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The unitarity relations for the decay of overlapping resonances as obtained by an S-matrix approach and
the usual Wigner-Weisskopf approach are compared.

' X two recent letters, '' McVoy and Durand discuss
the use of an S-matrix approach involving over-

lapping resonances to discuss the decay properties of
the E' system. In passing they mention as one of their
results that the sum of the partial widths for the Eg
or Ez decay is greater than the total width. In the
standard Wigner-Weisskopf treatment of the problem,
on the other hand, one finds the result that the sum of
the partial widths is equal to the total width. ' For the
case of the E' system, the difference is of no practical
importance since it occurs only in second order in the
small CP-violating parameter (Er, l Es&; nevertheless,
it is instructive to explain the difference.

I.et us review erst the result of the usual Wigner-
Weisskopf treatment. We are given an initially prepared
state at time t = 0,

l»=A IE.&+BIE.&,

normalized to unity,

where the plus sign corresponds to time-reversal
invariance and the minus corresponds to time-reversal
violation. For the states Eq and EI,, we have

P I TI Es)= [2'xi+(&+p)7'x~]&s, (6a)

(~l TIE~&=L(p ~)T»+I'x~]&~ (6b)

From the initial state
I I), we then have as a function of

time the amplitude

A»(~) =A(XI TIE~)e * "+I3(~l TIEs&e '~s& (7)

where M, =m; ——,'iy, are the complex masses of the
decaying states. By conservation of probability, we now
make the requirement

d&I Axr(&) I'=1,

since the initial state was normalized. Stating this as
an identity in A and 8, we find
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'+ 2 Re (A*8(Er

I
Es&) = 1. (1)

Here,
I EL,) and

I EB) are the decaying states, which we
write in the I&I-E~ representation

&I( I
TIEs&l'=»

&I( ITIE~&I'=~~

(Sa)

(p —a

(@+pl 4 1

normalized to unity by

(3a)

(3b)

If we assume CPT invariance, 6=0; if we assume T
invariance, p= 0. We may define transition amplitudes
from the E1 and E~ states to some normalized con-
tinuum state X:

( I2'IE'&=7'x*

P(& I
T

I
Er,&(& I

T
I
~&s&*= i(~s* ~—r,)(Es I Ei) (Sc)

Equations (Sa) and (Sb) are the statements that the
sum of the partial widths equal the total widths, while
Eq. (Sc) is the Bell-Steinberger off-diagonal unitarity
relation. '

It is important to note that in this approach the
initial state II) is given. In the usual experimental
situation, the initial state is prepared by a strong inter-
action which gives the state directly in the E -K' repre-
sentation. For a state given as

The inverse transition is
we have

cosg IE')+sing IK'),

T,x=(E,
I TI&)=aTx;, (5)

A = (1V'/Er)-,'V2I (1—8—p)cose —(1+6+p)sin&j, (9a)
~ Research supported in part by U. S. Atomic Energy Com-

mission.' K. W. McVoy, Phys. Rev. Letters 23, 56 (1969).
2L. Durand, III, and K. W. McVoy, Phys. Rev. Letters 23,

59 (1969).' See, for example, T. D. Lee, R. Oehme, and C. N. Yang,
Phys. Rev. 106, 340 (1957).

4 Further details may be found in T. D. Lee and C. S. Wu, Ann.
Rev. Nucl. Sci. 16, 516 (1966). Our parameter p is called c in this
reference. Our E1 and L2 are (IV+K)/V2 and (E'—Xo)/V2,
respectively.
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8= (1V2/A, )-,'V2$(1+8 p)cos8+—(1—81p)singj, (9b)

Ã'(1+2—p') = 1 (10)

We turn now to the S-matrix approach. The 5-matrix
connecting continuum states is written, ' ' setting the

~ J. S. Bell and J. Steinberger, in Proceedings of the Oxford
International Conference on Elementary Particles, 1965 (Rutherford
High-Energy Laboratory, Chilton, Berkshire, England, 1966),
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background 5 matrix equal to unity, Equations (8) become

g&OS~F8 gPLhP L
SP) ——1—AS ——iyL—

E-MS &—ML

2 g. s*g~ s= IN/Ns I

',

2 g»"g~~= ININ~
I

'

(16a)

(16b)

Q gt&s*gec = —io. (&Vs*—SIL), n real. (12b)

Equation (12a) could be interpreted as stating that the
sum of the partial widths is greater than the total width.

To relate the two approaches, we analyze the 5-matrix
approach in slightly greater detail. It is important here
that the states ICL and Es enter both as initial and final
states. For treating final states, it is essential to intro-
duce the du31 or adjoint state vectors. ' We define

I
~& =( Il.&=(

&5tl = (1, t&
—p)N, (I."I = (—tI —p, 1)N,

where N is given by Eq. (10) and these satisfy the
orthonormality relations &T~I U&=t&rr The states I5)
and

I L& are identical with
I Ks) and

I
Kr, & except for

normalization. On the other hand, &5tl and IL~I are
not the same as (Ksl and &Kzl. It is possible to
multiply I5) by a, number Q and &5tl by Q

' without
changing any results; our choice of normalization yields

simple symmetry relations. We can de6.ne the transition

amplitudes

For the case of T invariance, it is stated that g), z
——hqv.

For the case of CPT invariance, g), T
——&h),~, where the

plus sign corresponds to CP-conserving and the minus
to CP-violating transitions. For the case of CPT
invariance, the unitarity of the 5 matrix gives'

2 ges*ges=Z gee*get= (1+vs&~
I ~ I ')"', (12a)

INI (K,IK,)2 g&s gAL &(~s ~L) (16c)
X +L+S YS YL

Equations (16) are true quite generally, independent
of CPT or T invariance. For the special cases in which
it is possible to relate h s to g s, they are directly
derivable from the unitarity of the 5 matrix. For the
case of CI'T invariance (tI=O) or T invariance (p=0),
Eqs. (16a) and (16b) reduce by algebra to Eq. (12a),
with

Ys tL I
~

I

'=
I (L I 5) I' =

I
~t'/Ns'

I

'
I &Kz I Ks& I' (17)

while Eq. (16c) becomes

Z gxs*g&,I = ~(itIs* ~L)&5I L&/Ys"'yL"'
y (18)

where in these cases Ns ——Nr, . Equation (18) is equiv-
alent to Eq. (12b) provided we identify, in agreement
with Eq. (17),

~—&5 I
L&//ys"'yz't

is(ZI T K,) iIt&~l TIKs&
a&r(E) =— (19)

For the CPT-invariant case, (5I Z) is real and propor-
tional to Rep, whereas for the T-invariant case it is
imaginary and proportional to Imb.

The essential difference between the two formulations
is not that one uses time dependence and the other
energy dependence. Indeed, the standard approach
given by Eq. (7) can easily be reformulated in terms of
the energy-dependent amplitude for the decay of state
II) to IX):

vs't g»=(~I TI5&=L~. +~&+p)T. 7N,

~ '"g =&~ITIL&=I:(p—~)T»+T~ 7N

ys' h&s=&stl TIX&=LTgy(S—p)T„7N,
yL, '~'h&r, = &Lt

I
T

I && = L (—tI —p) Tg&+ T,&7N.

Equation (7) is regained by the relation
(14)

a&,r(E)e 's'dE
A&,r(t) =

For the case of CI'T invariance, we have from Eq. (5)
T;),——~Tq; with the plus sign corresponding to CP
conservation and the minus sign to CP violation. Since
6= 0 in this case, it is easy to see that the same relations
hold between g and h, as stated before. For example, if
X is CP even, T~q ——T) ~, T&),= —Tq~, whence from Eq.
(14) we have h&, s ——

g&,s and h&, r, = —
g&,r, .

It is now trivial to see the relation between the two
versions of the unitarity relations, since

(Xl Tl Ks) =ps"'Nsg& s/N,
(15)

&n)TIK )=~ ''X&g, /N.

corresponding to the production of the resonance in a
wave packet much broader than the widths of the El,
and Ks. Equation (19) is more appropriate f' or the
analogous case of p-~ interference~ when the energy
resolution is much less than the p width.

The essential difference between the two approaches
is that the standard formulation LEqs. (7) or (19)7
describes a production process whereas the 5 matrix
describes a formation process for the resonances. In the
case of the production process, one knows exactly how
many resonant particles have been produced; for

6 R. G. Sachs, Ann. Phys. (N. Y.) 22, 239 (1963); C. P. Enz
and R. R. Lewis, Helv. Phys. Acta 38, 860 (1965).

7 See the recent discussion by A. Goldhaber, G. C. Fox, and
C. Quigg, Phys. Letters 308, 249 (1969), and references therein,
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example, in the process vr +p —+ IV+A, one can count
the number of A.'s. In the case of the formation process,
in which the production and decay are inextricably
linked, there is no direct way to state how many
resonant particles have been produced. The analysis
above gives one answer to that question.

It might be thought at first that the S-matrix
approach is preferable since everyone knows that
S-matrix elements are the true observables. In practice,
of course, the EI, and E~ states are never observed as
resonant scattering states but only in production

experiments. Thus the parameters entering the standard
formulation are more directly related to observation
than those in the 5-matrix approach.

Note added im proof Th. e present paper, as well as that
of G. C. Wick, Phys. Letters BOB, 126 (1969), shows
that the usual Bell-Steinberger formula follows from the
S-matrix approach. Therefore, the alternative formula
proposed by McGlinn and Polis, Phys. Rev. Letters 22,
908 (1969), is incorrect and should be disregarded.

I wish to thank the Lawrence Radiation Laboratory,
where this work was carried out, for its hospitality.
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It is shown that use of the Ward-Takahashi identity for the electromagnetic vertices of the hadrons gives
a more satisfactory argument than the traditional one for the addition of subtraction terms to the Born
approximation of pion electroproduction.

''T has been recognized for a long time that the
i - commonly used "renormalized Born approximation"
for the pion electroproduction matrix element

is not conserved. On the other hand, the electromagnetic
current j„necessarily satisfies the conservation condi-
tion, and we can therefore expand the amplitude
e„(7rNl j„lN) as a sum

P A, (s,t,K')u(P2)iV;u(Pg),
i=1

(2)

where the 3f; are a complete set of explicitly gauge-
invariant quantities (such as those introduced by
Fubini et al. ' or by Dennery'). In the above, e„represents
a virtual photon of momentum E (=—e+P2 —Pq), and
s, t, and I are the standard Mandelstam variables:

J— (P~+Ii )2 f= (P2 Pl)2 u — (P~ Q)2

Clearly, the Born approximation (BA) must be modified
before it can be expanded in terms of the above set.
Following the work of Fubini et al. , it has been tradi-

*Work supported in part by the U. S. Atomic Energy Com-
mission, under Contract No. AEC-AT (30-1)-2076.

~ S. I'ubini, Y. Nambu, and V. Wataghin, Phys. Rev. 111,329
(1958).

'See, for example, P. Dennery, Phys. Rev. 124, 2000 (1961);
N. Zagury, ibid. 145, 1112 (1966); S. Adler, Ann. Phys. (N.Y.)
50, 189 (1968); N. M. Kroll, in Proceedings of the fourteenth
International Conference on High-Energy Physics, Uienna, 1968,
edited by J. Prentki and J. Steinberger (CERN, Geneva, 1968),
p. 75.

tionaP ' to add to the BA the somewhat arbitrary term

iv ~P' (It') —P~'(&') 7kL~-, r37& I&' (3)

where F and F&~ are, respectively, the pion and
isovector-nucleon electromagnetic form factors. The
justification for such a procedure is that while the
additional term restores current conservation, it does
not contribute to the physical matrix element since
~ E=O. It is the purpose of this paper to stress that
there exist arguments, based upon the properties of
j„alone, which can justify the addition of such a term.
This seems preferable to an argument based upon the
properties of the vector e„ into which (~Nl j„lN)
happens to be contracted. For instance, the argument
breaks down for the vector part of pion neutrino
production (where e E m~, pt,,„) even though the con-
served —vector-current (CVC) theory equates this con-
tribution to the isovector part of pion electroproduction.

When one uses the BA simply to find the residues for
the pole terms in dispersion relations, it can be shown4

that, for consistency, additional subtraction constants
are required, thus providing a satisfactory argument
for the introduction of the terms in Eq. (3). However,
one might also wish to use the BA as part of a model
description of electroproduction, ' and in that case one
must clearly use a gauge-invariant expression. (Such
an approach has recently gained in importance since

' See, for example, J. D. Walecka and P. A. Zucker, Phys. Rev.
167, 1479 (1968). See also J. D. Walecka, Ref. 5, p. 156, and in
particular the discussion on p. 195.

4P. A. Berends, A. Donnachie, and D. L. Weaver, Nucl.
Phys. 84, 1 (1967), Appendix B.


