of Eq. (15) becomes a differential equation for ν_1 :

$$(1-u^2)\frac{d^2\nu_1}{du^2} - 5u\frac{d\nu_1}{du} + 3(\lambda-1)\nu_1 = 0.$$
(21)

To ensure that Eq. (5) is satisfied, we must impose upon Eq. (21) the boundary condition that ν_{2j+1} , the 2*j*th derivative of ν_1 [see Eq. (20)], is zero. The required solution is then a polynomial in u:

$$\nu_{1} = \sum_{r} b_{2r-1} u^{2r-1},$$

$$2r(2r+1)b_{2r+1} = [(2r-1)(2r+3) - (2j-1)(2j+3)]b_{2r-1},$$
(22)

where the sum over r runs over $\frac{1}{2}, \frac{3}{2}, \ldots, j$ when j is a half-integer, and over 1, 2, \ldots j, when j is an integer. We can now use Eq. (22) in conjunction with Eqs. (18) and (19) to determine those functions f and g that yield a linear realization (j,j) constructed from the pion field alone. For example, in the special cases $j=\frac{1}{2}$ and 1 we find that

$$j = \frac{1}{2}: f^2 + \pi^2 = \alpha, \qquad g = 0, j = 1: f^2 - 2\alpha f + \pi^2 = 0, \qquad g = -1/f,$$
(23)

where α is an arbitrary constant.

It is easy to show from the commutation rules in Eq. (2) that $h_n(\pi_+)^n$ [see Eq. (16)] is an eigenstate of isospin with $T = T_3 = n$ $(n=0, 1, \dots, 2j)$. Thus, by operating on these states with the isospin-lowering operator $T_- = T_1 - iT_2$, we can generate the complete set of isospin states contained in the representation (j, j), and hence the complete representation itself.

Now suppose that we have a new isovector field $\tilde{\pi}_a$ for which

$$K_a \tilde{\pi}_b = -i (\delta_{ab} F + \tilde{\pi}_a \tilde{\pi}_b G), \qquad (24)$$

where F and G are functions of $\tilde{\pi}^2$. In order to convert this to a linear realization, we need to transform $\tilde{\pi}_a$

into π_a and F and G into the functions f and g of the preceding discussion. Following Weinberg,⁵ we seek a redefinition of the form

$$\pi_{\alpha} = \tilde{\pi}_{\alpha} \Phi(\tilde{\pi}^2), \quad f = F \Phi, \\ g = \left[G \Phi + 2(F + \tilde{\pi}^2 G) \Phi' \right] / \Phi^2.$$
(25)

If such a redefinition is to exist for any F and G, then we must be able to express Φ in terms of $\tilde{\pi}^2$ and F.

This expression is not difficult to find. If we define quantities $\tilde{\sigma}$ and \tilde{u} analogous to σ and u in Eq. (19), then we find that

$$\sigma = \tilde{\sigma}\Phi, \quad u = \tilde{u}. \tag{26}$$

The condition $h_1(\pi^2) = -\lambda$ of Eq. (18) then leads to

$$\Phi = -(1/\lambda \tilde{\sigma}) \nu_1(\tilde{u}). \tag{27}$$

Thus Φ in Eq. (27) is the redefinition required to transform the nonlinear realization of Eq. (24) into a linear one of the type (j,j). We also note that

$$(\pi_+)^n h_n(\pi^2) \equiv (\tilde{\pi}_+)^n h_n(\tilde{\pi}^2),$$
 (28)

and hence we obtain all the states of this representation. Since j has been left arbitrary in this discussion, it follows that our procedure can be used to convert a given nonlinear realization into any one of the allowed linear realizations.

As a final point, we observe that the quantities in Eq. (28) satisfy the integrability condition⁶ required by Weinberg for the existence of the matrix $\Lambda(\pi)$. It follows that the components of the matrix are determined by these quantities.

⁵ S. Weinberg, Ref. 1, Eqs. (2.12)-(2.15). ⁶ S. Weinberg, Ref. 1, Eq. (5.6).

Errata

Inelastic π^+n Interactions in the Center-of-Mass Energy Range 1.40–1.65 GeV, P. J. LITCHFIELD [Phys. Rev. 183, 1152 (1969)]. The Hulthén form for the distribution of the spectator proton momentum was misquoted. It should read

$$P_{p} \propto \left(\frac{1}{\alpha^{2} + p^{2}} - \frac{1}{\beta^{2} + p^{2}}\right)^{2} p^{2}.$$

The correct form was used in the analysis.

The Gravitational Field of a Disk, THOMAS MORGAN AND LESLEY MORGAN [Phys. Rev. 183, 1097 (1969)]. Equation (26) should read

$$\phi = \frac{1}{2} \ln\{(\omega/2b) [1 + (1 + 4b^2 \rho^2)^{1/2}]\}.$$

2544