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A multiperipheral model, based on one-pion-exchange dominance of low-momentum-transfer processes,
is used to study the dynamical origin of the leading Regge trajectories which are coupled to the two-pion
system. A Bethe-Salpeter technique is used to calculate the leading singularities in the angular-momentum
plane from an input interaction that is determined by the observed low-energy pion-pion scattering ampli-
tude plus the high-energy contribution of the Pomeranchon. The solution results in a partial bootstrap
system in which the parameters of the Pomeranchon are determined self-consistently. The output tra-
jectories are found to correspond to what we conjecture are effective Regge trajectories, which in reality
correspond to both Regge-pole and cut contributions. The trajectories and coupling constants obtained
seem to be in reasonable agreement with the values allowed by experiment.

I. INTRODUCTION
' 'HE bootstrap description of elementary particles

is certainly one of the most appealing and am-
bitious proposals for determining the masses and cou-
pling constants of elementary particles. In this picture
all particles are dynamically interrelated in such a way
that all the parameters describing the S matrix for
strongly interacting particles are determined through
self-consistency requirements. At present, though a tre-
mendous amount of eBort has been expended on investi-
gating such theories, little has been learned except that
simple models of this type fail to describe the spectrum
of particles that occur in nature and we are still left with
the fact that the bootstrap theory may be the correct
theory; better means of investigating its relevance to
strong interactions must be developed.

Recently Chew and Pignotti' proposed a calculational
scheme known as the "Regge bootstrap, " which adds
one new ingredient to the older bootstrap models.
Papers' ' based on this general approach have yielded
encouraging results. In this paper we present a careful
calculation employing as much experimental informa-
tion as possible, with particular emphasis on investi-
gating the dynamical origin of the Pomeranchuk tra-
jectory. As an introduction, let us examine what the
proposal of CP has added to the usual bootstrap model
of a dynamical particle. Consider, for example, the
bootstrap of the p meson, of the type that was proposed
by Chew and Mandelstam4 in 1960, and followed by
more sophisticated calculations performed in the early
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sixties. This is illustrated by the equation represented
by the diagrams in Fig. 1(a). The left-hand side repre-
sents a dynamical pole of the pion-pion scattering
amplitude, namely, the p meson with angular momen-
tum J=1.The right-hand side of this equation is some
sort of ladder representing the repeated interaction
between the constituent particles, produced by the ex-
change of some particle. A sum of ladder graphs seems
to be the only model of a composite particle which satis-
fies analyticity and some truncated form of unitarity.
The general procedure was to guess a set of graphs to
sum on the right, perform an approximate calculation,
and then check to see whether the output p meson had
the correct width and mass. This becomes the simplest
bootstrap model when the interaction is taken to be the
exchange of a p meson, which then binds two pions to-
gether to form a p meson, and the mass and coupling
constant are determined self-consistently. More sophis-
ticated calculations involved considering serveal reso-
nances simultaneously, such as the p and f' on both
sides of the equation, and including additional con-
stituent particles such as E mesons and the co meson.
The general results of these calculations were that if the
p meson was produced with the correct mass, the width
of the p was necessarily too large, being somewhere be-
tween twice and four times experiment, depending on
the particular model being considered. The general
fault of this type of model is that there is no direct way
to check whether the input to the right-hand side of this
equation is reasonable.

The observation by CP is related to our current un-
derstanding of a dynamical particle as a pole in the
angular-momentum variable whose position depends on
the energy variable. In particular, if one considers the
point t=o and the variable s large, then the left-hand

(a)

FzG. 1. (a) Graphical representation of a dynamical particle.
(b) Grapical representation of a dynamical particle in the large-s
limit by multiparticle unitarity.
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Fro. 2. (a) OPE model for 2m —& 4n. .
(b) OPE model for 2s ~ 6m. (c) Mul-
tiperipheral model for 2m ~ 6x, ob-
tained by iteration of OPE.

(b) (c)

side of the equation in Fig. 1(a) is interpreted as the
contribution of the Regge pole to the ~-x scattering
amplitude at high energy. Furthermore, if one takes the
imaginary part of both sides of this equation, the lef t-
hand side becomes the total cross section at high energy
and the right-hand side becomes a sum over the two-
to e-particle partial cross sections. This is particularly
clear for the Pomeranchuk trajectory, as it is the leading
singularity in the scattering amplitude, but also must
be true for the p and other nonleading trajectories pro-
vided the appropriate partial cross sections are summed
on the right. From this point of view, the dynamical
equation represented in Fig. 1(a) is simply an identity
and the correct ladders to sum are those that give the
correct two-particle to e-particle cross sections. From
experiment we know that pions are most copiously pro-
duced in high-energy reactions; thus the equation repre-
sented in Fig. 1(a) is more correctly represented by that
given in Fig. 1(b). where the e particles are rs pions. The
requirement that we have a useful bootstrap equation
is that the inelastic partial cross sections be calculable
correctly by some tractable model related to the Regge
pole calculated on the left.

The original proposal by CP was that the "two-to-e"
amplitude could be calculated from the multi-Regge
model; however, most of the experimentally observed
production occurs for relatively small subenergies for
particle pairs and therefore lies outside the region of
phase space where the multi-Regge model is directly
applicable. If the duality picture is correct, in the sense
that the Regge pole which describes the scattering at
high energy continues to give the correct energy-average
cross section at low energies in the resonance region, one
could set up a set of bootstrap equations for the leading
Regge trajectories. It appears that duality seems to be a
sometime thing, forcing one to search for a more gen-
erally applicable model. It has been suggested by Chews
that the one-pion-exchange (OPE) model, which has
had considerable success in describing production pro-
cesses, ' might provide a good description of multipar-
ticle production.

The basic assumption of the OPE model is that the
pion pole which exists in a scattering amplitude at the
pion mass in the appropriate momentum-transfer vari-
able continues to dominate for small negative values of
this variable. Since experimentally all processes are
dominated by the small-momentum-transfer region, one
might hope that this model would give good results for

' G. F. Chew, Lawrence Radiation Laboratory (private com-
munication) .

6 For comparison of this type of model with experiments, see
E. L. Berger, Phys. Rev. 179, 1567 (1969).

the total production cross sections also. Comparison of
this model with production processes in which the ver-
tices are actual physical scattering amplitudes produces
surprisingly good results, and one might expect the
generalizations of this model to multiparticle production
to produce equally good results, at least in some average
sense. The generalization or perhaps iteration of this
model for pions produced from vr-x collisions is that
shown in Fig. 2. The two-to-four amplitude is shown in
Fig. 2(a), and the two-to-six amplitude in Fig. 2(b).
Note, however, the vertex that appears in the two-to-six
amplitude is just the two-to-four amplitude given by
Fig. 2(a), and one can conclude that the two-to-six
diagram is that given in Fig. 2(c). The production of m

particles is then given by a diagram obtained by an
iteration of the foregoing procedure, and such an itera-
tion we recognize will generate the multiperipheral
model proposed by Amati et al. ~ %ith this picture the
ladders to be summed to produce the leading Regge
trajectories are those shown in Fig. 3(a), and the sum
is the solution to the Bethe-Salpeter equation shown in
Fig. 3(b), which has as a kernel the off-shell elastic
pion-pion cross section. One should note, however, that
since experimental momentum transfers are generally
less than 0.5 GeV', and often dominated by smaller
values, only a small extrapolation o6 shell of the physi-
cal 7f--7f- cross section is required. A detailed comparison
of the OPE predictions with experimentally measured
multiparticle production is being conducted by Chew,
Rogers, and Snider' following earlier work by Berger. '

In a previous paper' we considered a multiperipheral
bootstrap model of a single Regge pole in which duality
was assumed to be exact. In this paper we investigate
the generation of the leading trajectories in m-m scatter-
ing, namely, the p and P, via the model described above.
In the absence of a duality assumption this results in a

(b)

Fro. 3. (a) Multiperipheral contribution to the multiparticle
production cross section. (b) Graphical representation of the
Bethe-Salpeter equation for x-m scattering amplitude.
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ment for the Pion-Pion scattering with
amplitude.

and

x= (P'+P"+s)/2PP', xo ——cosh (g+rI'),

cosh' = (p2+k'+p')/2pk

cosh'' = (p"+I4'+k')/2P'k.
partial boostrap of these trajectories. A complete boot-
strap model may be possible, but will of necessity be
more complicated than the one we consider.

In the following two sections we generalize our pre-
vious work contained in Paper I, to treat both the p
and P poles simultaneously and use experimental in-
formation to eliminate the duality assumption. Section
IV contains the numerical solution to these equations
at t=0 together with a discussion of the range of solu-
tions possible. Section V deals with the generalization
of this model to nonzero momentum transfers, allowing
the calculation of the t dependence of the trajectories.
This of necessity includes a treatment of the interaction
between the poles and the cut produced by the P pole.
The experimental relevance of this work is discussed in
Sec. VI. It is suggested that the experimentally observed
Regge poles are really effective Regge poles which repre-
sent both pole and cut contributions, and that only at
extremely high energies will the actual Regge poles dom-
inate the scattering amplitude.

IL FORMULATION OF MULTIPERIPHERAL
MODEL FOR ~-~ SCATTERING

Our procedure is as follows: We first present the for-
mal equations of the multiperipheral model, diagonalize
the resulting Bethe-Salpeter equation for the special
case of t=0, by using the O(4) symmetry of the equa-
tion, and finally invoke several reasonable approxima-
tions which simplify the numerical calculations and
make the bootstrap aspects of this equation clear. The
Bethe-Salpeter equation shown in Fig. 3(b) for the ~-~
scattering amplitude T is

T(p p' Q) =&(p,p', Q)

The function 8 also has a similar cut in the N variable,
which becomes a cut for negative s or x, which we con-
sider later in relation to defining the signature of the
Regge poles that are being calculated. In particular, for
t =0 the imaginary part of 8 is given directly in terms
of the pion-pion elastic cross section by the relation

L&(~—4~')J"
ImB =- 0,) (s),

(2m)4
(2.3)

T.+=4m dxLImTg(x)WImTr, (—x)7f„(x), (2.4)

with f„(x)=Lx—(x —1)'~ 7"+' and Xo=1+s/4p, The
diagonal form of Eq. (2.1) is then

where the cross section is for pions oG the mass shell.
Since both the input and output of these equations are
the pion-pion scattering amplitude, the bootstrap as-
pects are evident but not yet explicit.

Again following Paper I, Eq. (2.1) can be diagonalized
in the O(4) index e; however, the resulting equation
cannot be directly continued into the complex m plane
due to the presence of both left- and right-hand cuts in
8 in the x plane. The procedure for the analytic con-
tinuation in e is similar to the usual continuation in l,
and is accomplished by the introduction of signature.
This is as follows: We define

T+(x) =Tg(x)& Tr, (—x),
where Tg and TL, are the contribution due to the right-
and left-hand cut, respectively, to T. The O(4) partial-
wave projection of T+ then takes the form

where the momentum assignments are those shown in
Fig. 4 and s= —(p—p')', N= —(p+p')', and I= —Q'.
Here the isospin indices have been suppressed.

For the remainder of this section we consider t=0
only, and drop this variable from T and B.As explained
in Paper I, the discontinuity of 8 across the cut in the
s variable is given by unitarity, and has the form

The analytic continuation of the plus and minus equa-
tions is now obtained by the continuation of 8 + and8, since these functions have a unique definition. A
pole of T„+ in the m plane at e=o.~ contributes to the
scattering amplitude the term

P+(p2 p&2) & iwnp~1—
T(P,P') = —

I x+(*'—1)"'7", (2 6)I T(P,P', k) I'
dk' tI(x—x,), (2.2)

(x2 1)1/2
sine.z+ImB(p, p') =

2pp' o
where p+(p', p'~) is the residue of the pole in the e plane.

We now consider the isospin structure'of 'these'equa-
tions. Note that there are three relevant isospins to con-

where T is again the pion-pion scattering amplitude;
but in this case two of the pions are on the mass shell

(f2

&(P,V,Q) T(ap', Q) T„+(pm,p 2) =a„+(P2,p 2)+
1 2 2 1 2 2

XJ3 +(p' g')T +(q' p") (2 5)
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sider, the total isospin of the ladder Iwhich is the isospin
of the output pole, and the isospin of the four-par-
ticle vertices along Ill and across the ladder I&. Since
unitarity, which is expressed by Eq. (2.2), is diagonal in
isospin, a definite value for I is given directly by a sum of
I&, and is obtained by use of the crossing relations. On
the other hand, a definite value of I& is in turn given by a
sum of I», again obtained by simple application of the
crossing relations. The resulting relation between I and
I l l is most simply expressed by introducing the functions

ImBr=s =ImBqq+s ImBss,

ImB11+s Im (B10+B01) (2.8)

where we neglect the I=2 contribution due to the ab-
sence of Regge poles in that channel. Because of the
Pauli principle, I=0 has only even-signature amplitudes
and I=1 only odd. We then obtain

B„+(p',p") =8~ ds ImB'(p, p')j.(s),

B„—(p', p") =8s. dx„ImB'(p, p')'f„(x).
(2 9)

III. DETERMINATION OF KERNEL FROM
EXPERIMENTAL ~-~ SCATTERING

The equations which we have obtained appear to be
of a bootstrap nature in that the T's, which are the solu-
tions of Eq. (2.1), are the same T's as are used to calcu-
late B in Eq. (2.8). This is not the case, however, since
the assumptions used in deriving this set of equations
restricts the energy region for the various T's. Since the
T's solutions of Eq. (2.1) are calculated by a multi-

peripheral model, s must be large, certainly greater than
10 GeV', and in the region in which multiparticle pro-
duction dominates the cross section. On the other hand,
the input T's in Eq. (2.2) have a large contribution from
the resonance region, and may well be dominated by
the region of s less than 2 GeV'. From this discussion we
see that the only region of overlap is the high-energy
part of the input, which must be equal to the output,
and a partial bootstrap is possible only for this part of
the amplitude.

At this point we consider a possible simplification of
this model, based on the observation that the average
subenergies are small in production processes. If one
considers the pion-pion elastic cross section determined

ImBrr'(p, p') =
2pp (*-1) ~

XT'(p, p', k)T"*(p,p', k)S(x x,), —(2.7)

and the superscripts on the T's refer to the value of Iit.
The imaginary part of 8 with a definite isotopic spin
along the ladder (t-channel isospin) is

from experiment, ' one sees that except for the high-

energy tail the cross section is dominated by p reso-
nance. If one approximates the input by the resonance
contribution, the calculation that is actually being done
is just the old-fashioned p bootstrap for a different range
of the variables, i.e., t=0 rather than 3=m, '. The results
of this preliminary calculation are the following: If one
wants to produce a p Regge pole with the experimentally
observed intercept Lo.,(0)=0.5], the input p width must

be of the order of twice the experimental width, and
because of the similarity to the older calculations this
result was certainly not unexpected. It is of interest,
however, that the P pole produced by this model has
an intercept very close to unity, and that both trajec-
tories have about the same slope and are in reasonable
agreement with experiment.

With these results in mind we described the procedure
used to approximate the input T's. Clearly some source
of additional interaction is required if reasonable results
are to be obtained. The two most reasonable possibilities
are either including the e6ects of the high-energy tail
which are certainly there since the P exists or making
some rather drastic assumption about the off-shell de-

pendence of the cross section. The oG-shell dependence
of the pion-pion scattering amplitude is already con-
strained to some extent by the fact that the experimen-
tal measurement of this amplitude can be accomplished
only with the assumption that this dependence is weak—at least when only one pion is off the mass shell. Fur-
thermore, the nearest singularity in the pion-mass vari-
able is at 9p', and, since this is a three-body branch cut,
important contributions probably come from much

larger values. For these reasons we restrict ourselves to
rather weak dependence on these variables, allowing
substantial variation only when the mass is changed by
the order of a GeU.

Direct observation of the P contribution to pion-pion
scattering has not yet been possible; however, the
Regge-pole fits to pion-nucleon and nucleon-nucleon

scattering together with the factorization imply a
nearly constant high-energy tail for the elastic cross
section, and because of this nearly constant behavior
this contribution can be quite important in the calcula-
tion of output scattering amplitude in the limit of very
high energies.

We now take as our interaction terms the contribution
of the resonance region of pion-pion scattering as given

by experiments including the p, f, and g contributions,
plus the Pomeranchuk contribution to the high-sub-

energy region. Since we are looking for poles in the n

plane, it is convenient to assign certain e-plane singu-
larities to these various terms, although the exact posi-
tions of those singularities associated with the resonance
terms cannot be taken very seriously. The procedure
will be similar to that in Paper I, where the input T's

9 W. Selove, in Meson Spectroscopy, edited by C. Saltay and
A. H. Rosenfeld (W. A. Benjamin, Inc. , ¹wYork, 1968).
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TABLE I. Value of the solutions.

A2

(GeV')
2 2

gp, in y gp, in p

~p gy + =up R =up gp, out2

ma=0
7S], 1

4 0.95 0.45 O.1 0.119 0.126 0.049
3 0.97 0.55 0.1 0.087 0.099 0.042

are taken to be the p and P Regge poles, but rather than
trusting that duality will allow the p contribution to
give an accurate representation of the resonance region,
we simply adjust the p coupling to make duality exact.
This of course means that our input p pole ha.s nothing
in principle in common with the output p pole, which
is that applicable to high-energy processes. Should these
terms prove to be equal, we will have shown that duality
is not violated in this case. The form we assume for the
input T's in Eq. (2.8) is

r(p p& ~ k) —
g

. 2y (P2 (p k)2 k2)y (p&2 (p& k)2 k2)

x-,'t (k')] —Lx+ (x' —1)'"j
)

'& ~'&, (3.1), (Pp'

(so

P pole has an intercept near 1, the I=0 channel will have
a cut arising from two P's near the expected position of
the pole, and a more distant but perhaps stronger cut
due to the two p's. The I=1 channel has a p-P cut near
the expected position of the p pole, and again the two- p
cut farther away.

A modification of the signature factors is required to
eliminate the ghost poles that appear in Eq. (3.2) when

n(t) is at a correct signature point for negative t. The
procedure which we adopt is simply to replace
sin~n( —k') by 1 when n( —k') reaches the half-integer
before the first ghost pole.

In Paper I we examined in some detail the dependence
of the solution to the type of equation we are considering
on the particular off-mass-shell vertex function used. In
that work quite a number of different forms of p were

tried, and as long as the functions did not vary too
rapidly, the results were more or less independent of the
particular form of pr chosen. For this reason we use the
simple factorizable expression

f'(k') = (e
—' &

—"'a1)/sin~n'.

Ke now impose the condition that

(3.2)

1
&.(P',P")= — d~ Ls(s —4/')3"'~. ~(s—)f-(*) (3 3)

(2m)'

for small values of p' and p", i.e., near the mass shell,
and allow g&;„2 to be a function of e. The quantity
gq; ' will be needed both for n=n, (0) and e=n„(0).
The resulting e-plane interaction terms are computed as
in Paper I, where the form of Eq. (3.1) allows analytic
integration of x in Eq. (2.9). For example, the contribu-
tion of the term containing two p poles, ImB~1, to the
I=0 amplitude is

~4 pp
& n+1

».-'(P' P")=g
pp $0

where gr is the vertex function normalized to unity at
the zero value of all three arguments, and contains all
the off-shell dependence. The quantities n'( —k'), fr,
and g&, ;„2 are the trajectory, the signature factor, and
the coupling to the z-~ system, respectively, for the
Regge pole with isospin I, evalua, ted at t= —k2. The
signature factor is

where A is a free parameter, but necessarily of the order
of 1 GeV or larger, and v for the P can be determined by
the diffraction peak. For I=O we take v=1 GeV and
mo= ~.

The situation for the p is somewhat less clear in that
we are really trying to represent an amplitude tha, t
really looks more like a p-wave resonance in the s chan-

nel, which, rather than falling off like some diffraction
peak, looks more like a polynomial in the t variable

(—k'). For this reason we considered two cases, m~ ——0
and m1= —1, with v fixed to be 1 GeV. The condition
given in Eq. (3.3) is imposed in both cases, and this
should reduce the sensitivity of the output to the par-
ticular form assumed for the input p term.

IV. NUMERICAL SOLUTIONS AT t=o

Equa. tion (2.5) is readily soluble by the numerical
method described in Paper I, where the location of poles
in the m plane is determined by obtaining the eigen-
functions of the homogeneous form of this equation. The
general form of the output pole obtained is

ur+1
T'" '(P,P')=- 4(p')tt (P")VL*+(*'—1)'"j"

xE'
2(P2 p2 k2)y 2(p/2 p2 k2)

X dk2

0 v+1—2n, (—k')
21 1'=gr.our ~i

$0
L*y(*'—1)"), (4.1)

/so'r(pk)p(p k)) + 2 ( k~)

X] — —[,(3.4)
PP'

where y(p, k) =e &. This function has just the AFS cut'
arising from two p's, beginning at n, =2n, ( )0—1. If the

where nr is the position of the pole, P(P') is the first
eigenfunction evaluated at e=n, and E' is the deriva-
tive of the first eigenvalue with respect to e.

I.et us now enumerate the fixed parameters that enter
into the calculation. The Regge trajectories were taken
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to be linear functions of I,n(I) =n+n't, with the slopes
both taken to be the canonical value of 1 GeV '. We
assume the values of the output o., and o.„, and this de-
termines at what values of n Eq. (3.3) must be used to
obtain the input p coupling. For convenience we chose
the input p intercept to be that of the output p. Since
the values of g, ; determined by Eq. (3.3) depend on
the value of g„;„,we chose a value of g„,;„in the range
allowed by experiment (see Appendix). With n„, n„, and

g„;„all fixed, we vary A to see whether the remaining
bootstrap condition on the P, g„;„=g„,„~, can be satis-
fied. Note that o,„,; =n„,,„& has already been imposed.
Once a solution has been found, the parameters of the
output p poles are also calculated.

The results of these calculations are given in Table I
for both forms of m~ =0, —1. We tested the effect of the
condition 0, ;„=0,,„& by fixing o, ;„=0.5, and the re-
sults are given in Table II for the case m~=0; one can
see that the parameters of the P are essentially un-

changed. It should be noted that there is some range of
acceptable solutions possible around those given in the
tables; with n„determined to about 2 and 10% varia-
tions of n, and g„are possible.

A comparison of the output p parameters with experi-
ment is in principle possible, and in the Appendix we
examine the various types of experiment that give some
information about the p-vr-vr coupling. The values we
have obtained are in reasonable agreement with those
obtained from factorization and Regge-pole Ats to
charge-exchange processes. The experimental p inter-
cept n, =0.57 is somewhat larger than ours, and leads
one to favor the solution with m& = —1.As far as duality
is concerned, our results indicate that it is correct within
a factor of 2 for the case we have considered. "

The solutions we have obtained of course imply defi-
nite multiparticle production cross sections, and a com-
parison between a model very similar to ours and experi-
ment is being carried out by Chew, Rogers, and
Snider. s

It was shown by AFS' that the average multiplicity
of particles generated by a multiperipheral model at
large s is quite simple, and is given by

where
(ft/) =C~ lns/sp,

Bcxp
~N =g'

gg2

(4.2)

From this relation, and noting that each time a g ap-
pears in our ladder two particles are produced, we

' For other comparisons see K. L. Berger and G. C. Fox, this
issue, Phys. Rev. 188, 2120 (1969}.

and g is the coupling constant of the three-particle ver-
tex. For our case, with a fixed ratio of P-to-p coupling,
n, (0) is the solution of

E(n) =g'.

TABLE II. Value of the solution np,.„Axed to be np, ,„——0.5.

11l1=0

A2 n~

3 GeV' 0.957

O'p, out g p
2

gp, in s gp, in s
2 r 2

+ =O'p, in '+ =&@ gp, out 2

0.51 0.1 0.120 0.128 0.059

obtain
BD Bs

C~=2g' =2E(n)
Bg4 BE(n) „=

(4 3)

From our solutions C~ is around 0.2, to be compared
with experimental estimates of 1 to 3,"but these depend
heavily on ultra-high-energy cosmic-ray data, which
have large errors.

The explanation of the small multiplicity predicted
by our model is the following: The eigenvalue E(m) of
the homogeneous equation has a logarithmic singularity
at m =e, which dominates the derivative of E if n is near
n, . This is the case for our solutions as the P intercept
is close to unity. We will return to this difhculty later,
since it will be seen that the proximity of this cut also
causes problems with the t dependence of the
traj ectories.

T(p,p', Q)
T(p,p', Q)=, , (3 1)

1.(p--:Q) +"jL(p+-:Q) +"&

The O(4) projection of Kq. (2.1) then becomes

(p' —,'1+p')'Tn„n'+p'$(fnn'Tn, n—'+fn,np Tnpsn's

+f„,„T„s')s=8„+ - q'dq'B„T„„, (5.2)
2 (v+1)

"P.V. R. Murthy, Argonne National Laboratory Report (un-
published).

'2 V. Chung and D. R. Snider, Phys. Rev. 162, 1639 (1967).

V. SOLUTION FOR $~0

We generalize our previous calculation to consider a
value of

~
I~ less than 1 GeV'. The 0(4) symmetry of

Eq. (2.1) is for tWO, broken by the propagator and by
the function B(p,p', Q). The symmetry breaking in 8 is

produced by the vertex functions pr(p&-', Q, —p', k

&-'Q), by the signature factors f (k+sQ) t* '(k —-'Q),
and by the sum nr(k+-', Q)+nr'(k —-', Q). This last term
does not break the symmetry if the slopes of the tra-
jectories are equal, as in the model we are considering.

If one expands in a power series in 3 the terms break-
ing the O(4) symmetry, the expansion parameter of the
propagator is the quantity I/p', whereas the breaking
terms in 8 are proportional to t/sp and I/A' and should

be negligible for small values of t. In this approximation
8 is diagonal in e and B„(P',P",I) is again given by Eq.
(3.4), with k' replaced by k' —sI. Since all the symmetry
breaking is now in the propagator, we apply directly the
method of Chung and Snider, "defining
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Fro. 5. (a) I-plane singularities in the I=0 channel. Curve a is the input p trajectory, curve b is the output p trajectory, and curve
c is the input cut produced by two I' s. The variable t is given in units of p, . (b) n-plane singularities in the I= 1 channel. Curve a is the
input p trajectory, curve b is the output p trajectory, and curve c is the input cut produced by the P and the I'.

where

alld

f-'= (A ')'+(A--r')',
f„~s' A„'A „+r'——,
f„,„s'=A„r'A „s',

t (e—l+1)(x+i+2)i'~'
!A„'=!

4 (v+1) (n+2)

l is the usual angular momentum and n, n'= i+integer.
The system of equations given in Eq. (5.2) is an in-
finitely coupled integral equation; however, the co-
eKcients of the nondiagonal part f„, ' become very
small as n and e' grow. In addition, the coupling terms
are proportional to Pst/(P' sr t+tr')', whic—h is less than
unity for t(4p'. This allows one to solve Eq. (5.2)
accurately with only a few coupled equations; for
example, for t& —1 GeV' no more than four coupled
equations are important.

We solved Eq. (5.2) for l=l' for the solutions re-
ported in Table I, and the resulting trajectories are
shown in Figs. 5(a) and 5(b) for the case with mt=0.
The general features are the following: For positive t
the trajectories appear to have about the same slope
as the input trajectories, but, as the pole approaches the
cut, it appears to be repelled and ends up with about
the same slope as the cut, -', of the input slope. This
effect is again due the logarithmic singularity in E,
which is in turn due the singularity present in the kernel.

To clarify the question of the interaction of a pole
with a cut, let us consider a simple model proposed by
Frazer and Mehta" in which the denominator function
Lthe function g' —E(rs) in our modelj is assumed to
have the form

D(e) =I—(a+bt)+c in(rr —rr, ) . (5.3)

'3 W. R. Frazer and C. H. Mehta, Phys. Rev. (to be published).

The trajectory is obtained from the equation

L}(o)=0.
Let us consider the variation of D as a function of t

for the case in which c is small. For t large positive, the
zero is at rr =a+bt; as t is reduced the pole moves to the

left, approaching the cut, but never passes through the

cut. Because of the logarithmic singularity at m the
residue of the pole gets quite small when e approaches

e„as the logarithmic term controls the derivative of D
with respect to m. There are of course poles on all other
sheets of the logarithmic function. For large positive t

these poles simply move with the pole on the physical
sheet, but as t is reduced these poles move by the point
e, and continue on to the left. One of these poles is close
to the physical sheet and should have a normal residue.
Thus for negative t it appears that the cut-plus-pole
combination looks like a pole on the second sheet of the
e plane, and this single complex pole should provide a
good representation of the amplitude. It is of course true
that at infinite energies the actual pole, which is to the
right of n„dominates, but at 6nite energies the pole
on the second sheet should be more important, due to
its larger residue. From a phenomenological point of
view the behavior of the pole and cut appears to be the
following. For positive t the pole moves linearly with
the expected slope, and for some negative t it intersects
with the rather weak I" cut and passes into the second
sheet, becoming complex, but continuing to be a linear
trajectory with the normal slope. Some of the conse-
quences of such a model have been investigated by Ball
and Zachariasen in a recent paper. '4

Let us now see how this discussion relates to our
model. Because of the large intercept of the I' trajec-
tory, the point of intersection of a linear trajectory with

"J.S. Ball and F. Zachariasen, Phys. Rev. Letters 23, 346
(1969).
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the cut is very close to t =0, and the calculation around
t =0 is near this complicated region of crossover,

In our model the kernel becomes complex when eval-
uated for e(e„as can be seen from Eq. (3.4); however,
the imaginary part of B„has a simple factorizable form.
We then write the kernel in the form

2,0—

E=ReE+if@. (5.4) LLI

I.O—

The function analogous to D(fs) for our equation is the
determinant of 1—E, and because the imaginary part
is factorizable we obtain the simple result

det(1 —E') =det(1 —ReE)det)1+i(1 —ReE) QP7
=det(1 —ReE) [1+i((1—ReE) 'P~ $)7.

(5.5)

0
0.2

I

0.3
I

0.4
I

0.5

FIG. 6. Plot of the inverse of the first eigenvalue
E(N) as a function of e for the I= 1 channel.

0.6

The zeros of the real part of the determinant then give
the location of the poles on the second sheet of the e
plane; these zeros are most easily obtained by solving
the eigenvalue equation that uses the real part of the
kernel. In Fig. 6 we show the inverse of the first eigen-
value plotted versus e, for the solution of Table I with
m~=0 in the I=1 channel. In this case e,=0.4. Note
that the function we have plotted has a behavior very
similar to the function D given in Eq. (5.3). Changing
the value of t corresponds roughly to shifting the curve
vertically. For t positive the function has only one zero
to the right of the cut, but as t moves to the left the
curve falls and for some value of t develops three zeros.
The rightmost is the actual pole, which is stuck to the
right of the singularity at e,. The next zero is a sort of
mirror image of the pole in that ind e—ts,

~
is a sym-

metric function around n, . The leftmost zero is the posi-
tion of the pole on the second sheet, which moves freely
as one varies t. Furthermore, it appears that the curve
to the right of 0.5 joins smoothly with the curve to the
left of 0.3, meaning that the trajectory should be nearly
linear and one should be able to extrapolate the location
of the effective pole for negative t from the behavior of
the actual pole for positive t.

VI. DISCUSSIOH

In this paper we have presented a dynamical calcula-
tion based on the multiperipheral model which pro-
duced acceptable values of the intercept of the p and I"
trajectories and reasonable values of their coupling to
the x-z system. The range of possible intercepts of the
I' is rather restrictive, and may be considered one of the
predictions of this model. The value of the p coupling is
also predicted to be relatively small and in agreement
with the rather uncertain number obtained from
experiment.

The apparent defects of this model are the very small
value of the multiplicity predicted and the behavior of
the trajectories calculated. Both of these e8ects are
directly related to the existence of the I' as a normal
Regge pole. Admittedly, one needed to include this pole

in order to have enough interaction to produce the I'
and the p in the output, but it seems inescapable that a
E'-like object does exist and plays an important part in
observed high-energy processes such as +E scattering
and SE scattering. There are of course several possible
means to resolve the apparent conRict of this type of
theory with experiment, other than discarding this
model as incorrect, or claiming that some at present un-
known term is important, or that some violent off-shell
dependence is required.

One possibility is that the Pomeranchuk trajectory is
exactly unity at t=0. In this case the I' pole and all the
cuts obtained from the iteration of this pole are no
longer separated singularities. The resulting combina-
tion of singularities might have a considerably diferent
behavior from the simple logarithmic behavior that one
obtains when the intercept is less than 1.

Another possibility is the following conjecture: We
accept the I' cuts as correctly given by a logarithmic
singularity that forces all poles to remain to the right
of the cuts, and this will be the observed behavior as the
energy goes to infinity. Based partly on the observation
that pure cut terms have not been shown to be impor-
tant at current accelerator energies, we conjecture that
in some intermediate-energy region the amplitudes con-
taining a pole plus a cut due to the I' are well repre-
sented by a single complex trajectory which represents
the pole on the second sheet of the I plane and that it
is this pole that has been observed experimentally and
has a slope of 1 GeV '. This type of pole then appears
to pass through the cut without difficulty, and can
easily be a linear function of t. The multiplicity implied

by such a pole is still given by Eq. (4.3); however, the
function ri is the smooth one that would be obtained by
removing the logarithmic singularity, and can be ob-
tained in our model by simply evaluating the multi-
plicity for some positive value of t for which the effect
of the cut is less important. A rough evaluation of this
quantity gives C& in the range of 1 to 2. Note also that
the trajectories have a reasonable slope if one extra-
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polated the trajectory from the positive-t region. The
calculation of the coupling of the poles to the m-x system
at t=O is probably not strongly affected by the pres-
ence of the branch cut. The use of an effective pole to
represent a cut is very much like using a Breit-Wigner
resonance form to represent a branch cut in the energy
variable. Finally, the use of these effective poles in the
input simply includes a more accurate description of
the intermediate-energy amplitude used to calculate
the kernel.

If such a picture is correct, the experimental implica-
tions are as follows: At t=O the energy dependence
should be that given by the effective pole, since there
is little difference between the true pole and the effec-
tive one. However, for negative values of t, the true
pole has a small residue, but dominates for sufficiently
high energies because of higher intercept. At a fixed
value of t and increasing energy one should see a shift
in the energy dependence that marks the transition
between the intermediate- and high-energy regions. The
new energy dependence should be that given by a pole
with half the slope of the effective pole, which controls
the energy dependence at lower energies. Note, how-
ever, that the leading dependence is still given by a
pole and therefore still satisfies factorization.

This conjecture about effective poles may still be
valid if the I' intercept is unity but the analysis of this
paper. is no longer applicable.
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APPENDIX: DETERMINATION OF REGGE-POLE
COUPLINGS FROM EXPERIMENT

The I' coupling constant as defined in Eq. (4.1) can
be evaluated from the total m-m cross section. This cross

section is estimated to be about 15 mb, from the fac-
torization theorem and the observed NE and ~X total
cross sections. "This gives g„,,„~'=0.13. If one assumes
that the t dependence of the scattering amplitude is
similar to that observed for other elastic processes, the
elastic cross section can be calculated to be a few
mb.

The determination of the slope of the I' trajectory
from fits to experimental data is somewhat confused due
to the presence of the I" trajectory. The value of 1

GeV ' seems to be a reasonable guess for the average
effect of these two trajectories. "

The p Regge-pole coupling to the vr-x system can
again be obtained by factorization, and the Regge-pole
fits to vrX and. ItÃ charge-exchange scattering. At t=0
the I= 1 pion-pion amplitude is given by

1 ns' 2

where p& is the IVX helicity amplitude and A & is the
usual nonflip xE amplitude. All these quantities refer
to the p contribution only. Unfortunately the analysis
of np charge exchange is complicated by uncertainties
about how the pion trajectory is to be included and
whether or not a conspiracy occurs. As a result, the p
parameters for this process are not well determined, but
using the analysis of Ref. 16, we obtain gp t, 0025
—0.02.

Another way of estimating g, „&' is from the coupling
constant" y, obtained from the e+-e —+ ~m data with
the vector-dominance hypothesis. "The value from this
source is gp o & 0.07 004 depending on the extrapo-
lation of this quantity from J=1 to J=—,. The last esti-
mate is to use the experimental p width and the extra-
polation from the p mass to t =0 as defined by the Vene-
ziano formula. This result is in agreement with the
value obtained above.
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