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We extend the group-theoretical analysis of the multiperipheral integral equation of Chew, Goldberger,
and Low to general momentum transfers. Using a set of variables for the multiparticle phase space analogous
to those of Bali, Chew, and Pignotti, we obtain, through the 0(2,1) symmetry, a partial diagonalization of
the equation, without requiring asymptotic approximations to the phase space. As an example, we apply
our technique to a multi-Regge model and an Amati-Fubini-Stanghellini-type model.

I. INTRODUCTION
' 'NTEREST in the multiperipheral model of Fubini
~ ~ and collaborators' revived when Chew, Goldberger,
and Lowe (CGL) noticed that a generalization of the
model provided the framework for a bootstrap program
directly involving Regge parameters. ' They proposed
an integral equation4 which provides a powerful tool
for investigating the role of multiparticle unitarity in
determining the dynamics of high-energy peripheral
processes. The equation has been studied both at zero
momentum transfer (t=0) and at f(0 by several
authors, ' ' who made use of various asymptotic approxi-
mations to the phase space in order to achieve a partial
diagonalization of the equation. Such an approach is
very fruitful since it yields important information
about the qualitative features of the model.

It is an empirical fact, however, that the important
range of intermediate particle subenergies is not very
high. We present here a procedure for exploiting fully
the O(2, 1) symmetry of the CGL equation with no
approximations to the phase space. The burden of Inore
carefully representing the low and intermediate particle
subenergies now lies with the choice of the model.
Our scheme should provide some insight into the validity
of the approximations made in the Mellin-transform
approach. In particular, it exhibits some interesting
effects of correlations among phase-space variables
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which may be of consequence even in asymptotic
calculations.

The central problem in diagonalizing the CGL equa-
tion with an exact treatment of phase space is to find
a proper set of kinematical variables. Bali, Chew, and
Pignotti' (BCP) defined as variables the momentum
transfers squared and a set of "angular" variables which
are asymptotically proportional to the subenergies.
They were, more precisely, the parameters of the three-
dimensional Lorentz group which preserve the momen-
tum transfers in the multiperipheral chain (Fig. 1).
These variables were adequate for the analysis at t=0,
where the production amplitude and its complex con-
jugate in the unitarity integrand may be expressed in
terms of the same variables. Making use of factorization
at the Regge poles in the multiple O(2, 1) decomposition
of the unitarity integrand, Chew and DeTar'e (CD)
derived an equation for the absorptive part of the
elastic amplitude at 1=0, which can be partially diag-
onalized by using its O(3,1) symmetry. "

At t(0 the amplitude and its complex conjugate are
no longer simultaneously evaluated at the same point
in phase space, and so we must choose a new set of
variables. Consider the unitarity diagram in Fig. 1 with
the upper and lower momentum transfers Q„and Qt
with squares f„andt~."In a reference frame in which the
over-all momentum transfer Q has only a z component
(—l)"', we have

Qi,.——(k, w+-,'(—l) 'ts),

where both ze and the magnitude of the Lorentz three-
vector k are 6xed in terms of tI, and t„.Therefore the
subenergy s; is, for 6xed t&'s and t„'s, a function of
k; z k;+& and asymptotically proportional to it.

8 A. H. Mueller and I. J. Muzinich have independently studied
the t(0 case using a set of variables somewhat like ours LG. F.
Chew, Lawrence Radiation Laboratory (private communication)).' N. F.Bali, G. F. Chew, and A. Pignotti, Phys. Rev. 163, 1572
(1967)."G. F. Chew and C. DeTar, Phys. Rev. 180, 1577 (1969)."A. H. Mueller and I. J. Muzinich, Brookhaven National
Laboratory Report No. BNL-13728, 1969 (unpublished).

~'Four-vectors are expressed in the form (Pf,,P,,P„,P,) with
the metric P P=Pt~ —P 2—P —P
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We are led in a natural way to consider the little
groups of the k's instead of those of the Q~'s and Q„'s.
Since the most important contribution to the phase
space comes from spacelike k's (Sec. II), these little
groups are noncompact, one-parameter 0(1,1) groups,
and these parameters will be our "angular" variables.

In reconstructing the CGL equation we erst project
the unitarity integrand onto the O(1,1) groups. It is at
the poles in the 0(1,1) quantum number that we wish
to make the factorization assumption which underlies
the CGL multiperipheral model. For each Regge pole
with factorizable residue in the production amplitude,
the O(1,1) partial-wave amplitude will contain an in-
finite sequence of integrally spaced O(1,1) poles with
factorizable residues. For this approach to be useful
we assume that, by including only a few leading O(1,1)
poles, which are derived from the first few Regge poles,
we obtain an adequate average representation of the
low-energy region. It is, of course, not necessary that
this assumption be made at every link in the multi-
peripheral chain. We treat a model of the type in Ref. 1

(the "AFS-type model" ) as an example of a model
which does not require such an extreme assumption. "

In the present paper we deal essentially with the
definition of our variables and the crossed partial-wave
analysis of the resulting equation. The precise connec-
tion with the BCP expansion will be discussed in a
forthcoming paper, together with the t= 0 limit. More-
over, we do not study here the kinematicai singularities
of our production amplitudes in the nonleading 0(1,1)
contributions.

In Sec. II we define our variables and we use them in
deriving an exact expression for the many-body phase
space, which is suitable for establishing our multi-
peripheral equation. To illustrate the use of our scheme,
we construct the integral equation for both the leading-
power multi-Regge model and the AFS-type model in
Sec. III. The crossed partial-wave analysis is given in
Sec. IU. A remarkable technical result is that the kernel
of our partial-wave equation is analytic and well be-
haved in the right half I plane, since we use a basis in
which the relevant representation functions of the
O(2, 1) group are second-type Legendre functions.

II. KINEMATICS AND PHASE SPACE

The kinematical analysis at 1&0 proceeds by direct
analogy with the approach of BCP and CD. We begin
with a review of the key features of their method.

In expressing the rnultiparticle phase space in terms
of group variables, BCP selected a sequence of standard
Lorene frames, corresponding to a given arrangement

Pu

Qu Qua Qu, n+i

Pub

P, ~i P, Ji P, li

Qci Qg, n+I

FIG. 1. Momentum-conservation diagram for the (n+2) bod-y
contribution to the unitarity sum.

Q.;= I:0,0,0,(-~. )'"j,
Q~, ;+t= (—t~, ;+t) '"(sinhqt, ;,0,0,coshgt;)

and a left standard frame (li, l) in which

Qg„.——L0,0,0,(—t, ;) '~'j,

Q&, ; t=(—
t&,; r)' '(—sinhq~„. t,0,0,coshgq„ t).

(2.2)

(2.3)

The two frames were related by an 0(2,1) transforma-
tion, gl; ——e ' I"&'e '~&«'e ' '"" which preserved the s
axis. '4 In terms of the parameters of gl;, the four-vector
Q~, ; t assumed, in the frame (li,r), the form

Qt, ; t= (—4,; t)' '(—sinhq~, ; t coshfh, sinhq~, ; r sinhf~;

Xcosv~;, —sinhg~, ; t sinht ~, sinvh, cosh'~, ; t). (2.4)

Prom the standpoint of the frame (li, r) this was an
adequate parametrization of Q~, ; t under the assump-
tion that t'l, ; ~&0 and tl;(0. This observation facili-
tated the change of integration variables. The boost
t &; wasconnected with the subenergys, —2Qh t Q«+t,
thereby providing a framework for the multi-Regge
expansion. After linking the frames (li,r) and (ii+1, l)
with a pure s boost ql;, it is possible to go from a partic-
ular rest frame of particle lb to a particular rest frame
of particle lu via all intervening standard frames with
the transformation

~laglOgllqli . gl, +1(i, +1«a.

(The rotations r~, and r~s are taken in the rest frames of
particles la and lb.)

In constructing a recursive expression for the (n+2)-
body phase space, CD introduced the Lorentz trans-
formation

li ~la~laglOgllgll' ' ' gl, j—1glj & (2 5)

which transformed four-momenta from their conigura-

of the outgoing particles in the process

la+lb -+ 0+1+ + (n+1) . (2.1)

Associated with each four-momentum transfer Q~„(see
Fig. 1) were a right standard frame (li,r) in which"

"Ball and Marchesini have studied the self-consistency of this
model using the partial-wave analysis of a Wick-rotated Bethe-
Salpeter equation, the absorptive part of which is an integral
equation of the type in Ref. 1:J. S. Ball and G. Marchesini, Phys.
Rev. 188, 2209 (1969). Here we give the crossed partial-wave
analysis of the unitarity equation at $(0 directly.

"To define g&; unambiguously, it is necessary to fix the initial
and final s rotations p&; and v&; by attaching to conditions (2.2)
and (2.3) a definition of the y axis. This can be accomplished by
specifying a standard form for Q&, ;+2 and Q&, ; 2, respectively, in
these frames, as did BCP, or by making use of the spin degree of
freedom, as did CD.
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P„;, P.
, b then k; (0. The minimum three-vector mass P; is

m, the four-vector mass. Hence the constraint (2.9)
will automatically be satisfied for a particular value of
t after a sufhcient number of particle momenta have
been included in P,; & and P;, &. For pairwise equal
masses (mi m——, and mii, ——m„i,), k, ' is negative when

I'IG. 2. Lorentz three-momentum diagram corresponding to Fig. 1. sai 1,+—wi )~ma

s, i,+w, 2~&mi, ' ——,'t, (2.1o)

Q= Lo,o,o, (—t)' 'j, (2 6)

and plays a, role analogous to the 0(3,1) transformation
C~.

tion in the frame (/i, r) to their configuration in a general
reference frame. The incomplete absorptive part &(ai, ti)
which appeared in the integral equation at t=0 was a
function of a Lorentz transformation of the type u&;.

The equation was partially diagonalized by projecting
B(ai,ti) onto representations of the Lorentz group. "

At t&0 we shall construct an analogous- function
B(a,ti, t„),which depends upon an 0(2,1) transforma-
tion a. This transformation preserves the over-all four-
momentum transfer

k;= (O,k, ,o),
k,+i= (k,~i sinhq;, k~+i coshq;, 0),

(2.11)

where s= P' is the four-vector mass. The positions of the
Regge poles in the elastic absorptive part are deter. —

mined by the central part of the chain, the ends of the
chain serving only to define the pole residues. Hence
for notational convenience we shall treat the more im-
portant case of spacelike internal k; and shall later
indicate the simple generalization to timelike k;, which
occur only at the ends of the chain.

We define a sequence of standard frames (i,t) and
(i,r) by analogy with (2.2)—(2.4). In frame (i,r),"

If we fix Q in this way throughout, the components of and;n frame ti p
the four-momentum transf ers"

Q-, '= Lk', w'+2( —t)"'j
Qi, '= Lk', w' —-'( —t)'"j (2.7)

k, = (o,k, ,o),
k, i= (—k, i slnhq& —i,k; i cosllq; i,o),

(2.12)

are partially determined by the constraints

with the result that

w;= (ti, —t;)/2( —t)'",
1; k;= —X(t„,t„;,t)/4t,

X(a&b,c)= a'+b'+c' 2ab 2ac 2bc—. — —
(2.8)

P.,. .&)P.'= l~(m,.',m„.',t)/4t,

P, i,') Pi,'= X(mii, ',m„P,t)/4t,
(2 9)

&' +he three-vector k always refers to the components (Qt,Q*,Q&).

The key to the analysis at t&0 is to recognize that the
Lorentz three-vector k; plays a role analogous to the
Qi;. In effect, the s component has been set aside, with
the result that the 0(3,1) symmetry is reduced to an
0(2,1) symmetry. In place of 0(2,1), the group pre-
serving the form of Qi;, we introduce the 0(1,1) or
0(2) group, which preserves the form of k;. As before,
large subenergies at axed ti;, t„;can occur only when.
the scalar product k; ~ k;+~ is large.

Except at the ends of the chain for a fixed value of t,
the k's are spacelike in the sense of three-vectors. This
follows from a condition on the invariant three-vector
masses analogous to the familiar condition for spacelike
four-momentum transfers. Referring to Fig. 2, one sees
that if

where k;2= —k,"k;.
Because k, is along the x axis in both frames, (i, t)

and (i,r) are related by an 0(1,1) transformation,
namely, a y boost f, which preserves at once the x and
s axes. Hence in frame (i,r),

k; i= (—k, i sinhq; i cosh/, ,k, i coshq, i,
k;—i sinhq, i sinhf';) . (2.13)

The subenergy s;= (P; i+P;)' is proportional to cosh',
for large f, and fixed t„,t„;:
s;~ —2k; g-k;+g

2k; ik;+i sinhq, i sinhq, cosh f, , (2.14)

which follows from (2.11) and (2.13).
We have introduced the x boost q; to relate the frames

(i,r) and (i+1, t). From the constraints

Qi, ;pi —Qi;= P;, P,'= m,',
coshq; can be calculated as a function of the momentum
transfers or, equivalently, the k's and zv's:

k,'+k,+P+ (w, —w;+i) '+m;2
coshq; =

2k;k, +g

(i =1,2, . . . , n) . (2.15)
"This specification defines the frames (i,r) and (i,l) up to a

reAection in the xs plane. There is no rotational freedom left as
in the BCP frames (Ref. I4).
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(2 16) d@n+P(Pla&Plb)k;= (E,,o,o),

If k; k; in Eq. (2.11) had been positive, we would phase space in terms of the four-momenta,
have written

where EP=k,"k;. In this case the y boost t; must be
replaced by a s rotation p.; Lan 0(2) transformation]
as the transformation relating the frames (f,,l) and (i,r)
and preserving the form of k, . The form (2.16) is re-
quired at the very ends of the chain. Here we define the
frame (a,r) in which

=d'Ppb &+i (Pp' —mp') d'P ib i+'(P i' —fbi')

d'P„~,bi+i(P„~i'—m„+,') b'(P P;—Pi, —Pib), (2.23)

may be rewritten in terms of the components of the
four-momentum transfers Qi;= Lk, , w, ——,'(—t)'i'j:

P,= (E.,O, O),

ki= (ki sinhqp, ki coshqp, o),
(2.17)

dC.~.(Pi.,Pib t) =8 + (Pp' m—p )d kidwi

Xb&+'(Pi 1@i') d'k +idw„~i8'+'(P„+i'—m ~ i') .
(2.24)

the frame (b,1) in which

P,= (E„o,o),
(2»)

kn+1 ( kn+1 sinhqn+1&kn+1 coshqnyl&0) &

and the frame (b,r) where

Pb ——(Eb,o,o),
kn+1= ( kn+i sinhqn+i&kn+i coshqn+i cosgb&

—kn+i coshq„+i sing b) . (2.19)

Corresponding to Eq. (2.15), we find

tlap Ea +ki +—(wa+wi)
sinhgp =

2E,ki

~a+1 Eb +kn+1 +(Wb Wn+i)
slnhg n+i =

2 k
=Z)t+] a

(2.20)

From these results the procedure for generalizing to an
arbitrary choice of spacelike and timelike three-rno-
mentum transfers should be obvious.

For vertices with adjacent spacelike k, on both sides,
it is evident from (2.15) that coshq; ~&1, and from (2.11)
we see that

(2.21)

ii' = bag aqpt 1ql ' ' '
q i lf ' &— (2.22)

where b, is an arbitrary 0(2,1) transformation which
preserves Q. The construction of the (ted+2)-body phase
space in terms of the 0(1,1) and 0(2) group variables
1;, &1 b and the variables k;, w, proceeds in much the
same way as before. The familiar expression for the

'7 We use the same symbol for the I orentz transformations g,
g, and g as their parameters.

if P, is to be forward timelike. From (2.19) it is evident
that for timeline-spacelike vertices, q may be negative.

Pursuing our analogy further, we define the 0(2,1)
transformation'7

We picture the phase-space volume element as being
defined for a fixed initial 0(2,1) transformation b„
which defines P„and a fixed over-all 0(2, 1) transfor-
mation b~, which defines P~.

bb= ba(Paqpf i)qi ' ' '| npiqn+14&b ~ (2 25)

If we integrate first over d'k~dze~, next over d'k~dm~,

and so on, from the standpoint of the first integration
a2 is a constant Lorentz transformation, since a~

' bb&bb qadi ' ' 'fp qp
' does not depend upon ki and

m&. Transforming ki by a& ' brings k& to its configura-
tion in the frame (2,r) where the parametrization (2.13)
applies. We make use of this parametrization to change
variables:

d ki ~ ki dkid coshqidl 2.

Proceeding to the d'kid+2 integration, we regard a3 as
being fixed by the subsequent integration variables.
Repeating this argument, we make the replacement

d'k, ~ k,'dk~d coshq;dt;+i (2.26)

for i = 1,2, . . . , n. Finally, regarding b& as fixed, we make
use of Eq. (2.19) to replace d'k„+i.

d'k„+i—+ kn+iPdk +id sinhqn+idPb. (2.27)

The mass-shell constraint on I' may be used to elimi-
nate the integration over q .

bi+'(P,'—m,')d coshq;= 1/2k, k;~i
(for i=1, 2, . . . , m),

(2.28)
bi+i(Pn~ip nz +i')d sinhq„~i———1/2Ebkn bi,

b i+i(P p' —mpP) = (1/2E, k i) 8(sinhqp —sp) .

Putting together (2.24) and (2.26)—(2.28), we write.
finally,

dC a+p(ba&b b&t) = (1/2 "+'E,Eb)dkidWidf pdkpdWpdl p
. .

dkn+idwn+id&bb(sinhqp —ap) . (2.29)

The range of variables 0~&k;~& ~ and —~ ~&+;~& ~
spans that portion of the phase space in which k; is
spacelike. The complete phase space must, of course,
include an integration over dE~dw, d&f&;+i for timelike
k;, where 0~& E;~& ~, —~ ~& m;~& ~. An additional con-
straint upon the range of integration is imposed by the
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atyi= ai(jifiyi &

al batt&a(IOt 1 ~

(2.31)

It may be helpful to remark that when the 6-function
constraint is satisfied in the integration dC, it is auto-
matically satisfied in d4;+I' because of the second con-
dition (2.31),which is consistent with (2.22) and (2.25).

Because there was no rotational freedom left in de-
fining our standard frames in (2.11)—(2.13), we cannot

8 function in (2.29), since qt& depends upon all the inte-
gration variables through (2.25). This constra, int places
an upper bound on the E; which is eventually reduced
to zero after a finite distance along the chain.

The recursive property of the phase space may be
stated as follows:

dk +g
d@n+2(ba&bb&t) =dC'n+i (ba&any)&t) dK&n+idtt&b

&

2EQ

d4;~i'(ba, a,+i,t) =dC (ba&a;&t) sdk;dit&;di;+2
(2.30)

(for i = 1, 2, . . . , n),

dC i'(b. ,ai, t) = 6(+) (sinhqt) —so)/2E„

with the proviso that

bb=anytgn+itt)b&

use the simple device of replacing a helicity sum with an
integration over a rotation in the little group of k; as
CD did with the little groups of Qt;. The sum over spin
degrees of freedom must therefore be performed ex-
plicitly. The correct procedure using the BCP ampli-
tudes will be described in a forthcoming paper. Here, for
the sake of simplicity, we shall treat only pions in the
intermediate states.

III. FORM OF AMPLITUDE AND CONSTRUCTION
OF MULTIPERIPHERAL INTEGRAL

EQUATION

A. Mult&-Regge Model

In order to construct the multiperipheral integral
equation for f(0, we must 6rst express M&("+'& and
cV„(n+2),the amplitudes for the processes la+ tb —) 0+ 1
+ .+(n+1) and ua+ub~ 0+1+ +(n+1), re-
spectively, in terms of our variables. The expressions are
similar because our choice of variables is symmetrical
with respect to the upper and lower amplitudes. We
therefore drop the labels l and I for the moment.

If 3f("+2) is a square-integrable function of the f s,
it can be written in terms of its projection onto the
unitary irreducible representations of the appropriate
groups:

M (&t&a&i 1»~ ~ ~ t n~l&tt&b& +a&2(&a&I&1&2(&1& ~ ~ ~ &ttn~l&vt&nylgb&Wb& t) = (2&l) '( + ) Q (—$) +
tea mft

+q', oo joo

'b 00

dye dp~+ye'

)(t&»lr1. . . C l&tra++itnim &t~b&b( +2)n(tn u + ~ . g . t) (3 1)

For non-square-integrable functions of physical interest, Eq. (3.1) is valid provided that the contpur pf integratipn
is deformed away from the imaginary axis in an appropriate way.

For example, if we assume that M'"+" is a meromorphic function of the p; s, poles at p;= ~o; gjve a contribution
to the amplitude of the form

tlat ((t& i i 1 t&&&&@ba»~ ~ ~ 2(&bt)&=COnSt P e'ma~aS&mba'bS™u&&~ ~ ~ ~ Can+&1m+&I@(g 2(& It 2(& P 2(&
. t) (3 2)

where the tt; contour has been moved either left or right, depending upon the sign pf f.,
In order to obtain a physically meaningful form for M &"+", let us evaluate the multi-Regge ampljtude jn terms

of our variables, keeping only leading-order terms. The asymptotic form of the amplitude is given by

~(n+2)~g pV ( t)tiSia(&tt)gtY Y&t(ti t2 t&&i)gsa&'2(ta) ~ ~ ~ g (t )ap&'nY n)' +
(nt nt t~ )g ann+&(tn+&)ppn+t(t ) (3 3)

where ~; is the Toiler angle. We have written o'~; in the superscripts instead of n~,. to avoid typesetting problems.
We must evaluate s, and o&; in terms of our variables. Recall that the asymptotic form of the subenergy (2.14)

is given by

As for co; we have"
s; k; &k;+y sinhq; ~ sinhq;e~&'~.

~,~o&,(&;,2(&;,&;pi,w, ~i,nt, t,sgnt;, sgnt',„,),

(3 4)

(3.5)

as f';, f',+i~~. Because the extra variables sgn|; are needed to label the residues at the O(1,]) poles in the fpllpwing
we discard the o&; dependence (see Acknowledgments).

'8 In terms of the variables for 3ff,

(cosa&«+coshq«)~(tt, ;tt;+t)" (sinhq«) (sg, nt; sgnt;+t jcoshq;)/k;k;+ (sinhq;)&'.
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Substituting Eqs. (3.4) and (3.5) into Eq. (3.3), we easily find that

iM "+2 ~ P ei))) 4 P ) (E, w ki wim()2 t)e~7)('))lr)lPrns(k w k2 w2 m 2 «)e~&2()2)lr)l. . .eayn(te)lrnl

mam&pi

Xp'"&"+'(k.,w. ,k.+i,w.+r,m. ', t)e~7-+'~'-+'&l r. +' pl,„,~.+'( k„+,w, E,,w„m„+12t)e'~»~ (3 6)

where the kinematic factors k; and sinhq; have been
absorbed into the residue functions.

Thus a Regge pole at nr, (t,) in 3f("+" genera, tes, in
leading order, 0(1,1) poles at t(,= &(r~,(t,). In general,
we expect a Regge pole to generate a sequence of 0(1,1)
poles spaced by integers. The residues at the poles are
factorizable, enabling us to derive an integral equation
for the absorptive part of the amplitude. We note that
whereas the 0(1,1) vertex functions depend upon the
over-all momentum transfer, " the positions of the
0(1,1) poles, considered as a function of ti and t„,are
independent of it.

We are now in a position to derive an integral equa-
tion for determining A(b, 'bs, t), the absorptive part
of the amplitude (tu, tb +Nu, Nb-). As noted in Sec. II,
timelike k; occur only at the ends of the chain, and so
do not affect the position of the output Regge poles.
For the sake of convenience, therefore, . we write the
integral equation integrating only over spacelike k;."
We assume that M~("+') and M ("+" can be approxi-
mated by sums of 0(1,1) poles with factorizable residues
as in (3.6). Restoring the labels I and I, we define m„
mp, 0.~;, and E&'&'+ by

m =m), —m„, mp ——m)g —m„g,
n„.(k;,w;, t) =n„,.(ti,)+n,.,(t„,),

Rr*'r*+)(k,)w;)k,+1)w,~i)mi2) t)

X [j9.'"*'"'+'(k')w')k'+1)w'+1)m'')t)]* (3 7)

The derivation of the integral equation closely parallels
that of CD. We merely quote the results. The incom-
plete absorptive part is the solution of the equation

B&'(u'; k', w', t) = (()iB&'(u'; k', w', t)

The inhomogeneous term is given by

(()iB~'(u'; k', w'; t) = P b(sinhg() s—())e'
mlamua 2Aa

XR„,.„,''(rE. ,w. ,k', w', mos, t) e r'("' "' 'lit'l, (3»)
with u'=(t), g()t' The.complete absorptive part 2(b, 'b(„
t) is determined from B& by

A(b, 'bb, t) =
2Eg mlbmubp

dkdwdybB&(b 'u; k,w;t)

with
XR„„,&(k,w, Es,wb, ms, t)e' »', (3.12)

b()= ug)t)().

B. AFS-Type Model

(3.13)

32(sinhgo; E„w.; ki,wi) g k dk;dw;

Xd coshgidt. i+1Gi)4 2idk n+idwn+id sinhg„+id)t) s

Xkn+1 G))+1+2(sinhgn+1) k))+1)wn+1) Es)w()) ) 'f3.14)

where

In the model of Fubini and collaborators' the fac-
torization assumption in the production amplitudes is
introduced through the pion-pole dominance, and the
building blocks of the multiperipheral chain are the
(oR-shell) pion-pion scattering amplitudes.

In evaluating the unitarity integral (Fig. 3) we can
make, on the momentum transfers Qi's and Q„'s, the
same change of variables as in Sec. II, while the remain-
ing loop integrals simply give the off-shell elastic x-m
cross section A2 for each link of the chain. So we have

2„~2(b, 'bs, t)

where
u'= ug'

g&0,& (I(,",to', t)( f~)

+-', Q dkdwdi'B&(u; k, w, t)R»'(k, w, k', w', m2, «)

(3.8)

G'—= («'-t ') '(t-—«') '

A2;=—As(coshg, ; k, )w;; k;+1)w;+1), (3.15)

coshg; —Lk +k;+1'+ (w; —w;~1)'+s;j/2k;k;~„
Ss~~4P,

and sinhqo is dered in a similar way.

coshg= (1/2kk') Lk'+k"+ (w — )w'+ im. (3.10)

"The O(1,1) variables are defined in reference frames which
are partly determined by Q, Eq. (2.6). So this t dependence is not
surprising. The O(1,1) expansion is natural for the unitarity inte-
grand, but not quite for the production amplitudes themselves."It is always possible to recast an integral equation of the type
(3.8) in terms of 8=B—B,where B represents the sum of the
first n terms in B, obtained by iterating the original equation.
Since the timelike k's disappear after a finite number of iterations,
one can always obtain, with this device, an integral equation
involving strictly spacelike h's.

Pua u,n+ P„b

FIG. 3. Unitarity contribution for the AFS-type model.
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The analogy of Eq. (3.14) with the multi-Regge model
is apparent. The 8(coshq, —s;) in the phase space is now
replaced by A&(coshq;. )0(q;—q, ;„)and the 1 depend-
ence of Eq. (3.6) has now disappeared, because the ex-
changed pions are not Reggeized. With the usual pro-
cedure' " we get an equation for the incomplete ab-
sorptive part:

contour along Rel= —~, ' and

d/l]= (8ori) '(2l+1)cot)rl dl.

The form of our equations is

B((),') = (o)B((),')+ d coshqd~)'B(a'1' 'q '—)

(4 2)

B(g,', l) = «)B((),',l)+ lo'dlodwd coshqdl'B(()'f' ' '
&)

XG(&,w) A &(coshq; k,w; )'o', w'), (3.16)
where

XE(coshq, l'), (4.3)

where, if a is parametrized by

e—iJzge,—ix x'Ile—i Ky)

and s is the energy, then

(o)B(a,l) = A o(sinh)); E.,w. ; lo, w),

sinh)) = [k' E,'+ (w——w, ) '+ s]/2kE, .

(3.17)

(3.18)

E(coshq, l') = 5(coshq —s)Ee~'r') (multi-Regge) (4.4a)

= GA o(coshq) (AFS-type model), (4.4b)

and all the irrelevant labels have been dropped for
simplicity. Substituting (4.1) into (4.3) and making
use of the identity

The complete absorptive part is obtained from 8 by
the formula

Do, "'(~'f' 'q ') =2
lQO

(—i)d)((

A (a' l) = lo'dlodwd sinhqdg B(a'g 'q ' 1)

XG(lo,w)Ao(sinhq; lo, w; Eo,wo) . (3.19)

XDo,o'r (a')eo'r'd„„„„'(q'), (4.5)

we obtain the partially diagonalized equation

IV. CROSSED PARTIAL-WAVE ANALYSIS

Bo'r' (o)B 'r' +P
where

(—i)dgB„,'E„,;„',(4.6)

Equations (3.8) and (3.16) have 0(2,1) symmetry
because both kernels are invariant under the transfor-
mation a' ~ c(),', a ~ ca, where c is an arbitrary 0(2,1)
transformation not affecting b,. To exploit this sym-

metry, we shall expand B(a) (we drop the k, w variables
for the moment) in terms of represents, tion functions of

0(2,1).'" Because of the parametrization of a j Eqs.
(2.22) and (3.17)] we shall use a mixed basis, namely,
an 0(2) basis associated with tirnelike k and an 0(1,1)
basis" "associated with spacelike k, where the y-boost
generator E„is diagonal and has eigenvalue p (—~ (p
(+~). The representation functions carry an extra
index r=& because each eigenvalue p of E~ occurs
twice in the completeness relation. The properties of
these representation functions a,re given in Appendix A,
which relies heavily upon the work of Mukunda. "

We expand

Eour, o' r' = d coshqdf E(coshq f' )co r d „)(qt)

d, , „,'(q ')=—(l,p'r'je' ojl,pr)

With our r basis (Appendix A), we have

B+ (o)B+ +B+E++ ~ (4 9a)

B =(o)B +B+E +B E (4.9b)

d'+,.-'(q ') =d'-..+'(q) =0 (q&0),

provided that the internal vertex boost q&0. Because
we require positive energies for the outgoing particles,
this is always true for vertices with adjacent spacelike
k's LEq. (2.21)].Therefore we have, symbolically,

B(g) = dLl]( —i) d1 p B„'Do..'(~), (4 1)

where p=—ip, and we assume for simplicity that the
helicity difference m, =m~, —m„„=o;C is an infinite

"M. Toiler, Nuovo Cimento 37, 631 (1965).
"N. Mukunda, J. Math. Phys. 8, 2210 (1967);Tata Institute

of Fundamental Research, Bombay, Report, 1968 (unpublished)."J.K. Kuriyan, N. Mukunda, and E. C. G. Sudarshan, J.
Math. Phys. 9, 2100 (1968).

Note that the + amplitude is decoupled and can be
determined separately. Since, as shown in Appendix B,
the output Regge poles are given by the kernel E++'
only, from now on we shall concentrate on that equa-
tion. The relation between (—) and (+) amplitudes
will also be discussed in Appendix B. Note that the

"We assume that all Regge poles are to the left of Rel = —~, so
that this expansion converges properly. When the Doles move to
the right, the contours have to be distorted accordingly.



M ULTI PER I P HERAL D YNAM I CS

representation function occurring in E++ is (Appendix
A)

dp+ p+ (q ) dl4 s

~ ao g I k' J+l X+2 ceo

X X X X X X

=—(cosh-', q)
"—'

2'
dl. er(&+&—v')

)&(er+tanh-', q)
' '+"(1+e& tanh-', q)

' ' "

~ 0 ~ Q Q

~ ~ ~ -I.- 2 -& l

X X X X

-Q -Q sea
I 2

-Al ~ ~ ~

X X

Ree.

B~'(k',w') = (p) B~'(k',w')+ k'dkdw

XB„'(k,w)E'(k, w; k', w'), (4.12)

E'=G(k, w)2
&min

dh A s(s; k,w; k'w') Q ((s),

1
=—(sinh-', q)

—"—'(tanh-', q)
—&s+~'&

2x

r (l+1+~')r (l+1—~')
X

r(21+ 2)

&(F(l+1+p, 1+1+p'; 2l+2; —(sinh —',q) '), (4.10)

and is therefore a pure Q&-type function. In particular,

dpp'(q ') = (1/or)Q((coshq) . (4.11)

Equation (4.9a) is still an integral equation in p = —ip,
as is expected in general, p being the analog of the inter-
mediate helicity in a t-channel two-body unitarity sum.
Considerable simplification is, however, achieved for
the kernels (4.4) which represent only the leading
0(1,1) poles at each link in the multiparticle amplitude.

In the AFS-type model t Eq. (4.4b)j the kernelsE„„'contain a b(p') factor, due to the lack of t depen-
dence (spinless particles). By factoring the 8 function
out and restoring the k, m variables, we easily obtain

F&G. 4. Poles in the p plane for the integration of Eq. (4.15).

the modification for more than one 0(1,1) pole being
obvious.

Because of the analyticity properties in p, , p' of d'„„'
given in Eq. (4.10), it is evident that B„+has both
some "kinematical" poles which can be factored out,

r(2l+2)
(4.14)

and "dynamical" poles at p= &n. The meaning of the
kinematical poles can be seen from the partial-wave
projection of Eq. (3.12),

A'=(2Ep) ' dkdw( i) der P—B~'dos. '(q '),

for ms= m(o mp —0 (4——.15.)

The pinching of the poles p=n and 1r =1+1+n (Fig. 4)
(n= 0, 1, . . .) gives rise to a singularity in the l plane at
1=n—I —n, moving with k and m, and therefore to a
Regge cut in Eq. (4 15) "

By dividing the f integration of Eq. (4.10) into the
pieces (—~, 0) and (0, + ~), we can write

r(l+1+~') 'r(l+1 —~') 'd ~ 'r(l+1+~)r(l+1 —~)
where z; )1 is the threshold value of coshq in (3.15)
with s=4p'. Note that X' is the same partial-wave
kernel as the one obtained from the Bethe-Salpeter
equation corresponding" to the unitarity equation
(3.16).This kernel can be obtained either by means of a
Wick rotation"" or through the crossed partial-wave
analysis. '~

In the multi-Regge model we can approximate the
integral equation in p, with a system of equations cou-
pling the 0(1,1) poles together. From Eqs. (4.4a) and
(4./), we have

where d» ' has only the poles p= l+1+n (n= 0, 1, . . .)
in the right-half p plane, and is well behaved when
Rep ~—~. In terms of 8„',our equation reads

& '—
&o&& '=(—

&) dp;
Q

XB„'R(d„,„'+d„„'). (4.17)

E„„„.+'= Rd„„'(q'), -

P cE » As shown in Fig. 4, there are also poles at p, =& (l—e'), coming
from d0, „&'(q '), which appears in {4.55) and not in (4.17). The
only effect of the additional pinchings is to generate a symmetric
cut at l= —n+ts in A', as expected. This is most easily seen by
performing on 8„'and d0 „„'decompositions similar to {4.16). In
this respect the p,-plane singularities here are similar to the l-plane
singularities of Toiler amplitudes (symmetric under l+-+ —l—1)
and a separation of left-hand and right-hand poles simplifies the
distortion of the contours.

2' In Ref. 1 the construction is given of a Bethe-Salpeter equa-
tion whose absorptive part, due to the Cutkosky rules, is the
unitarity equation (3.16). If a Regge-pole expansion of the off-
shell qr-x amplitude is assumed, such an equation does possess
the AFS cuts (Ref. 13).

'6 B.W. Lee and R. Sawyer, Phys. Rev. 127, 2266 (1962)."L.Sertorio and M. Toiler, Nuovo Cirnento 33, 413 (1964).

%e now displace the p, integration towards the left in
(4.13)
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where b~' is the residue of 8„'at the pole p= o.~ and we
have generalized to the case of several 0(1,1) poles.

The background integral represents the contribution
of lower-ranking singularities in the input 0(1,1) series.
Neglecting this integral involves an assumption about
the convergence of our solution as we include succes-
sively more input singularities. For our method to be
useful, the locations and residues of the leading singu-
larities in the I plane of the solution should be deter-
mined to a good approximation by a small number of
leading singularities in the p plane. Note that the back-
ground integral has its first /-plane singularity at
l = —M —1 on the left, where p= —3f is the position of
the next singularity in 8„',which has been neglected.
This lends credence to the above-stated assumption.

If we now restore the k, vv variables, the approximate
Eq. (4.18) reads (y is short for p„,p&)

b«'(k', w') —(p)b«'(k', w') =s. Q dkdw b„'(k,w)

yR»'(k, w; k', w')[d, ,'(q ')+d „,,'(q ')],
(4.19)

where"

&p)b '(k w) =p«'(t))[p«"(t )]*(8,coshqp)~«

I'(2E+2)
X Qi"(«)r(t+1y, )

1 00

d~ ~ '(g ')=—(cosh-', q)
—'—"

2~ 1

d$$+ &

)((x+tanh-', g)
' ' ~«' (4.20)

X(1+x tanh-', q)
' '+ «'

R»'(k w k'w')—=P«'«'(ti ti')[P«"«'(t t ')$*

&&(sinhq) «+ «'k «'k' «,

and n«and q have been defined in Eqs. (3.7) and (3.10).
Note that the expression given above for E»' is valid
only for the leading term in the sequence of 0(1,1)
poles corresponding to a single Regge pole in the BCP
expansion. Though our crossed partial-wave analysis
is general, these leading terms are the only ones ex-
plicitly accounted for in this paper.

' The expreSSiOn fOr (0)b' iS the One giVen belOW if S0)0. If
sp(0, Q& 'y has to be replaced by a more complicated expression
derived from (A25}.

the p plane for d„,„'and towards the right for d „,„'
picking up the dynamical poles at p= &0.. If we neglect
the remaining background integral, we get, finally,

b«' —&p)b« '=2«r P b«'R««'(da«, «
'+d „,„'), (4.18)
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APPENDIX A

O(2, 1) in a Noncomyact Basis

We summarize here the properties of the representa-
tion functions of the 0(2,1) group in noncompact bases
which are relevant to our paper. The reason is that we
use a slightly different basis than Mukunda, "and also
that the representation functions in the 0(2) &&0(1,1)
basis are not found in the literature.

We are interested in the matrix elements of transfor-
mations like

e—i Jzp~—iK~ye —iKyg (A1)

which connect timelike to spacelike three-momenta and
transformations of the form

~
—i')'e —iK~g~—iKy$" (A2)

for the spacelike-spacelike case. Although the latter
parametrization of the 0(2,1) group is not complete, it is

The most singular part in the / plane of the kernel of
Eq. (4.19) is given by

(t+ 1 n—) '2'p»«" (p«"«"')*[(tanh —'q) ~«'+ (tanh pq)

)& (sinhq)
—' '+~«+~«'k~«'k'"«. (4.21)

It is interesting to compare it with the kernels obtained
by using the Mellin-transform technique with an asymp-
totic representation of the phase space. '7 One striking
difference is the presence of the last three factors. For
small k this term factorizes in k and k' and, after a re-
definition of b«', yields a "threshold" factor (k')' ',
where t, =n«, (ti)+n«„(t„)—1. This factor can be ne-
glected when / is close to the branch point, where the
output Regge pole occurs in weak-coupling models.
This is also the limit in which the Mellin-transform ap-
proach is most plausible.

An additional feature of our kernel is the presence,
through a dependence on sinhq, of a kinematical corre-
lation between the k and k' variables for k, k'& m, where
m is the mass of the outgoing particle(s) at the vertex.
For linear input trajectories this also provides a natural
cutoff at large values of k.
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p, (q)=(l,ml e '+~~ll, pr)= Pp„(g )]@

d„„,'(q) = (l,pr
l
e 'x»

l l,p'r') = Ld„„'(g')]* (A3)

sufficient for our purposes, due to the form (2.22) of a;.
We shall use the mixed basis for transformations (A1)
and the 0(1,1) basis for (A2), with the deffnition

By using the relation

cosh'+ cosh) sinhg = (e&+tanh —,'q) (e &+ tanh-,'q)
X (cosh-,'q) ' (A9)

we can reduce (AS) to a standard representation of a
hypergoemetric function, "and we obtain

where
p=zp) p =zp

1
d„p,„+'(g ') =—(sinh-', g)

—"—'(tanh-', q)
—

&
—&'

2x

The representation of O(2, 1) suitable for the O(1,1)
basis is defined" "in the Hilbert space of the functions

f,($) (s= 1,2) with the scalar product

r(i+1'&') r(l y1 —„')
X

I'(2l+2)

XF(l+1+p, lj1+p'; 2l+2; —(sinh-,'it) ')
(f,a) =E « f.*(~)g.(~) . (A4) =d( .)+, ( .-)+'(. -). (A-10)

In this Hilbert space we shall choose, for the ll,p+)
states, the particular representations given, respectively,
by

1 1~ 1 (0
le"& and

(27r)"' 01 (2 )1(1 (AS)

This choice is different from Mukunda's. "The x boost
is represented, in this Hilbert space, by

In the same way we have

1 +"
d'-, .-'(~ ') =-

27r

8(cosh' —cosh) sinhi1)
l4 0

(coshi1 —cosh( sinhi1) '+'

( e& —tanh~g )"
xl l, (A»)

k1 —e& tanh-', g)

and by changing variables to""f(~)=f'(~) (»0),
where

fi'(() =(coshii+cosh& sinhg) ' 'fq(('),

f,'(&) =(cosh&sinhg —cosh') ' 'f&($q)

XO(cosh) sinhq —cosh')

+(cosh' —cosh$sinhg) ' 'f2($2)

(A6)
e&'= (e&—tanh —.', q)/(1 —e~ tanh2ii),

we get the result

d' ,. '(~ ')=-d-.+,'+ ' '(n ')

(A12)

(A13)

As for the plus-minus matrix elements, we discover
that

d„.~ „'(g—') =d„,„+'(g)= 0 for i1)0, (A14)

which shows the convenience of our basis (AS). The last
matrix element is not zero and is

X0(cosh' —cosh( sinhg), (A7)

e&+tanh-', ii
ega-

1+e& tanh-', ii

e&—tanh-,'q
)

e& tanhq —1

e&—tanh-', g
e$2—

1—e& tanh-', g

O(1,1) Basis

By substituting (AS)—(A7) into the second definition

(A3), we get, for example, "

—po

d' ,.+'(n ')=-
27r

( 8—tanh-', g
Xe "'&(cosh) sinhg —cosh')

ke& tanhi2g —1

(e « = tanhi~ g) . (A1S)

After a change of variables simila, r to (A12) we get

d'-, .+'(~ ')
1=d„,„~' '(g ') =—(cosh-', rI)

—" '(tanh-', q)" "'
2'

1 +"
d. +,.+'(n ') =

2Ã
d$ e I"'&(coshg+cosh/sinhg) ' '

( e&+tanh-', q q&XI-,
l

(As)
&1 ye& tanh-', g)

I'(l+1—p, ') I'(p —l)
X

I"(1+v —p)

XF(I+1+@,l+1—p", p —p,'+1; (tanh2ig)')

+(p,-—',.'- —.') . (A16)
'0 We prefer to give directly the representation functions occurr-

ing in the kernel (4.7) and in the amplitudes (81) instead of those
in the expansion (4.1).They are related by complex conjugation.

"Bateman Manuscript Project, edited by A. Erdblyi (McGraw-
Hill Book Co., New York, 1953), Vol. l, Sec. 2.12.
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cosmp
d —,o(v ') = d +,o'(n) = — d,+,o'(n ')

cosxl1 I (l+1—1s)
d. +, ~'(n ') =- Qi"(cosh/),

I"(1+I) s-I'( —l)
(A25)

I'(l+1)coss l I'(1s —l) I'( —p —l)

(A17)
1 I'(l+1)

d~,.+'(n ') = Qp(coshri) .
s- I'(i+1+1s)

Equations (A10), (A13), (A14), and (A16) give the we get
desired results. In particular, "

We finally mention, without proof, the relation

cos7rl d~~, ~+ (rl ) = —cossp d~~+, p~ ('g )
+cosset d„,„'(g'), (A18)

valid when g&0. It can be used to prove that Eq.
(4.9b) of the text is actually solved by relation (B1)
between (—) and (+) amplitudes derived below.

Group Properties of Qi Functions

By the use of the r index it is possible to have pure
Qi-type representation functions, thus providing group-
theoretical properties for QiI'(s). For instance, using
(A14), we obtain

(l P+ ~e'i., e'x„fe'x., ~i P+)

Mixed Basis =(—i) d1s do+s+'(sit , ')e"&d„~o+'(res, '), (A26)

We can obtain the representation functions in the
0(2)XO(1,1) basis by using the same Hilbert sPace as and using (A17), we get the addition theorem (for
before, by using the representation of the states ~lm) z
in this space, ""which is

f (5) ~ 1 1+ietq"
f (() = (cosh() ' ' ——

~

. (A19)
f (P)) (2s-) '" 1 ieV—

where

tansies+
——(e&&tanhsrl)/(e& tanhsri&1) . (A21)

For m=0, r=+, (A20) is a standard representation
of a Qi function, "and we obtain, for q) 0,

1 I'(l+1 —p)
d.+,o'(n ') =- —i' '+Q&(ii sinhri) =d„,o'(ri),

I'(i+1)
(A22)

where the last equation follows from the relation"

e*~~~~ p+) —
~

—p, —), (A23)

and from the fact that the d„+0' is even in p.
For nz= 0, r= —,the right-hand side of Eq. (A20) is

proportional to the analytic continuation of Q&&(i sinhrl)
from q&0 to g(0 onto the Riemann sheet reached
through the cut —1(s(1.Therefore, by making use
of the discontinuity formula'4

From (A7), after some algebra, we obtain (ri) 0)

1 +~

d.+,-'(n ') =
2'

Xe I'&(cosh) coshrl&sinhri) ' 'e™+($), (A20)

Q i[siss+ (zi' —1)"'(ss' —1)"' cosh&]

=(—i)
+ioa d

Q&"(—)sQti~(es)e "& (A27. )
—'t oct

APPENDIX B: RELATION BETWEEN
+ AND —AMPLITUDES

We have seen in the text that the (+) amplitude can
be determined separately from Eq. (4.9a). Then Eq.
(4.9b) gives 8 ' in terms of 8+'.

Note first that the only additional Regge poles which
can arise from (4.9b) come from the singular points of
(1—E ') ' and, since E ' is related to E++ ' '
LEq. (A13)), they are simply the Regge poles at the
symmetric points l'= l 1. (Remember —th—at the out-
put amplitude A & is symmetric under l ~ —l —1.)
Therefore, only E++' is relevant for determining the
position of the output Regge poles.

On the other hand, an explicit simple relation between
(—) and (+) amplitudes can be found if ri)0 in the

When e & coth —,'q~ coth —', g2, or if xi = i sinhq;, the p, con-
tour can be closed in Rep&0, picking up the poles of
Qi s at Is=l+1+n and giving (A27) a form known in
the literature. "

The result (A27) can be used to give the crossed
partial-wave analysis of the AFS-type equation (3.16)
without explicit use of the group theory. '

Qi"(x+ip) = e'" Qi"(x ip) —isrEil"—(x—ip), (A24)

'2 In our Qll' functions the factor e'1' of the definition in Ref.
31 has been dropped throughout.

"Reference 31, Sec. 3.7.
'4 Reference 31, Sec. 3.4.

3~ F. W. Hobson, The Theory of Spherical and E'llew psoidal
Harmonics (Cambridge University Press, New York, 1931),
p. 384.

"M. Ciafaloni, University of California, Berkeley (unpub-
lished).
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parametrization (3.17) of (b. In such a case, from the
definition (4.1) of B„,'and. from relation (A25), we get

The O(1,1) expansion of the production amplitudes
becomes

df e"& d sinhv) d„+,o'(2) ')B(v1,$),

~(a+2)~
ma lmb, Pi, &i

e2taa4'ap VlgaV2Tlrlg(r(l 2))3 V1V2

min

(B1)
COSVr)2 Vri'( —1)

l B b+
cos l I'(1+1)cos2rl I'()(2 —l) I'( —p —1)

which solves explicitly, for this case, the system of
equations (4.9). This can be verified in a straightfor-
ward way by using (A18) given above to relate E+
to E++' and E++ ' '.

Note that sinh2), given by (3.18), can be negative
when the energy s(E, = m, '—4t. This can occur, how-
ever, only for the first few links for any fixed t. The fore-
going argument, therefore, strictly holds for that part
of the absorptive part which comes from intermediate
states of sufFiciently high multiplicity. "In some multi-
peripheral models of, e.g. , x-x and ~-E scattering, when
t is in the region of the forward peak, the first average
subenergy is already large enough to make the case
2)(0 (and the occurrence of timelike k's) presumably
unimportant from the second link on. In such cases
the procedure of Ref. 20 involves only the separate
treatment of the elastic unitarity graph A2(a).

XgaV2r r2tl2(rol 2). . .p Va+1~(mbgb (C1)

where the k,m variables have been dropped. For the
incomplete absorptive part we now have the equation

B v'(a'b'w't)= B v'((b'b'w't)

+ ', Q -dkdwdt'B, v(a' t' 'q '; t)

where

XR„vv'(k,w; 0',w'; t)e v'"' ' ') "r'0(r'1'), (C2)

(o)B, v = P b(sinhqo —so)e' '&

mrna,

m~a 2Ea

XR„,.„„.,..v'.- "r'S(r'1-'), (C3)

B)1'r'2' (o)B)2'2'2' +p ( i)dlb —B„„,'

and R„.»' is defined as in Eq. (4.20), but with the
Toiler-angle dependence included in g»'.

In the diagonalization, the amplitude 8„„,' has only
the pole p= —v-n, and the partially diagonalized Eq.
(4.6) is replaced by

APPENDIX C: GENERALIZATION TO
TOLLER-ANGLE DEPENDENCE

We indicate here, for the sake of completeness, how
our equations are modified in the case of Toiler-angle
dependence of the production amplitudes. We use a
method of Mueller and Muzinich, '~ which essentially
consists in adding an extra index r=sgnt to the in-
complete absorptive part.

As remarked in Eq. (3.5), the Toiler angle (o; depends
on ~, and r;+j, This means that the residues at the poles
p, = o. and p, = —n are different. Therefore, we must treat
positive and negative f's separately.

'7 A. H. Mueller and I. J. Muzinich, Srookhaven National
Laboratory Report No. BNL-13836, 1969 (unpublished).

Xdo ",o'(q ')R- ( r')l( '+r—'~') (C4)

The separation of right-hand and left-hand kine-
matical singularities in the p plane for d„+,„+proceeds
as before except that, for a given v-, only one of the func-
tions d„„'and d „„,' contributes. The final equation is

b ,v'(b', )w= (o)b, ,'(b', w') +Vr P dkdw b„'(k, )w

XR„»'(k,w; b', w', t)d „,„„'(q—'), (C5)

where «)bv, ' is defined as in Eq. (4.20), except that now,
eg P"=P"(«,r)

Equation (4.19) follows from (C5) in the case of r
independence of the residue functions.


