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A discrepancy is found between the two-meson solution of charged scalar theory given by Bronzan
and the isobar spectrum known from strong-coupling theory. The discrepancy is traced to a failure of

production amplitudes to satisfy crossing symmetry.

N recent years some attention has been given to the
importance of three-body intermediate states in the
computation of two-particle scattering amplitudes.! A
serious drawback is the lack of exactly soluble field
theories which include crossing symmetry. Such
examples would obviously answer questions about
approximations to more realistic field theories and
provide some answers to the vexing question about the
relative importance of crossing versus three-body
unitarity.

A few static models including three-body intermediate
states have been solved, most notably that of Amado,?
but these unfortunately do not preserve crossing.

In a recent series of papers by Bronzan?# a solution
of the charged scalar static model which includes the
sector of two-meson intermediate states has been
presented. The purpose of this paper is to point out
some curious features of Bronzan’s solution which tend
to make it unreliable at least for large couplings.

If the Bronzan solution is analytically continued to
large renormalized coupling, a neutral bound state is
formed.# The appearance of a neutral isobar is in
conflict with the old strong-coupling (SC) theories® of
the charged scalar model. SC theory predicts for the
spectrum of isobars

Mo=Q(Q—-1)/¢%, (1)

where () is the isobar charge and g is the renormalized
Yukawa coupling constant. On the other hand, Goebel®
has shown that the one-meson solution gives isobars
consistent with the old SC theory. One is now faced
with a dilemma: If the SC theory is correct, either the
Bronzan solution is inconsistent or the #-meson approx-
imation does not converge smoothly to the SC solution.

The resolution of the paradox lies in the study of
the original integral equation for a five-point function

1See, e.g., R. Aaron, R. D. Amado, and J. E. Young, Phys.
Rev. 174, 2022 (1968).
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2bid. 139, B751 (1965).

8 J. B. Bronzan, J. Math. Phys. 7, 1351 (1966).

4]J. B. Bronzan, Phys. Rev. 154, 1545 (1967).

5 G. Wentzel, Helv. Phys. Acta 13, 169 (1940); R. Serber and
S. M. Dancoff, Phys. Rev. 62, 85 (1942).

6 C. J. Goebel, Phys. Rev. 109, 1846 (1958).
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solved by Bronzan [Eq. (21) of Ref. 3]:
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where all the symbols are defined in Ref. 3.

Equation (2) may be represented schematically by
Fig. 1. If the sum over intermediate states® is truncated
with at most one intermediate meson, one obtains the
terms in Fig. 2. Bronzan solves the equation correspond-
ing to Fig. 2 and subsequently arrives at a scattering
amplitude which preserves three-particle unitarity.

The fourth term in Fig. 2 has serious problems which
eventually lead to the spurious neutral isobar of
Bronzan’s solution. Note that as g— o, term 4
develops a pole corresponding to the (—) isobar. There
is no other pole around to cancel it, so that one gets a
large production amplitude. But it is known’ from SC
theory that pole terms with the correct residues cancel
pairwise as g— , and furthermore that the multiple-
meson production amplitudes themselves tend to zero.

By retaining only the fly-by terms for three-meson
intermediate states, we obtain the two additional terms
shown in Fig. 3. Now notice that the first term of
Fig. 3 develops a pole corresponding to the (+ -+)
isobar and this term will cancel the pole mentioned

\\+ - - S Nt~
= _} ﬁ .+
Q n s ~p n—s P
F16. 1. Dispersion graphs for Eq. (2).
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T1c. 2. Dispersion graphs remaining after retaining only one-
and two-particle intermediate states.

7 The argument that all pole terms of a multiple-meson produc-
tion amplitude cancel in the SC limit is originally due to Goebel
(private communication); cf. Ref. 6 and A. N. Kaufman, Phys,
Rev. 92, 1468 (1953).
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Fic. 3. Additional terms obtained by retaining the fly-by
terms in three-meson intermediate states.

earlier. In the Bronzan solution the (+ 4) isobar
cannot appear, so a spurious pole is generated from
term one of Fig. 2 to cancel the lone pole from term 4.
This spurious pole is of course the neutral isobar.

It is important to notice that a pole must appear
as g increases to cancel the (—) pole with residue o g?
(— ), since Q_ satisfies unitarity and is therefore
bounded in the physical region.

One further point is that the two terms of Fig. 3
are the terms which must be included to maintain
crossing symmetry. This last is not obvious from the
single-dispersion relation, but may be seen by contract-
ing out the remaining meson to obtain a double-
dispersion relation for Q.

Unfortunately, retaining the terms corresponding to
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Fig. 3 has the effect of rendering the integral equation
intractible. The conclusion of these observations is
that crossing symmetry in the production amplitudes is
extremely important at least when the coupling is
very large.

We can make no statement about the consistency of
the solution for intermediate values of the coupling,
but the failure at large coupling tends to make the
solution suspect at intermediate values as well. We can
also make no statement about the effect of production
amplitudes in nonstatic models. However, in the
crossing-symmetric static models, the results from SC
theory suggest that bound states appear only in
channels which have attractive crossed-pole terms in
the scattering amplitude.

Some of this work was done while the author was
supported by U. S. Atomic Energy Commission,
under Contract No. AT-30-1-2171, at the University
of Pennsylvania. The author is grateful to Professor
Morton Rubin for his interest and to Professor J. B.
Bronzan for helpful correspondence.
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Itis shown that any nonlinear realization of SU (2) X.SU (2) can be converted into a linear one of the type
(4,7) by redefining the pion field. Explicit forms of the redefinition are derived for all values of j.

IN nonlinear realizations of chiral symmetry'—* the
isospin operators act upon pion fields in the standard
linear way, but chiral operators yield nonlinear func-
tions of the pion field itself. Thus it would seem
that these nonlinear realizations of SU(2) X.SU (2) bear
no relationship to the usual linear ones. Weinberg! has
shown, however, that it is always possible to construct
linear realizations out of nonlinear ones. Given an
NX N matrix A(r) which is a function of the pion field,
and which behaves in a particular way under chiral
transformations, he is able to identify the elements of
one of its columns with a linear realization of SU(2)
XSU(2). He proved that such a matrix must always
exist, but he did not determine its specific form.

* Supported in part by the U. S. Atomic Energy Commission.
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Coleman, Wess, and Zumino? have subsequently
shown that if linear realizations are characterized by
the eigenvalues (j*,77) of the two commuting SU(2)
subgroups, then the ones that can be constructed from
a nonlinearly transforming pion field are limited to the
class j¥= j~= j. They obtained these linear realizations
from matrix representations of group elements of
SU(2)XSU(2) by treating the pion fields as the
parameters associated with pure chiral transformations.
Their result is actually more general than that of
Weinberg because it applies to any group which has a
semisimple subgroup.

Here we wish to present an alternative approach to
the problem of constructing linear realizations out of
nonlinear ones. We show that the process of construction
is equivalent to a redefinition of the pion field, and we
derive the explicit form of this redefinition. Our ap-
proach does not require a detailed knowledge of the
matrix representations of the group SU (2)X.SU (2), but
it can be regarded, from Weinberg’s point of view, as a
determination of the matrix A(w).

We base our approach upon two properties of linear



