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Total and excitation-transfer cross sections for collisions between 2 S metastable and ground-
state helium atoms have been calculated in the perturbed-stationary-state approximation,
using the best available adiabatic Z„and Z& potential curves for He2, and in the "diabatic"
approximation, using a repulsive Z& curve, constructed so as to have the appropriate united-
atom limit. Both the total and excitation-transfer cross sections are found to show an oscil-
latory energy dependence. The detailed nature of these oscillations is found to be different
for the adiabatic and "diabatic" descriptions. However, the average magnitude of the cross
sections does not show this sensitivity. Differential cross sections have also been calculated
and show considerable structure. Existing experimental measurements are included and com-
pared with these calculations.

I. INTRODUCTION

The interaction between metastable and ground-
state helium atoms has been of considerable inter-
est to researchers for a long time. Starting with
the suggestion by Nickerson, ' that the existence
of a diffuse 600 A band in a helium discharge im-
plied the existence of a mmrimum in the Z+ inter-

Q
action potential, many experimentaP '2 and theo-
retical" "investigations have proceeded to
demonstrate that maxima do exist in the inter-
action potentials (including nuclear repulsion} be-
tween metastable and ground-state helium atoms.

Since the original theoretical investigation of
Buckingham and Dalgarno, ' many elaborate calcu-
lations have been carried out in which the "Z
and '&'Zz potentials, which arise from 2'~'S andi3 + is
1'8 separated atoms, are all seen to possess po-
tential maxima lying outside attractive potential
wells. "~" " The maxima in the 'Z+ and 'Z

g „g.'curves apparently arise from avoided "crossings"
with higher molecular states arising from the
next highest separated-atom configuration. "~"~"
However, there is no current explanation of the
maxima occurring in the 'Z~ and 'Z~ curves. "

The nature of the 'Z+ and 'Z+ molecular states
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is of particular interest since the 2'8 atomic state
of helium is highly metastable, "and thus suitable
for collisional studies in various types of experi-
ments. Recently, Fitzsimmons, Lane, and
Walters" measured the diffusion coefficient for
2'8 metastable helium atoms in ground-state heli-
um gas over a wide range of temperatures from
1 to 300'K. They used these results to construct
semiempirical 'Z„and 'Z+ potential curves at
large separations. Having fixed the potentials in
this manner, they then calculated total and excita-
tion-transfer cross sections at thermal energies
and found excellent agreement with the respective
measurements of Rothe, Neynaber, and Trujillo"
and Colegrove, Shearer, and Walters. '

In their paper, Fitzsimmons et a/. have pointed
out that the total and diffusion cross sections in-
volve averages of cross sections associated with
the gerade V (R}and usgerade V (R) interaction
potentials, and are therefore insensitive to the
precise form of the difference potential function
&V(R) = V (R) —Vs(R). The excitation-transfer
cross sec on is, however, sensitive to d V(R).
They found that the parametrized form & V(R}
= y exp(- rR), with y = 1.54 a. u. and r = 1.43ao ',
was consistent with the difference between the
'Z+ curve of Greenawalt" and the 'Z+ curve ofQ
Matsen and Scott" (both adjusted in the manner of
Klein, Greenawalt, and Matsen") over a limited
region of R just outside the region of the potential
maxima. The difference potential ~ V actually
used by Fitzsimmons et a/. in their calculation of
the excitation-transfer cross section, however,
has been found to be larger than that above by an
additive term 2.93 exp(- 1.62R) a.u. , and does
result in excitation-transfer cross sections in
good agreement with the low-energy measure-
ment. " This should be considered a minor cor-
rection to their paper since the determination of
the long-range potentials using the diffusion mea-
surements and the good agreement of the total
cross sections with the measurements are not
affected by this change in & V(R). In this paper,
we will continue to use the long-range form for
4V(R) given by Fitzsimmons et al. We will show,
however, how a change in & V(R) of the magnitude
mentioned above affects the cross sections.

The comparisons with thermal measurements
are, however, only relevant to the long-range
behavior of the interaction potentials, and the en-
ergies are so low that nonadiabatic effects are
certainly expected to be negligible. In order to
gain information about the short-range (i. e. ,
region inside the repulsive maxima) dynamic inter-
actions, comparisons must be made between labor-
atory measurements at higher energies and the re-
sults of theoretical investigations, carried out in
such a way as to make clear the differences which
result from alternative theoretical descriptions.
We are most interested, for example, in deter-

mining where and in what manner the adiabatic
approximation breaks down. At the same time
we want to find out to what degree of validity the
collision can be described by a pair of potential
curves, adiabatic or otherwise. A complete quan-
tum-mechanical treatment of the problem is, of
course, very complicated. In the classic method
of perturbed stationary states, one represents
the time-independent wave function of the system
as a superposition of adiabatic molecular electronic
states, many of which are coupled in the collision
problem by gradient-interaction terms. This
coupling is particularly large near avoided cross-
ings of the adiabatic curves and gives rise to tran-
sitions between electronic states. In cases where
the coupling is strong, the adiabatic approximation,
which consists of ignoring these gradient-inter-
action terms, should be expected to give poor re-
sults. Approximate methods to handle the "curve-
crossing" problem were developed at a very early
stage by Stueckelberg, 27 Landau, "and Zener";
however, these methods are uncertain and sub-
ject to a variety of criticisms. Almost all calcu-
lations which involve coupling between electronic
states have been carried out in the impact-param-
eter approximation, ' y' and consequently are
reliable only at high energies.

An alternative approach to this type of scattering
problem is the diabatic method of Lichten, "
in which curve crossings which would be forbidden
in the Born-Oppenheimer approximation are al-
lowed to occur in the collision problem. Thus, the
collision is still described by well-defined poten-
tial curves; however, these are not the familar
Born-Oppenheimer adiabatic curves and their
precise definition is open to some interpretation. "
Applications of this method to the He-He+ problem,
however, have been remarkably successful. Using
this approach, Marchi and Smith3' were able to
reproduce the magnitude and many aspects of the
structure in the differential cross sections ob-
served by Lorentz and Aberth. " Slight adjust-
ments of the He, interaction potentials have been
shown to yield even better agreement with the
measurements. ~ Thus, while it must be said
that the diabatic approach is not completely justi-
fied, it does, in some cases, appear to be a good
description.

In the present paper, we give the results of cal-
culations of the differential, total, and excitation-
transfer cross sections for collisions between 2'8
metastable and ground-state helium atoms over a
wide range of energies. Cross sections are ob-
tained in both the adiabatic and diabatic approxi-
mations, and the differences are illustrated and
discussed. In both descriptions, structure is ob-
served in the energy dependence of the excitation-
transfer and, to a lesser extent, in the total cross
sections. The origin of this structure is discussed.
Finally, comparisons are made with existing mea-
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surements of the excitation-transfer cross sec-
tions. At the time our results were first re-
ported, ~ only preliminary measurements of the
excitation-transfer cross section ' had been made,
and these showed a smooth energy dependence.
Refinements of these measurements have since
verified the existence of structure. The details
will be given later in the paper.

II. THEORY

The general formulation of the atom-atom col-
lision problem may be found in the liter-
ture, " "&~' "and we will not attempt to repeat
such a detailed description.

In the two-st, ate approximation to the method of
perturbed stationary states, the total wave function
for the diatom He(2'S)-He(1'S) system may be writ-
ten

+(lt, r. ) = F (H) q('Z'
~
R, r.)

g g

+F (R)g(~Z ~R, r.),

where the Z axis is taken along the direction of
incidence of the 2'S helium atom. Because of
the indistinguishability of the helium nuclei, the
correct wave function must be symmetric with
respect to nuclear interchange (for He'). Thus
q' in Eq. (1) is properly symmetrized, and the
coefficients e „chosen so as to yield a plane
wave of 2'S atoms incident along the Z axis.
Massey and Smith" have treated this problem in
detail and show that the total scattering ampli-
tude is given by

F(8)= 1/2[f (8)+f (8)

+f (v-8)-f (v-8)] . (6)
g Q

Due to the forward peaking of f& s(8) for most en-
ergies of interest, the first two terms dominate at
small angles and are identified with direct elastic
scattering while the last terms dominate for large
angles and are interpreted as excitation transfer.
The individual scattering amplitudes f „(8)may
be represented in terms of a standar partial-
wave expansion:

[v '~k —(2M)V (R)]F (R)=0,R g, u g, u
(2)

where k' is related to the initial relative kinetic
energy EI by

k ' = (2M)E„

and M is the reduced mass in atomic units. The
interaction potentials are defined as

V (R) = E (R)+ 4/R —E(l'S}—E(2'S), (4)
gyQ

gal@

where E (R) and Ez(R} are the respective elec-
tronic energies of the 'Z& and 'Z„states of He„
both of which asymptotically approach E(1'S)
+E(2'S), i. e. , the sum of the atomic energies
for the ground and 2'8 metastable states of heli-
um. The required solutions of Eq. (1}have the
asymptotic form

F (R) -o. [exp(ikZ)

gal@

gyQ

+ R-' exp(ikR)f (8)j,

where R denotes the relative positions of the
two atoms, and the g functions represent the elec-
tronic 'Z& and 'Z„+ state wave functions. The
functions Eg and E„describe the scattering state
and, in cases where the R dependence of the elec-
tonic wave functions is weak, are taken to satisfy
the uncoupled equations (atomic units are used
throughout):

f (8)=(2ik) ' Q [exp(2iq )- lj
0 gy Q

= j [k' —(2M)V (R) —(l+ ~) /R']~dR

gal@

Rp gyQ

—j, [k' (i+ -,'}'/R'] dR, -
p

(8)

with Rp and R,' the respective zeros of the inte-
grands (outermost zero in the case of Ro); Ro is
often called the classical turning point or distance
of closest approach.

The integrated total cross section may be ex-
pressed as

Q =Q +Q +Q. ,

where Q =-,'v J ~f (8)+f (8)~'»n8d8
p g Q

= (v/k') Q (2l+1) [2sin'('I} )
l

l=0

+2sin (r/ )- sin (q —g )]; (10}
2 l . 2 l l

Q g Q

x(2l+ l)P (cos8),
A A lwhere cose = R Z, and where the gg, ~ are scat-

tering phase shifts associated with the potentials
V& „(R). The phase shifts are accurately deter-

)
mined, for the energies considered here, by the
the mell-known semiclassical JWKB approx-
imation, "~"where the phase shifts are given by
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Q = ~v J ~f (s —8)-f (v-8)~ sin8d8
p g Q

V (R) = V (R)+ y e
g 8

(14}

=(s/k ) Q (2l+1)sin (q -q }=@ —Q
. 2 l l

g Q T
(»)

and where Q is a cross term due to interference
of direct and transfer scattering and is very small
for all cases considered. The total differential
scattering cross section is then given by

where @=0.820 a.u. , P=1.6ap ', y=1. 54 a. u.
and r = 1.43a, '. We have constructed analytic
forms which reproduce the potentials of Matsen
and Scott" and Greenawalt" for small separations
and go over smoothly to the semiempirical forms
of Eqs. (14) for R & 6a,. These interactions are
given in Fig. 1.

IV. PROCEDURE
dQT(8)/dfl = I&(8) I' (12)

and the differential transfer cross section by

III. ADIABATIC INTERACTION POTENTIALS

The 'Z& and 'Zz interaction potentials, re-
spectively denoted V (R) and Vz(R), have been
the subject of several ah infto investigations, since
Buckingham and Dalgarno'~ first obtained a re-
pulsive barrier in the V„(R}curve, lying outside
the attractive region of the potential. These more
recent investigations, involving much more elabo-
rate variational calculations, have demonostrated
that the "hump" is real"~"&"~" and that the V (R)
curve possesses one as well. "y" In the latter
case, the hump arises from an avoided crossing
of the 'Z curve corresponding to the separated-
atom sta es He(ls'1'S) and He(ls2s2'S), and the
adjacent 'Z& curve just above, which corresponds
to the separated atom states He(ls'1'S)
+ He(ls2P2 P). Repulsive barriers have also been
predicted and found in several other excited states
of He, "y"

In the adiabatic calculations to be discussed here,
we have used, for separations R& 6a„ the 'Z+
curve of Matsen and Scott," as adjusted by Klein,
Greenawalt, and Matsen" and the 'Z curve of
Greenawalt, ' adjusted in the same manner. These
curves were obtained by the standard variational
method using, as a trial wave function, a linear
combination of valence-bond single- configuration
basis functions. The nonlinear parameters in the
basis functions, as well as the linear coefficients,
were varied at each internuclear separation. For
larger separations, viz. , R& 6a„ it has been
shown by Fitzsimmons, Lane, and%alters" that
these potentials are consistently too large, in
that they predict diffusion cross sections much
larger than the measured values for temperatures
of 1 to 300'K. These authors suggest that a, good
representation of the interaction potentials for
R&6ap is given by

V (R)=o.R2e ~
Q

~Yg( Zg)

O
Q

K
~ -.oz-

'st'„( g+„)

I

4
R (ao)

FIG. 1. Adiabatic Z& and Zz interaction potentials
(Refs. 13, 19, and 20) bebveen ground-state and 2 8
metastable helium atoms.

The integrals involved in the J%KB approxima-
tion to the phase shifts [see Eq. (18)] were, in all
cases, evaluated with a sixth-order quadrature
formula. A step size of 0. 01ap was always suf-
ficient to limit errors in the integration to less
than 0. 3%. Phase shifts calculated in this way
were, for a variety of values of l and k, compared
with the results of a direct numerical solution of
the differential Eq. (2), using the Numerov meth-
od.4' Except for cases involving classical "or-
biting, " ' the phase shifts determined in these two
ways were in excellent agreement. For the ener-
gies of principal interest here, say E&0. 1 eV
(k & 6. 19), the JWKB method is found to be very
good.

The totaL cross section Q& and the exeitation-
transfer cross section Qt were calculated accord-
ing to Eqs. (9)-(11). The phase shifts were cal-
culated at convenient intervals in l, and a five-
point interpolation was used to obtain all the re-
maining values necessary for evaluation of the sum-
mations. In the energy range 0.37 &E&2.3 eV,
the interpolation became inaccurate due to the
strong l dependence of the phase shifts, and it
was necessary to calculate each phase shift di-
rectly. In the calculation of the transfer cross
section Q& of Eq. (11), the necessary phase shifts
were also determined either directly or by inter-
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polation and the summation carried out term by
term. Differential cross sections were calculated
using Egs. (12) and (13). All procedures and com-
puter codes were checked by repeating the calcu-
lations of Marchi and Smith on total scattering of
He by He, using interaction potentials given by
these authors. "

We shall first discuss cross sections obtained
using the adiabatic 'Z„+ and 'Z+ interaction poten-
tials discussed above. Next, we will indicate how
the total and transfer cross sections respond to
small changes in the adiabatic curves. Finally,
we will discuss the behavior of cross sections
corresponding to a diabatic picture in which a
geode potential is constructed which qualitatively
represents a crossing situation and is repulsive
at all separations.

V. COLLISION ON ADIABATIC INTERACTION
POTENTIAL CURVES

The total cross section of Eq. (9) may be con-
sidered an average of elastic cross sections de-
fined for the g and u curves separately, viz. ,

q =1/2(q +q ),
g Q

where q = Z (2l + 1)sin'(r1 ) .4m' l
g, k' gq ZL

In Figs. 2 and 3 are plotted curves for Q, Q~,
and qT as functions of energy. The totaFcross
section at thermal energies is completely deter-
mined by the long-range interaction of Eqs. (14)
and is in good argeement with the measurements
of Rothe, Neynaber, and Trujillo" as discussed
elsewhere. ' The cross sections all vary
smoothly for energies less than about 0. 15 eV for
Q„and 0.35 eV for Qg, above which oscillations
set in. These energies correspond to the barrier
heights of the two potential curves. If the true
barriers are indeed smaller, as has been sug-
gested by other investigators, "one may expect

160

120

80
'O

40

I

O. l

I

1.0
E (eY)

I

IOO

FIG. 3. Total cross section in the adiabatic approxi-
mation.

2V
5eY

oscillations to set in at even lower energies. In
order to illustrate how these oscillations arise,
we will compare the scattering phase shifts at
energies corresponding to relative maxima and
minima in the cross sections. In Figs. 4 and 5
are plotted phase shifts gg~ and g„E as functions
of l for the two energies5. 95 and 11.2 eV, cor-
responding, respectively, to a relative maximum
and minimum in Q . It is seen that the variation
in l of the negative phase shifts —q „closelyt

resembles the variation in 8 of the respective
interaction potentials, including the minimum
and maximum. For relatively small values of E,

away from the maxima or minima in the -gg „
curves, the phase shifts are rapidly varying
with l, and contributions to the cross sections
Q „may be well represented by the random-
pEase approximation, where sin27I& „f in Eq. (15)
is replaced by its average value of —,

' for all E

values in this range of rapid variation. The en-
ergy variation of these contributions is smooth
and therefore is not associated with the structure.
Values of l in the vicinity of the maxima and
minima in the -q „~ curves do not, however,
make random contributions to the cross sections,

160-
9&Ii

I

300

120

E

So'O

I-

40

OI 10
E (ev)

100

FIG. 2. Total cross sections Q& and Q„calculated
in the adiabatic approximation.

FIG. 4. Phase shifts for gerade and ungerade scat-
tering at 5.95 eV (adiabatic approximation).
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2r

9Q,U

"27r-

FIG. 5. Phase shifts for gerade and ungexade scat-
tering at 11.2 eV (adiabatic approximation).

since the variation of the g& „with l is slow and
many phase shifts in this region m;Re similar
contributions. If the interaction potentials are
strong enough, a variation in energy may take
the maximum or minimum phase shifts through
series of even and odd multiples of —,'m, giving
rise to an oscillatory contribution to the cross
sections from these values of l. This type of
structure is present in cross sections associated
with a large number of atomic systems and, in
cases involving a single interaction potential, the
number of maxima observed can be taken as a
measure of the number of bound vibrational states
in the diatom system. ~ In the present case, the
presence of potential maxima makes the structure
somewhat more complicated.

In Fig. 4, we see that at 5. 95 eV —gg has a re-
lative minimum value of = —,'n at l = 75, and a maxi-
mum of =

~& at l = 120. Thus, we expect a rather
large nonrandom contribution to Q . This is in-
deed seen to be the case in Fig. 6, which shows
the partial-wave contributions to Q& for 5. 95 eV.
At 11.2 eV, however, we see in Fig. 5 that -g&
has a relative minimum value just under —,

'
m at

l = 110 and a maximum of = m at l = 170, which in-

V (R) = (2M/m)V (R)+ (l+ —')'/R'
eff

gal@

(16)

possesses a maximum which increases with in-
creasing f. For a given energy, (i. e. , k ) it is
possible to find two adjacent values of l such that
the smaller is associated with a small turning
point Ro(i. e. , classically, the particle passes
over the barrier) and the larger, a large turning
point (classically, the particle is turned back by
the outer barrier). This discontinuous behavior
in R, is, of course, reflected in the phase shifts.
A typical case is illustrated in Fig. 8 for an en-
ergy of 0. 182 eV. We have also calculated the

dicates a rather small nonrandom contribution to

Q&. This is easily seen in Fig. 7, where l values
in the range 160 to 200 are found to make essen-
tially no contribution to Qg. The ungerade phase
shifts are found to make rather similar contribu-
tions to Q„ for the lower energy of 5.95 eV. How-

ever, at 11.2 eV, the minimum value of —g„,
which occurs for i=100, is just above —2m, while
the maximum, occuring for i = 220, is very close
to —,

'
m. Thus, these nonrandom contributions tend

to cancel, and we have no well-defined minimum
in Q~ at E= 11.2 eV. This type of interference
between the regions of phase-shift maximum and
minimum results in an irregular structure in the
individual curves for Q& and Q„. Thus, the total
cross section QT shows an irregular energy de-
pendence as compared with the smooth undulations
commonly observed in cross sections for other
systems. At somewhat higher energies, the phase
shifts become smaller, and more slowly varying
in energy, and the structure disappears.

For energies in the range of about 0.09 to 5. 9
eV the phase shifts are found to possess discon-
tinuities in l due to the phenomenon of classical
orbiting. 4' This may be easily illustrated by con-
sidering the first integrand in the JWKB formula
for the phase shifts given in Eq. (8). For l values
not too large, the "effective" potential

96

80-

cv 64"
E
CP

48-'O

& o
Q 32

.95 eV 80-

Ol

E 48-
'O

32-
C3

E= ll.2 eV

l00 200 300 400 l00 200 300

FIG. 6. Partial-wave contributions to the total geode
cross section Q& at 5.95 eV {adiabatic approximation).

FIG. 7. Partial-wave contributions to the total gerade
cross section Q at 11.2 eV (adiabatic approximation).
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IO 20 30 40 50

mentioned earlier, this somewhat larger difference
potential is the form actually used by Fitzsimmons
et al. " and is in good agreement with the low-en-
ergy measurements. " We will, however, continue
to use the long-range difference potential of
Eqs. (14) throughout this paper.

The energy dependence of Qt is also seen to pos-
sess considerable structure for energies sufficient
to "clear" the barriers in the interaction potentials.
For energies between 5.9 and 9.3 eV, Qt increases
from a minimum value of 10 &&10 "cm' to a maxi-
mum value of 13.4x10-" cm', a change of about
25%). In order to illustrate how this structure
arises, we have plotted in Fig. 10 the phase dif-
ferences ) g&&- g„ I versus l for several energies.l

Referring back to Eq. (11), we note that the partial-
wave contributions to Qt are given by

FIG. 8. Comparison of JWKB and exact gerade phase
shifts at 0.182 eV in a region of orbiting (adiabatic ap-
proximation) .

phase shifts at this energy by numerically solving
the differential equations of Eq. (2). These values
are also given for comparison. The deBroglie
wavelength is about 0. 9a, for this energy, and the
error in the JViKB approximation is seen to be
small except in the immediate vicinity of the or-
biting value of the angular momentum. The re-
sulting error in the cross sections is very small.

The excitation-transfer cross section Qt of
Eq. (11) is plotted in Fig. 9 as a function of en-
ergy. These cross sections were calculated
using "adiabatic" interaction potentials. The solid
curve corresponds to use of the adiabatic inter-
action potentials of Eqs. (14). The dashed curve
shows the effect of increasing the long-range dif-
ference between the gerade and ungerade potentials
by an additive term of the form 2. 98 e (-1.62R)
a. u. in the region R & 6a„and zero elsewhere. As

q = (w/k') (2f+ 1)sin'(q - g ) .l l L

t g Q

In the energy range 4. 55 to 13.35 eV, the phase-
difference curves are flat for small values of l
and roughly 100 partial waves contribute equally
to Qt. This contribution is small, for example,
at 5. 95 eV, where the phase differences are of
the order 3m, but somewhat larger for 8. 55 eV,
where the phase differences are close to —,

'
&,

especially for values of l between, say, 75 and 100.
Thus, at these lower energies, the contribution to
Qt from, say, i&100 oscillates with energy. The
contribution from larger values of l varies much
more smoothly with energy and constitutes the
"background" on which the oscillatory part rides.
The partial-wave contributions Qt for these two
energies are given in Fig. 11. The classical

IO

l2.

E
Cl 8
O

Cf 4

(v~ v"
j

. ~ . Ital ~ ~

O. l

~ I . I

I.O

E (eV)
IO

l I I . I I ~ ~

IOO

FIG. 9. Excitation-transfer cross section (adiabatic
approximation). Solid curve corresponds to the long-
range behavior of the potentials given by Eq. (27) .
Dashed curve corresponds to a somewhat larger dif-
ferential potential as discussed in the text.

50 I 00 I 50 200

FIG. 10. Differences in gerade and ungerade phase
shifts for several energies (adiabatic approximation) .
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transfer cross section at 5.95 and 8.55 ev (adiabatic ap-
proximation) .

turning points R, of Eq. (8}associated with the

gerade potential at these energies range from
about 1.3a, (l =0) and 2. 5a, (/= 100) at 5. 95 eV to
1.2a, (l=0) and 2.0a, (/=100) at 8. 55 eV; the

turning points for the ungerade potential are com-
parable. Thus, referring to the interaction po-
tentials in Fig. 1, we note that the oscillatory con-
tribution to Qt arises primarily from scattering
inside the region of the potential barriers, and we
should expect the structure in Qt to be rather in-
sensitive to modifications of the interaction poten-
tials in the region of the barriers.

The smoothly varying background contribution
to Qt, which 'is always much larger than the oscil-
latory part, arises primarily from outer regions
of the interaction potentials. In particular, refer-
ring to Fig. 10, for the energies 5, 95 and 8.55 eV
we consider contributions from, say, l & 100 as
comprising the background. The turning points
associated with the gerade potential at these ener-
gies are in the range 2. 5a, (l = 100}to 5a, (l = 200)
for 5.95 eV and 2.0ao (/= 100) to 4ao (l = 200) for
8. 55 eV. Again, the ungerade turning points are
comparable. Thus, in this middle range of ener-
gies we expect the average magnitude of the trans-
fer cross section to be most sensitive to the details
of the interaction potentials in the region of the
barriers, while the structure itself should depend
primarily on the short-range nature of the poten-
tials.

In order to examine the sensitivity of the trans-
fer cross section to variations in the interaction
potentials, we have carried out calculations for
several modifications of the adiabatic interaction
potentials. The results are given in Fig. 12, where
the labels A.a, Ba, ... refer to different combina-
tions of gerade (A, B, . ..) and angerade (a, 5, . . .)
potential curves as defined in Fig. 13. Thus the
cross sections labeled Aa refer to the unmodified
adiabatic potentials we have been discussing all
along. A comparison of the transfer cross sec-
tions corresponding to these modified interaction

IO

s i g iiiil
I 00 I 000

E (eY) (CENTER QF MASS)

FIG. 12. Comparison of excitation-transfer cross
sections for several choices of gerade {capital letters)
and ungerade (small letters) interaction potentials as
illustrated in Fig. 13. The closed circles refer to the
measurements of Ref. 41.

.Ol-

.005-

0

K
-.OOS-

.OI

FIG. 13. Comparison of dif'ferent gerade (capital
letters) and Nngerade (small letters) interaction po-
tentials referred to in Fig. 12. The combination Aa
represents the theoretical adiabatic curves (Refs. 13,
19, and 20) already discussed and illustrated in Fig. 1.

potentials indicates that the magnitude of the cross
section is rather sensitive to the difference be-
tween the gerade and ungexade potentials in the
region of the barriers, while the amplitude and

frequency of the oscillations remain much the
same. Measurements of the deactivation cross
section for 2'S metastable helium atoms in col-
lision with ground-state atoms have been carried
outby Sheridan, Peterson, Hollstein, and Lo-
rentz. 4' Their results may be compared directly
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FIG. 14. Differential total cross section at 5.95 eV
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with Qt and are included in Fig. 12. The compari-
son suggests that if the collision is in fact pri-
marily elastic and nearly adiabatic, so tha. t use of
adiabatic interaction potentials and the neglect of
higher excited states are justified, then the cor-
rect geode and ungexade potentials must, in fact,
be of a rather differentform from the modified and
unmodified curves we have used here. Differential
cross sections have also been calculated using
the theoretical adiabatic curves Aa, and the re-
sults are given in Figs. 14-19 for energies 5.95-
300 eV.

VI. COLLISION ON DIABATIC INTERACTION
POTENTIAL CURVES

In Sec. V, we have discussed the characteristics
of the total and transfer cross sections one should
expect under adiabatic conditions, i.e. , when the
nonadiabatic interaction matrix elements are ne-
glected, so that the collision can be described as
occurring on ordinary Born-Oppenheimer poten-
tial curves. These nonadiabatic coupling matrix
elements are difficult to calculate and, at the pres-
ent time, the magnitude and B dependence of these
matrix elements remains unknown, although one
expects maxima in this coupling in the vicinity of
avoided crossings of the adiabatic potential curves.
The diabatic description" "of a collision essen-

FIG. 16. Differential total cross section at 8.55 eV.

tially presupposes that the nonadiabatic coupling
is dominant, so that in the vicinity of an avoided
crossing of adiabatic potential curves, the system
jumps with high probability onto the adjacent curve
and continues on to the next avoided crossing,
where it jumps again. Thus, the collision process
appears to proceed as if the system were accu-
rately described by some kind of potential curve
(diabatic curve) which freely crosses adiabatic
curves of like symmetry and quantal description. '

The idea of a diabatic description may be invoked
at the molecular orbital level, where the nonadia-
batic interaction allows curve crossings which are
forbidden in the adiabatic approximation by the
famous noncrossing rule of Von Neumann and
signer. " This avoided crossing of molecular-
orbital energy curves may be thought of as due to
the incomplete screening of the nuclei by other
electrons in the molecule. " The crossing versus
avoided crossing of molecular orbital energy
curves is not a problem with states arising from
1s or 2s separated atomic orbitals, and thus does
not concern us directly in the study of collision
between 2'S and 1'S ground-state helium atoms.
Curve crossing or avoided crossing may also be
discussed at the level of many-electron molecular
states, where electronic energy curves of like
symmetry and quantal description repel each other
through configuration interaction, and thus avoid
crossing in the Born-Oppenheimer approximation.
Thus, for example, we often find cases where, at
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FEG. 15. Differential excitation-transfer cross sec-
tion at 5.95 eV.

FIG. 17. Differential excitation-transfer cross sec-
tion at 8.55 eV.
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FIG. 19. Differential excitation-transfer cross sec-
tion at 300 eV.

a particular separation (say, R=R ), two single-
configuration molecular-orbital energy curves
cross. If, however, one considers the interaction
of these two configurations by solving the appro-
priate 2 ~2 secular equation, new wave functions
and electronic energy curves are obtained which
do not cross at R~, and one speaks of an avoided
crossing of these configuration-interaction ener-
gy curves. The nonadiabatic coupling terms,
which are ignored in the Born-Oppenheimer ap-
proximation, allow the system to jump from one
curve to the next in spite of the avoided crossing
of the adiabatic curves. %hen these nonadiabatic
terms are dominant we speak of a diabatic inter-
action, and the system appears to be described
by a potential curve which freely crosses adia-
batic curves regardless of their quantal nature.
This diabatic description has been extremely suc-
cessful in treating scattering between He ions
and He atoms over a wide range of energies from
about 15 eV upwards. '

For collisions with helium in the 2'8 metastable
ground state, the scattering state is described
by a superposition of geode and unge~ade mole-
cular states, g('Z&) and g('Z„+), which at large
separations may be associated with properly sym-
metrized linear combinations of separated-atom
product functions of the form Iso(1)Tsz(2)lsb(3)
x2s&(4). Figure 20 contains a schematic dia-
gram of a few of the separated- and united-atom
energy levels associated with 'Z states of the He,
system. States at intermediate separations are
indicated by solid (configuration-interaction) and

FIG. 20. Correlation diagram for selected states of
the He2 molecule to illustrate the adiabatic (solid lines)
and diabatic (broken lines) descriptions.

dashed (single-configuration) lines. The 'Z
Q

state arising from He(1'S)+He(2'S) is dominated
in the region of interaction by the single configu-
ration (lsv) 2 (2sv) (2pv) which is not crossed by
any other configuration. Thus there is no avoided
crossing associated with this lowest 'Z+ adiabatic
state of He, (lowest solid line in Fig. 15), and its
description is unambiguous. In the case of the
'Z& state the situation is rather different. At
large separations, the configuration (vgls)'
x (vuls)(v~2s), which correlates with (1sv) '(2pv)
x (3po), plays a major role. However, at about
R = 3a„a crossing occurs with (v Is)'(v&2s)(vg 3s),
which correlates with (Isv)2(2sv) 3so), and at still
smaller separations the latter configuration dom-
inates the adiabatic 'Zg state. (These two con-
figurations are represented by dashed lines in
Fig. 20. ) A diabatic description of this problem
would, by analogy to the He+-He collision problem,
correspond to describing the 'Z& state by the single
configuration (1sv)'(2po)(3po) at small separations
and ignoring the interaction with (1sv)'(2sv)(3sv)
at the crossing. %e have constructed a diabatic
'Z& electronic energy curve by joining a smoothly
varying analytic form to the adiabatic 'Z+ curve
outside the crossing. The united atom energy is
set at about 8.6 eV above the 1s'2s2p P state of
Be; this corresponds approximately to the energy
of the 1s'2p3p configuration of Be. The resulting
diabatic 'Zg potential energy curve, obtained by
adding on the internuclear repulsion 4/R, is re-
pulsive at all separations and is compared with the
adiabatic curve in Fig. 21. The diabatic curve is
labeled D.

Total and excitation-transfer cross sections
have been calculated using this diabatic 'Z curve,
along with the adiabatic 'Zz curve, denot as
curve a. In Fig. 22, the resulting total cross sec-
tion is compared with the adiabatic results dis-
cussed earlier. The average magnitude of the
cross section is much the same; however, the
structure is somewhat different. In the diabatic
case, the geode contribution to the cross section
varies smoothly with energy, since it arises from
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FIG. 21. Comparison of adiabatic {A) and diabatic
(D) gerade interaction potential curves. The ungerade
curve (a) is also given.

a completely repulsive potential. Thus, the oscil-
lations in the total cross section are due entirely
to ungerade scattering, and thus are identical to
what we obtained earlier for Q~.

In Fig. 23, the diabatic excitation-transfer cross
section, labeled Da, is compared with the adia-
batic cross section denoted by Aa. Again, the av-
erage magnitudes of the two cross sections are
quite close while the detailed structure is different,
the oscillations in the diabatic case being of some-
what higher frequency. This is all consistent with
our earlier remarks to the effect that details of the
structure are most sensitive to the short-range be-
havior of the interaction potentials, while the av-
erage magnitude of the transfer cross section de-
pends on the potentials in the vicinity of the bar-
riers. The experimental deactivation cross sec-
tion data4' are also given in Fig. 23. The measure-
ments do show the presence of some structure;
however, the detailed energy dependence does not
agree with the calculations.

FIG. 22. Comparison of total scattering cross sec-
tions in the adiabatic (Aa) and diabatic (Da) approxi-
mations.

if more accurate adiabatic potential curves are
used. In comparing transfer cross sections re-
sulting from these two approaches, we have found
that the major differences lie in the general char-
acter of the oscillatory contributions to the cross
sections. The frequencies associated with the
diabatic approach are larger and the amplitudes
smaller than the adiabatic results. The experi-
mental measurements verify the presence of
structure in the excitation-transfer cross section.
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VII. SUMMARY AND CONCLUSIONS
IO-

The total and excitation-transfer scattering of
23S metastable helium atoms on ground-state
helium atoms has been discussed from the two
different points of view, corresponding to the
adiabatic and diabatic approaches. Total and
transfer cross sections have been calculated and
compared over a wide range of energy. The
structure, found to be present in both total and
transfer cross sections, has been shown to be di-
rectly related to the detailed behavior of the inter-
action potentials. The average magnitude of the
transfer cross section is found to be particularly
sensitive to the potentials in the vicinity of the
barrier. Therefore, even within the adiabatic ap-
proximation, one will expect the magnitude of the
transfer cross section to be somewhat different
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closed circles.
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