In view of the important role of α_0 in the theory of solutions as developed by Bardeen, Baym, and Pines.³ we have redetermined α in an x = 0.05535concentration solution, as a function of temperature⁴ at saturated vapor pressure, employing the same techniques used by Edwards $et \ al.^1$ and by Boghosian and Meyer.² Combining these measurements with the theoretical x dependence of α , including ³He interaction effects, enables us to determine α_0 .

In addition, by enriching the solution used, we are able to redetermine the limiting solubility of ³He in ⁴He as a function of temperature.

EXPERIMENTAL

The molar volume is related to the dielectric constant through the Clausius-Mossotti equation

$$(\epsilon - 1)/(\epsilon + 2) = \frac{1}{3} 4\pi \alpha_p/V$$
,

where ϵ is the dielectric constant, α_p is the molar polarizability, and V is the molar volume of the medium. It was shown by Peshkov⁵ and by Boghosian and Meyer⁶ that the molar polarizability of ³He and of ⁴He are equal. Thus, by measuring the capacitance of a system for which a ³He-⁴He solution acts as the dielectric, it is possible to deduce the molar volume of the solution, and thereby the parameter α .

In practice, there is likely to be stray capacitance in the system; therefore, it is necessary to measure the dielectric constant of a known material ⁴He in order to calibrate the system. One need not, however, calculate V_{34} from the data – with the attendant loss in precision – in order to find α . If one assumes that the vacuum value of the capacitor C_v is given by a capacitance C_0 which is sensitive to the dielectric plus a stray capacitance C_s which is independent of the medium between the plates, then

$$C_{v} = C_{0} + C_{s},$$

$$C_{4} = \epsilon_{4}C_{0} + C_{s},$$

$$C_{34} = \epsilon_{34}C_{0} + C_{s},$$

where the subscript 4 refers to pure ⁴He and the subscript 34 to the solution. Combining the above equations and the Clausius-Mossotti equation with Eq. (1) one finds by straightforward manipulation that

188 309

$$\alpha x = \frac{C_4 - C_{34}}{C_{34} - C_v} \times \frac{3(C_v - C_s)}{C_4 + 2C_v - 3C_s} \quad (2)$$

Two cells were constructed. The first, with the thermometric salt inside, had a very long equilibrium time (hours) when the ³He was added to the ⁴He at low temperatures; in addition, the equilibrium value indicated that approximately 20% of the ³He was not in the capacitor. The second cell was one that had been used for sonic measurements⁷ but with a parallel plate capacitor replacing the sonic components. This placed the capacitor at the bottom of the cell so that the ³He light phase filled the capacitor. The capacitor was assembled from two coaxial back-up plates which had been used in the sonic apparatus to reduce ullage. These plates were cut from a stock material, described below, and optically polished on both sides so the resultant wafer was 0.793 cm thick. The stock material was prepared by bonding a stainless-steel rod (0.635 cm o.d.) to a concentric stainless-steel cylinder $(1.167 \times 0.953 \text{ cm i.d.})$ with Emerson and Cummings "Stycast" 2850. The plates were separated by a stainless-steel washer $(1.167 \times 0.794 \text{ cm i.d.})$ of 25 μ nominal thickness. The central button of each plate had three 0.0508cm holes and the backs were grooved so that the liquid could enter the capacitor. From the published values of the molar volume⁸ and of the dielectric constant⁹ for ⁴He, C_S was found to have the value 0.30072 and C_0 the value 11.2794 at 1.170 K. This capacitor was sufficiently stable to measure the capacitance to $\pm 0.2 \times 10^{-4}$ pF with a day-to-day stability of $\pm 1 \times 10^{-4}$ pF (one unit on the General Radio 1615A capacitance bridge). Since $(C_4 - C_{34})$ was the order of 100×10^{-4} pF, it can be seen that an error of 1×10^{-4} pF introduces an error of 1% in αx . If C_s in Eq. (2) were neglected, then an error of 0.05% would be introduced in αx .

The cell was suspended from a chrome-alumsalt pill which supplied the refrigeration below 300 mK. The pill was constructed by compressing 162 g of millimeter-sized particles mixed with 136 g of powdered, reagent-grade silver chloride. The resultant cylinder was 3.5 cm diam by 12.7 cm long. A 0.635-cm hole was drilled along the axis so the pill could be suspended with a nylon rod; in addition three longitudinal grooves, at 90°, $(0.318 \times 0.318 \text{ cm})$ were milled on the side to receive the transmission lines and the ³He "switch" pump line. The ³He switch was used to remove the heat of magnetization and reduce the starting temperatures for demagnetization. The pill was coated heavily with "Apiezon N" grease, and then strips of "coil foil"¹⁰ were placed around it; these provided thermal contact to the ³He switch and to the cell, and were held

in place by tightly wound surgical tape. The pill was routinely demagnetized from 0.9-1.0 K in 10-15 min but 2 h were required before the cell came to the final temperature of 31 mK. The filling line from the cell to room temperature was of copper-nickel alloy $(0.0406 \times 0.0305 \text{ cm}; a 30)$ cm length was used between the cell and the 300 mK ³He shield, and 41 cm between the shield and the 1.2 K ⁴He bath.

The experiment was performed by first obtaining the vacuum value C_{v} as a function of temperature. The exact origin of the slight temperature dependence is not known but is probably due to residual contractions. These changes in C_v are unimportant for the calculation of α but are important if values of the molar volume are desired.

After the vacuum value had been established, an accurately known quantity of ⁴He was condensed in the cell and C_4 was measured several times as a function of temperature. Finally, the cell was cooled to 500 mK with the ³He switch, the C_4 value determined again to obtain the capacitor shift, and an accurately known volume of ³He was condensed without warming the cell. The total volume of liquid in the experiment was about 0.7 cm³ whereas the cell volume was 1.41 cm³; this was done so that no material would be in the filling line. It had the disadvantage that at temperatures where the vapor pressure became appreciable the composition became uncertain. The vacuum line in which the gases were measured is equipped with a nominal 1000 cm³ volume, a nominal 600 cm³ volume in three sections, and a constant volume manometer. The standard volumes have been accurately calibrated by weighing outgassed water contained between reference marks. The mercury level in the manometer was read with a Wild cathetometer and all pressures were reduced to standard gravity and 0 °C. The greatest error in the quantity of gas, and therefore the composition, arises from temperature gradients between the manometer and the gas bulbs; these were on occasion as great as 0.3° or about 0.1%.

The first solution (x = 0.05535), which remained in a single phase to the lowest temperature, was used to determine $\alpha(T^*)$ from 31 mK to 1.2 K. The results are tabulated in Table I, where the entries have been terminated at $T^* = 525$ mK because of uncertainties in the composition due to the vapor phase. After these runs, the solution was enriched to x = 0.09575 for two series of limiting solubility measurements, and then diluted to x = 0.07808 for an additional series of solubility measurements.

The limiting solubility as a function of temperature was obtained by substituting the values of C_{34} from the latter measurements in Eq. (2) along with the appropriate C_4, C_v , and $\alpha(T^*)$, obtained from measurements on the first solution. The re-

310

Temp (mK)	C ₃₄ (pF)	C4 ^a (pF)	Cv ^b (pF)	α
Series A				
31.7	12.18218	12.19234	11.54829	0.2841
72.5	12.18221	12.19238	11.54833	0.2844
92.9	12.18224	12.19239	11.54835	0.2838
101.3	12.18227	12.19240	11.54836	0.283_{2}
143.3	12.18230	12.19243	11.54838	0.283 ₂
205.5	12.18239	12.19247	11.54842	0.2818
294.6	12.18250	12.19252	11.54847	0.2801
437.7	12.18267	12.19256	11.54852	0.2764
Series B ^C				
37.6	12.18224	12.19235	11.54830	0.2846
88.8	12,18230	12.19239	11.54834	0.2841
128.4	12.18236	12.19242	11.54837	0.2832
189.6	12.18245	12.19246	11.54841	0.2818
191.4	12.18243	12.19246	11.54841	0.2824
276.8	12.18256	12,19251	11.54847	0.2801
524.6	12.18285	12,19259	11.54854	0.2741

TABLE I. Experimental values of the cell capacitance: in vacuum, C_v ; filled with ⁴He, C_4 ; and with ³He-⁴He solution, C_{34} ; and the derived fractional excess molar volume of ³He, α (.055, T).

^aFrom a smooth curve of C_4 versus T^*_{\pm} .

^bFrom a smooth curve of C_v versus T^* .

sults plotted against $(T^*)^2$ are displayed in Fig. 1. The straight line through the data was obtained by a least-squares fit, for which the equation is

$$x^{l}(T^{*}) = (0.0660 \pm 0.0006)[1 + 9.3(T^{*})^{2}]$$

The constants are slightly different from those

^cAdjusted by -7×10^{-5} pF for condenser shift.

quoted by Edwards $et al.^1$ but the agreement is quite satisfactory. The temperature dependence is consistent with theoretical calculations based on the ³He-³He effective interaction. The limiting solubility at absolute zero, $x_0 = 0.0660$, is almost the average of the value, 0.064 ± 0.0006 , given by Edwards et al., and the value 0.0684 ± 0.0006

FIG. 1. The limiting solubility of ³He in ⁴He as a function of $(T^*)^2$, the square of the magnetic temperature.

given by Schermer *et al.*¹¹ It should be noted that in these calculations we used $\alpha = \alpha(0.055, T)$ instead of $\alpha(x, T)$; this could produce deviations at x = 0.095. The values of $\alpha(T^*)$ are in reasonably good agreement with those quoted by Edwards *et al.*, and $\alpha(0.055, 0)$ is in exact agreement with Edwards *et al.*¹

THEORETICAL

The molar volume of a dilute solution can be calculated from the Gibb's free energy per particle μ , by

$$V_{34} = (\partial \mu / \partial P)_{x, T} \quad , \tag{3}$$

where μ is given in terms of the ³He and ⁴He chemical potentials by

$$\mu(x, T, P) = x\mu_3(x, T, P) + (1 - x)\mu_4(x, T, P) \quad . \quad (4)$$

,

The Gibb's-Duhem relation allows us to write

$$\left(\frac{\partial \mu_4}{\partial x}\right)_{T,P} = -\frac{x}{1-x} \left(\frac{\partial \mu_3}{\partial x}\right)_{T,P}$$

so that by integration we have

$$\mu(x, T, P) = (1 - x)\mu_4(0, T, P) + x\mu_3(x, T, P)$$
$$- (1 - x)\int_0^x dx' \frac{x'}{1 - x'} \frac{\partial \mu_3(x', T, P)}{\partial x'} \quad . \tag{5}$$

Now the 3 He quasiparticle energy can be written in the form

$$\epsilon_{p} = \epsilon_{0}(T, P) + p^{2}/2m + \sum_{p'} f_{pp'}^{n} p', \quad (6)$$

where ϵ_0 (a negative number) is the binding energy of a single ³He atom to pure ⁴He; $m(\approx 2.34 m_3 \text{ at} T=0 \text{ and } P=0)$ is the effective mass³ of a single ³He atom in pure ⁴He;

$$n_{p} = (e^{(\epsilon_{p} - \mu_{3})/KT} + 1)^{-1}$$

is the ³He quasiparticle distribution function; and $f_{\vec{p},\vec{p}'}$ is the Landau parameter describing the ³He-³He effective interaction.³ Thus, for a dilute solution μ_3 is of the form

$$\mu_{3}(x, T, P) = \epsilon_{0}(T, P) + \mu_{F}(x, T, P) + x\epsilon_{1}(x, T, P) ,$$
(7)

where μ_F is the chemical potential of a free Fermi gas of mass *m* at temperature *T* and density n_3 equal to that of the ³He in solution, and ϵ_1 is a correction roughly proportional to the strength of the ³He-³He effective interaction.

We now expand μ for small x. It is sufficient at present to replace $\epsilon_1(x, T, P)$ by $\epsilon_1(O, T, P)$. On the other hand, μ_F is of the form $KT_Fg(T/T_F)$, where g is a known dimensionless function obeying g(0) = 1;

$$T_F = p_F^2/2mK$$

is the ³He Fermi temperature; and $p_F = \hbar (3\pi^2 n_3)^{1/3}$. Thus, μ_F cannot be expanded directly in integer powers of x. Instead, we use the fact that for a free Fermi gas at fixed T

$$d\mu_{\mathbf{F}} = \frac{3}{2} \left(\frac{\partial P_F}{\partial n_3}\right) \frac{dT_{\mathbf{F}}}{m_{\mathbf{F}}^T} , \qquad (7')$$

where $P_{\rm F}$ is the pressure of a free Fermi gas of density n_3 , mass m, and temperature T. Equation (7') includes any variation of m. Then by a short calculation we find that up to terms of the order of $x^2 K T / m_4 s_0^2$, for $T \gg T_{\rm F}$, and $x^2 K T_{\rm F} / m_4 s_0^2$, for $T \ll T_{\rm F}$

$$\mu(x, T, P) = \mu_4(0, T, P)(1 - x) + x [\epsilon_0(T, P) + \mu_F(x) - P_F(x)/n_3] + \frac{1}{2} x^2 \epsilon_1(0, T, P) \quad . \tag{8}$$

 m_4 is the ⁴He atomic mass, and $s_0 = 238$ m/sec is the first sound velocity of pure ⁴He at T = 0 $[m_4 s_0^{-2}/K = 27.2 \text{ K}]$. The remaining terms $\sim x^{5/3}$ not included in (8) contribute ≤ 0.001 to α in a 5.5% solution.

The molar volume can be calculated from (8) and (3). Using (7), we find

$$V_{34}(x, T, P) = V_4 + x \left(V_3 - V_4 + \frac{3}{2} \frac{P_F}{n_3} \frac{1}{T_F} \frac{\partial T_F}{\partial P} \right) + \frac{x^2}{2} \frac{\partial \epsilon_1(0, T, P)}{\partial P} , \qquad (9)$$

where $V_4(T, P)$ is the molar volume of pure ⁴He, and $V_3(T, P) \equiv \partial \epsilon_0(T, P)/\partial P$. Comparison of Eq. (9) with Eq. (1) shows that to the present order in x,

$$\alpha(x, T, P) = \alpha(0, T, P) + \frac{P_{\rm F}}{n_3} \frac{\partial n_4}{\partial P} \left(1 - \frac{3}{2} \frac{n_4}{m} \frac{\partial m}{\partial n_4} \right) + \frac{x}{2} n_4 \frac{\partial \epsilon_1(0, T, P)}{\partial P} \quad , \quad (10)$$

where $n_4 = L/V_4$. Now, $\alpha(0, T, P) = (V_3/V_4) - 1$ can, to a high order of accuracy, be replaced by its T = 0 value, and $\partial n_4 / \partial P$ replaced by $1/m_4 s_0^2$. It is convenient to define Y(T) by

then $\alpha(x, T, P) = \alpha_0(P) + Y(T)$

$$\times \frac{P_{\rm F}^{2}}{5mm_{4}s_{0}^{2}} \left(1 - \frac{3}{2} \frac{n_{4}}{m} \frac{\partial m}{\partial n_{4}}\right) + \frac{x}{2} n_{4} \frac{\partial \epsilon_{1}(0, T, P)}{\partial P} .$$
(11)

Aside from the ϵ_1 term, this expression agrees with that given in Refs. 1 and 2 to lowest order in x (e.g., $x^{2/3}$ at T = 0). We emphasize that Eq. (11) includes the x dependence of the phonon frequencies. The principal temperature dependence is in Y(T).

Figure 2 shows $\alpha(0.055, T, 0)$ as listed in Table I. The solid line represents Eq. (11), neglecting the minor contribution from temperature dependence of ϵ_1 , and drawn through the point at 128.4 mK. The value $(n_4/m)(\partial m/\partial n_4) = 1.12$, which gives a good theoretical fit¹² to the temperature-dependence measurements 13 of the first sound velocity in dilute solutions of ³He in ⁴He, was used here; it happens also to give the best fit to the presently observed temperature dependence of α . This value is 10% less than that given in Ref. 1. The

excellent agreement between theory and experiment, which extends to $T > T_F$, provides a further confirmation of the description of the ³He as a gas of quasiparticles obeying Fermi-Dirac statistics. Extrapolating back to T = 0 we conclude that

$$\alpha_0 + \frac{1}{2} x n_4 \frac{\partial \epsilon_1}{\partial P} = 0.2882 \quad . \tag{12}$$

To deduce α_0 we must know the pressure dependence of the Fermi-liquid correction ϵ_1 . The main Fermi-liquid correction to μ_3 can be approximated by $\epsilon_1 = \frac{1}{2} n_3 v_0$, where $v_0 \approx -\alpha_0^2 m_4 s_0^2 / n_4$ is the ³He-³He effective interaction at zero momentum transfer. Then

$$\frac{1}{2} x n_4 \frac{\partial \epsilon_1}{\partial P} \approx -\frac{1}{2} x \alpha_0^2 \left(\frac{n_4}{s_0} \frac{\partial s_0}{\partial n_4} + \frac{n_4}{\alpha_0} \frac{\partial \alpha_0}{\partial n_4} \right) , \qquad (13)$$

which is ~ -0.0026 for a 5.5% solution. Exchange contributions to ϵ_1 could modify this result by $\sim 30\%$, but since little is known about the pressure dependence of the ³He-³He effective interaction at finite momentum transfer, we cannot estimate them accurately. We can conclude then that

 $\alpha_0 = 0.286 \pm 0.001$,

in excellent agreement with Ref. 1.

FIG. 2. The fractional relative molar volume α of ³He in ⁴He as a function of T^* , the magnetic temperature, for a solution containing 5.535 mole% ³He at saturated vapor pressure. The solid line is the theoretical fit normalized to the point at 128.4 mK.

[†]Work performed under the auspices of the U.S. Atomic Energy Commission.

Ind.

[§]Research supported in part by National Science Foundation Grant NSF-GP 7765.

*Atomic Energy Commission Postdoctoral Fellow; present address: St. Lawrence College, Canton, N.Y. [‡]Atomic Energy Commission Postdoctoral Fellow;

present address: University of Indiana, Bloomington,

¹D. O. Edwards, E. M. Ifft, and R. E. Sarwinski, Phys. Rev. 177, 380 (1969); E. M. Ifft, D. O. Edwards, R. E. Sarwinski, and M. M. Skertic, Phys. Rev. Letters 19,

831 (1967).

²C. Boghosian and H. Meyer, Phys. Letters <u>25A</u>, 352 (1967).

³J. Bardeen, G. Baym, and D. Pines, Phys. Rev. <u>156</u>, 207 (1967).

⁴All experimental temperatures reported in this paper are T^* , the magnetic temperature measured with a right circular cylinder of cerium magnesium nitrate (CMN) with height equal to diameter. The cylinder was a compact of 80 volume% CMN-20 volume% silver chloride. This procedure for reporting the temperature was adopted by consensus at the Eleventh International Conference on Low Temperature Physics, St. Andrews, Scotland, 1968.

⁵V. P. Peshkov, Zh. Eksperim. i Teor. Fiz. <u>33</u>, 833 (1957) [English transl.: Soviet Phys. - JETP <u>6</u>, 645 (1958)].

⁶C. Boghosian and H. Meyer, Phys. Rev. 152, 200

(1966).

⁷B. M. Abraham, Y. Eckstein, J. Ketterson, and J. Vignos, Cryogenics 9, 274 (1969).

⁸E. C. Kerr and R. D. Taylor, Ann. Phys. (N. Y.) <u>26</u>, 292 (1964).

⁹C. E. Chase, E. Maxwell, and W. E. Millett, Physica <u>27</u>, 1129 (1961).

 $\overline{10}$ A. C. Anderson, G. L. Salinger, and J. C. Wheatley, Rev. Sci. Instr. 32, 1110 (1961).

¹¹R. I. Schermer, L. Passell, and D. C. Rorer, Phys. Rev. <u>173</u>, 277 (1968).

¹²G. Baym, in <u>Proceedings of the Eleventh International</u> <u>Conference on Low Temperature Physics</u>, edited by J. F. Allen, D. M. Finlayson, and D. M. McCall (University of St. Andrews Printing Department, St. Andrews, Scotland 1969), p. 385.

¹³B. M. Abraham, Y. Eckstein, J. B. Ketterson, and M. Kuchnir, Phys. Rev. Letters 20, 251 (1968).

PHYSICAL REVIEW

VOLUME 188, NUMBER 1

5 DECEMBER 1969

Quantum Corrections to the Coexistence Curve of Neon near the Triple Point

Jean-Pierre Hansen and Jean-Jacques Weis

Laboratoire de Physique Théorique et Hautes Energies, Faculté des Sciences,[†] Orsay, France

Quantum corrections to the free energy of a classical Lennard-Jones system are calculated, using the well-known Wigner expansion in powers of \hbar . In the vicinity of the triple point of neon, the \hbar^4 term turns out to be about 40 times smaller than the \hbar^2 term, which justifies truncation of the series after the first correction term. The resulting changes in the densities and pressures of melting and condensation transitions give rise to a phase diagram which is in good agreement with experimental neon results.

I. INTRODUCTION

In a recent paper,¹ Hansen and Verlet have studied the gas-liquid and fluid-solid phase changes of a classical system of particles interacting through the Lennard-Jones interatomic potential

$$v(r) = 4\epsilon \left[(\sigma/r)^{12} - (\sigma/r)^6 \right]. \tag{1}$$

The basic idea of that work was to calculate the free energies of the condensed and solid phases by integrating the equation of state obtained by the Monte Carlo method along an isothermal reversible path devised for that purpose. A Maxwell double-tangent construction allowed them to obtain the transition densities and pressures which turned out to be in good agreement with experimental argon data.

It is well known that the coexistence curve of

neon and, in particular, its triple point differ sensibly from those expected by the law of corressonding states.² Since the neon atomic mass is about half the argon atomic mass, and as the triple-point temperature is 24.56 °K compared to 83.81 °K for argon,³ it is natural to expect that the deviations from the law of corresponding states are due to quantum effects. This is confirmed by the fact that under triple-point conditions the thermal wavelength in solid neon is only about 4 times smaller than the average interparticle distance; in reduced units (i.e., $\sigma = 1$, $\epsilon/k = 1$), we found $\lambda = (2\pi\hbar^2/mkT)^{1/2}$ to be equal to 0.265, whereas the nearest-neighbor distance is approximately d = 1.1.

In our calculations, we used the values of the potential parameters determined by Brown in the solid phase under ground-state conditions,⁴ i.e.,