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A simple X-point beta-function model (generalized Veneziano model) of the hadron bootstrap is assumed,
and the properties of vector currents consistent with it are investigated. We find that this hadron bootstrap
admits conserved vector currents satisfying the Gell-Mann current algebra in a erst approximation which
assumes single vector-meson poles in the form factors and requires factorization only at resonances on
leading Regge trajectories. We believe the techniques employed in this simplified model will be useful in
constructing current amplitudes in more general dual zero-width models. In addition, a model for a Pomer-
anchon contribution which does not fall off at large q' is proposed. Throughout we treat amplitudes for one
or two vector currents and an arbitrary number N of spinless hadrons.

I. INTRODUCTION
' 'N this paper we make the 6rst step in a study of cur-
~ - rents consistent with the E-point beta-function
model (generalized Veneziano model) of the meson boot-
strap. "A number of general properties of currents in
such Reggeized zero-width models with duality have
been discussed in the preceding paper. ' Here we ex-
plicitly consider the question of the existence of vector
current amplitudes that are compatible with current
algebra and consistent with this particular hadron
bootstrap.

We shall show that the X-point beta-function
model' ' to first approximation admits current ampli-
tudes for one or two conserved vector currents (CVC)
and X mesons, where the two-current amplitudes
satisfy the constraints given by the time-time and time-
space current-density commutation relations of the
Gell-Mann algebra. ~ Our results are a erst approxima-
tion, since we assume s&sf;le vector-meson poles in the
"masses" q of the currents and satisfy the factoriza-
tion (unitarity) constraints in all channels for leadirtg

trajectories only.
We believe that these two restrictions are intimately

related and that the lack of factorization on nonleading
trajectories can be remedied only by including more
vector-meson poles in the q . Factorization will no
doubt give constraints on the form factors (i.e., the
vector-meson —current coupling constants). The fac-
torization of nonleading trajectories in the hadron
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problem determines the vector-meson spectrum and
thus will have important consequences for current
amplitudes. Indeed, we feel that the factorization of
lower trajectories and the introduction of further poles
in the q represent a qualitatively more intricate prob-
lem than the present work. For example, one can see in
Ref. 1 how involved the parametrization of arbitrary
form factors becomes.

Most of this paper is devoted to a study of the "orbi-
tal factor" of the amplitudes, i.e., the space-time part
which contains the poles and Regge behavior. We also
investigate the "internal symmetry factor" of the ampli-
tudes, assuming the Chan-Paton' internal symmetry
factors for the hadron amplitudes, We note here that
recently a very interesting model has been proposed by
Mandelstam" which includes also a "spin factor. " In
his model the lowest-mass vector mesons have orbital
angular momentum zero and spin angular momentum 1,
whereas, in the simple model we discuss, they have orbi-
tal angular momentum 1 and spin angular momentum
zero. We remark that, of course, this simple model has
a spin-zero ghost with imaginary mass on the leading
(vector-meson) trajectory, since its intercept is positive,
and ghosts on lower trajectories with imaginary coupling
constants. Mandelstam's model removes the spin-zero
ghost with imaginary mass at the expense of having
leading trajectories with imaginary coupling constants
("repulsive trajectories") and equal masses for the p
meson and the pion. However, in general, Mandelstam's
model has a better particle spectrum. For example, the
simple model has no nonzero three-particle vertices with
an odd number of unnatural spin-parity particles (i.e.,
co —+ ptr, As-+ pIr, etc. , are excluded). Clearly our cur-
rent amplitudes must inherit all these bad features of
the hadron amplitudes, but we feel that our general ap-
proach to the consistency problem wiH apply to more
realistic models for the hadrons.

As a very useful technical aid in our construction, we
expand the single-current amplitudes V& and the two-

8 K. Bardakci and S. Mandelstam, Phys. Rev. 184, 1640 (1969);
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9 Chan Hong-Mo and J. Paton, CERN Report No. Th. 994,
1969 (unpublished).I S. Mandelstam, Phys. Rev. 184, 1625 (1969).
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current amplitudes M&" in terms of essentially all the
available momenta. When there are more than five ex-

ternal lines, this will be a dependent set. However, in

the construction of amplitudes this causes no problem
and allows one to make the invariant amplitudes free of
kinematic singularities. This is analogous to the use of
a dependent set of invariants in the construction of the
hadronic amplitudes. ' As discussed in I, we always deal
with amplitudes with lV spinless hadrons and the co-
variant tensor amplitudes for currents. Throughout we

attempt to present the basic kinematics and techniques
in a manner that might be naturally extended to treat
the important problems of (i) arbitrary form factors and

(ii) axial-vector currents.
In Sec. II we construct single-current amplitudes V&

with E hadrons which satisfy CVC and have single
vector-meson (V) poles in the mass q' of the current.
The orbital factor is first discussed in Sec. II A. I actori-
zation for it directly follows from factorization of
the corresponding vector-meson E-hadron amplitude.
Moreover, if further vector mesons V are similarly
included, it is evident that factorization will not deter-
mine their couplings fv„ to the current. In Sec. II 8
internal symmetries are easily incorporated following
Chan and Paton. ' The result is a factorizable single-
current amplitude with no exotic resonances or currents.

In Sec. III we construct the two-current amplitudes
3fl"" with single vector-meson poles in q and with
divergences given exactly by the single-current ampli-
tude V" of Sec. II, as demanded by current algebra.
I'actorization at poles in subenergies that overlap both
currents is again a trivial consequence of factorization
for the hadronic-amplitude VV ~ Ã mesons, but fac-
torization at poles in subenergies overlapping only one
current is satisfied only for leading trajectories. In Sec.
III 8 the isospin symmetry factors of Chan and Paton
are again employed to obtain a factorizable internal
symmetry factor with no exotic resonances or currents.

In Sec. IV we present an interesting parametrization
for the Pomeranchuk trajectory which cannot have
form factors (poles in qP) and requires exotic resonances.
Such a Pomeranchon with little damping for q' —+ —~
has been suggested on the basis of electroproduction
data. "

In Sec. U we discuss possible modifications of the
solution of Secs. II and III within the single-vector-
dominance approximation. Ke shall give terms which
allow one to modify the space-space commutators"
without affecting the others. We also show how to con-
struct amplitudes that violate CVC and current algebra.
Although such flexibility may be useful in a more com-

"H. Harari, Phys. Rev. Letters 22, 1078 (1969)."R. C. Brower, A. Rabl, and J. H. Weis, Nuovo Cimento (to
be published). In this paper the X=2 case is studied in detail.
The space-space eommutators are investigated through the
3jorken limit; Pomeranchuk exchange in Compton scattering,
electroproduction phenomenology, and electromagnetic mass
differences are investigated. The reader may Qnd this paper help-
ful in understanding the results given here because of its simpler
g,inematics,

piete implementation of factorization, it may also indi-

cate a lack. of uniqueness of the consistent currents in

our model without considerable input from current
algebra.

II. SINGLE-CURRENT AMPLITUDES

In this section, we give an explicit construction of the
single-current amplitude V&(q) with tV hadrons consist-
ent with the E-point beta-function meson bootstrap.
This provides a simple solution to the full set of proper-
ties discussed in I for a single vector current in the zero-
width approximation:

(i) Divergence condition q„Vs=. O, i.e., CVC.
(ii) Generatised nector meson -dominance Th.e only

singularities in q are simple poles that completely deter-
mine V& (no subtractions in q' dispersion rela, tions). The
residues of the poles at a~=my„' are products of the
vector-meson (V,.) scattering amplitudes and current-
vector-meson coupling constants (fv„).

(iii) Eegge asymptotics VI' has R. egge behavior in all
subenergies s,,...s=(p;+p, +.. +pI,)'.

(in) Particle spectrum The o. nly singularities in

s;;...I, are simple poles with polynomial residues in over-
lapping variables. They occur at fixed positions (masses)
in particular channels (with given quantum numbers),
as determined by the hadron amplitudes.

(t~) Factorisation At any. pole in V" the residue fac-
torizes into a current amplitude and a purely hadronic
amplitude.

As discussed in I, we can always project out the con-
served part of a tensor T"(q) with the projection
operator (P""(q)=g""—q"q"/q' to satisfy condition (i).
However, condition (ii) demands that V" have fixed
singularities only at the masses of the vector mesons

m~„, and not at q'=0. Indeed, the central problem is to
introduce a vector-meson singularity at q'=m&' and
to continue off the mass shell at fixed spin, J=1, with-
out introducing unwanted singularities in q'. In our
model (and probably in general), once condition (ii) is
satisfied, the remaining conditions (iii)—(v) follow trivi-
ally from the corresponding properties of the hadron
amplitudes.

Through condition (ii), our current amplitude in-
herits the pathologies of the E-point beta-function
meson bootstrap. These include ghosts on the leading
vector-meson trajectory at n=O (imaginary mass
states) and on lower trajectoriess (imaginary coupling
constants), as well as numerous difliculties with the
quantum numbers of the particle spectrum. However,
we are optimistic that many of the methods presented
here can be adapted to more realistic dual, zero-width
hadron models.

Our present discussion is based on the simple meson
bootstrap which consists of products of the orbital
factors B(pr,ps, . . . ,p~) (1V-point functions) and the
internal symmetry factors' s Tr() &XI& Xst) which are
summed over all permutations (except cyclic and anti-
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cyclic) of the particles. The single beta function for each
term in the sum yields a nondegenerate factorized spec-
trum on the leading trajectory and the isospin factor
achieves the exclusion of all exotic resonances. It is
sufhcient to consider one particular term with given
ordering of the hadrons, which we choose to be Pi, P2,
. . . , PN for definiteness. Corresponding to this ordering
of the hadrons, there will be E terms in the single-
current amplitude. The orbital factors for these terms
are designated by V,&(q) for the ordering Pi, P2, . . .,
P, 1, q, P;, . . . , PN, and have their external-line inser-
tions (EI.I), i.e. , poles which dominate for q„~ 0, nor-
malized as described in I [Eq. (3.3)7. After constructing
a single term Vp in Sec. II A, we show in Sec. II 3 how
to take the appropriate sum over i for the Chan-Paton
internal symmetry scheme. Some general features of
such sums are discussed in I (see Sec. III).The resulting
amplitudes satisfy all the conditions (i)—(v), with the
exception of some violations of (iv) due to the patholo-
gies of the purely hadronic bootstrap.

In Appendix 8 we show that, for %=3 and physical
(q'=0) photons, the amplitude given here is the same
as the photoproduction amplitude given in Ref. 1.
Hence our results may be considered as a generaliza-
tion of the results of Ref. 1 to arbitrary q' and E al-
though the techniques used are different.

A. Orbital Factor

The Q.rst step is to calculate the amplitude for a vec-
tor meson and X spinless hadrons. To do this, we start
from the (%+2)-point beta-function amplitude. ' ' For
the particular ordering of the particles a, b, 1, 2, . . . , Ã,
it is convenient to choose the integration variables ap-
propriate to the multi-Regge diagram of Fig. 1. Hence,
we find

1

BN+2= duo' ' 'duN 2IN+2(uo& ~ ~ ~ &SN 2) &
(2.1)

P P P P N-2 N" l

UP Ul U2 UN-2

Pg

PIG. 1. Choice of variables for 8g+g.

we consider'

B1 (q) q BN+1+2 QB Pm BN+1(&V,L(to 1) ~ (2 7)

Only the trajectories which are displaced relative to
their usual values have been explicitly indicated. The
symbol nz «means all nz & for 1&3&m, and the sub-
script R is explained in Appendix A. The trajectory
displacements are just those required to compensate for
the momentum factors so as to yield the correct asymp-
totic behavior. The correct asymptotic behavior is as-
sured, since we started with a 8~+2 with the correct
behavior.

The obvious way to construct the amplitude for a
single conserved vector current from the purely had-
ronic amplitude 8& is to take

Vi (q) =~(q')~v'/(~v' —q')[g" —q"q /q'jB1" (q) (2»

1

B1"(q) = dui' ' 'duN
0

X[q"+2pi"+2p2"ui+ +2pN 1"(ui .uN 2))
XIN+1(ui, . . .,SN 2), (2.6)

corresponding to the vector-meson amplitude of I'ig. 2.
In IN+1, n„n wobecomes nv; ——uv~+(q+Pi+ +P;) .
We shall sometimes write (2.6) in the alternative form"

where the integrand is dered recursively by

IN+2(SOI& ~ ~ ~ )SN—2)

=so ~" '(1—so) ~" '(1—uos]) —~o' . .
X(1 So' ' 'SN —2) o'N 1INyi(ui, ~ . ~ &SN 2),

and where

(2.2)

where C(0) =1.However, as seenin I, B"must be afunc-
tion of q' if property (iv) is to be satisfied. Equation
(2.6) clearly has a natural continuation in q2 satisfying
this property; it can be regarded as a function of
all the P, with q determined by energy-inomenturn
conservation.

-„=;;+f(p.+p'+.+ +p;) =',+»'„(23)
(2.4)

Pl P2 P~ P~ N-2 N-1

In (2.4) the relation

0=n;;= agg+b222, (2.5)
ul u2 u3 UN-2

is to be understood. From now on we choose our units
so that b=1.

We now take n, o ——1+(q —222v'), where q=P +P&,
go to the pole at n ~ ——1, and extract the coe%cient of
the relative momentum (r=p,+p o) in the residue. Thus

giP

Pro. 2. Choice of variables for Bl'.

"Further expressions @re given in Appendix A.
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FIG. 3. Reggeized internal-line insertion. The double lines indicate
any resonances in the family generated by the trajectory u.

is given by (2.6) with the appropriate cyclic permutation
of the p."

We note that the factorization property (v) follows
from the factorization of the A-point beta functions.
This is obvious for leading trajectories, and one can
verify that the continuation in q2 does not affect the
spectrum of the lower trajectories either. "

We have not yet investigated the divergence proper-
ties of the 8&„"for V lying on nonleading trajectories.
In considering these vector mesons the degeneracy of
nonleading trajectories' must be taken into account. We
believe that further vector-meson poles can be included
in a manner analogous to the above which satisfies fac-
torization and leads to no constraints on the couplings
f „v(e cxeptP„ fv„—1). —

In addition, we must assure that the apparent singu-
larity at q'=0 in (2.8) does not occur in V". Since
C(q') =0(q') would eliminate the ELI poles, it is not
permitted, and we must have

q„Bg&(q) =0(q') . (2 9)

Fortunately this condition can be satisfied if the tra-
jectories are restricted so that

(2.10)

B. Interna1 Symmetries

We now show how to incorporate SP(3) symmetry
without obtaining exotic resonances LSD(m) for ygQ3
can be treated in the same manner]. In I we noted that
the absence of exotic resonances implies that only one
quark line (8-function contraction) is permitted between
each adjacent pair of external momenta. ' "' When
octets and singlets of external particles are projected
out, one obtains the internal symmetry factorg

or, equivalently, —' Tr(X„X„X,) (2 13)

These restrictions mean that the trajectory correspond-
ing to the current and k adjacent hadrons must be the
same as the trajectory for the k hadrons alone. We call
the soft-current poles due to resonances on such trajec-
tories "Reggeized internal-line insertions" (see Fig. 3).
These are a natural generalization of the insertion of
a soft current into an internal line of a tree graph. When
(2.10) holds, we 6nd that not only does (2.9) hold, but
also q„B"(q)=0(the proof is—given in Appendix A)."We
note that in our simple model with its restricted spec-
trum (2.10) always holds.

The continuation in q' described above and the re-
striction C(qs) = 1 introduce minimal q' dependence into
(2.8). In fact, we have explicitly verined that this corre-
sponds to no subtractions in the q' dispersion relation
for the si mgte term V;", as required by assumption (ii)."
Therefore our 6nal result is

V'"(q) =~(q')B'"(q), (2.11)
where

p(qs) =mvs/(mvs —q'), (2.12)

and the "off-mass-shell" vector-meson amplitude 8;I"

~4This result has been obtained independently in Refs. 8 in
another context. We note that here we are in fact using the di-
vergence condition very much like a Ward identity.

'~ This can be seen by examining the large-q~ behavior at fixed
values of the BCP group variables for Fig. 2: N. F. Bali, G. F.
Chew, and A. Pignotti, Phys. Rev. 163, 1572 {1967).One Ands
s&sec q', whereas the other invariants in (2.6) are axed. Hence for
suKciently small momentum transfers the amplitude will decrease
as q'-+~.

for the ordering of particles pt, p, , . . . , p~ in the
hadronic amplitude. The matrices X, are the usual p U'(3)
matrices, a;=0, 1, . . ., 8, The factorization of the inter-
nal symmetry factor is clear from the 8-function con-
struction and is explicitly exhibited by the identity

e=o

&& Ps Tr(X,X,s„, X,s,)j. (2.14)

Specilcally, we choose the external particles to be
members of the pseudoscalar nonet I'(rip, Ã, . . .). .
(Roughly speaking, this is a spinless quark model. )
There are two different internal trajectories: the ex-
change-degenerate vector nonet V(co,p, E*,&) and tensor
nonet T(. . . ,A Esfs), asnd the exchange-degenerate
pseudoscalar nonet I' and nonexistent axial-vector
non et.

With this elegant, but very approximate, model of
the hadron bootstrap, the symmetry factors for V;& are

A factor g ~, where g is the strength of the strong-interaction
vertex, is to be understood in all such equations.

~ As one can see from Refs. 8, the factorization properties
(spectrum) of lower trajectories depend upon the internal trajec-
tory intercepts. Since these of course do not vary with q2, the spec-
trum is independent of q'. Thus the only nonkinematical q'
dependence is in the current-hadron-hadron vertex. We neglect
here the complications of the linear dependencies between states
which give a reduction in the spectrum.

H. Harari, Phys. Rev. Letters 22, 562 (1969); J. L. Rosner,
ibid 22, 689 (1969). .
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FIG. 4. Duality diagram for currents. The current (no-quark state)
couples to vector mesons (two-quark states).

~ aul"'sN(q) 2 ~i s'il u. (q) (2.16)

for the single ordering pl, . . ., p~ of the hadrons and
a, v~=0, 1, . . . , 8."Thus the absence of exotic reso-
nances has allowed us to introduce precisely the nonet
of conserved currents whose charges can generate
SU(3).

As in I, the internal symmetry solution can be repre-
sented by a duality diagram (Fig. 4). Moreover, one
can give a further interpretation of the diagram for the
orbital part which has considerable heuristic appeal,
particularly for the two-current amplitudes. The current
is regarded as a no-quark object that couples to the
two-quark system that has vector-meson (bound-state)
poles. Hence the current-quark-quark vertex is always
to be thought of as a form factor in g'.

III. TWO-CURRENT AMPLITUDES
AND CURRENT ALGEBRA

In this section we discuss the construction of ampli-
tudes for two vector currents (covariant correlation
functions),

M(+) (ql~q2) sI-~ah —(ql, q2)~~by (ql, q2) j,
with the following properties (see I for normalization
conventions):

(i) Divergence conditions (a) Charge-current density
algebra:

qlp~(+) (qlyqs) ~ s(1+1)~ (ql+qs)

for ql„—+ 0; (b) photon correspondence:

ql„~»"(q„q,) =O(qls),

and similarly for q2„.

(ii) Generalized vector dominance. There are only
simple poles in q~' and g2', and the residues of the poles
at qls=mv„' (or qs'=mv„') are products of single-

'90ur normalization is such that, for example, m+=2 'Ig

p(P 1&iX2). For physical photons one uses the Gell-Mann-
Nishijima formula Q= ~~3+6 F3.

obviously

V; .......„(q)=-,'TrP. ," X..-.(-,'X.)X.,
&&P(q')&'"(q) (2 1')

and

current amplitudes for the production of a vector meson
of mass mv„and coupling constants fv„.

(iii) Regge asymptotics. M'(')"" has Regge behavior in
all subenergies except those subenergies (ql ps) that
overlap the two-current channel L(ql+qs)s=tj.

(iv) Particle spectrum. The only singularities in the
subenergies are simple poles with polynomial residues
in overlapping variables. The locations (masses) and
quantum numbers of the poles are determined by the
hadronic and single-current amplitudes.

(v) Factorization. (See Fig. 6 of I.) (a) "Linear factor-
ization" at poles in subenergies rot overlapping t;
(b) "quadratic factorization" at poles in subenergies
overlapping t.

As these conditions indicate, the single-current ampli-
tude U& will be a basic input in the construction of the
two-current amplitudes M(~~&", just as the hadronic
amplitude was the input for the construction of the
single-current amplitude. However, the new features
presented by the nonvanishing divergence (ia) and the
"quadratic factorization" (vb) make the connections of
M(+~&" with V& far less trivial to satisfy. As demon-
strated in I, these two conditions f(ia) and (vb) j require
the existence of axed poles and the extension of the
divergence condition (1a) to the kinematical region
ql' ——0 and qss=t (to within terms that vanish at ql"=0).

In spite of the strength of the above assumptions, to
obtain a unique solution it may be necessary to impose
the full strength of the current-density commutation
relations:

(i') Divergence conditions of current algebra

ql~(+)""(ql,qs) =s(1~1)~"(ql+qs),
~(+)""(ql qs)qs. =s(1+1)~"(ql+qs)

for all g~', q~'. Our construction procedure will avoid the
direct use of (i'), so that it may be regarded as a heuristic
argument for the power of the conditions (i)—(v) in a
possible eventual proof of the current-algebra condition
(l')

Our construction of M~~)&" is limited to the single-
vector-meson (co,p,E*,etc.) approximation for the form
factor F(q') fEq. (2.12)$, and the resultant single-
current amplitudes V"(q) )Eq. (2.16)j, which we con-
structed in Sec. II. We And it encouraging that in this
approximation we can satisfy linear factorization com-
pletely (va) and quadratic factorization (vb) on all
leading trajectories with exact current algebra (i'). The
isospin factor for this 6rst-order current-algebra solu-
tion is presented in Sec. III B.In Appendix 8 we show
that for physical Compton scattering (%=2) the ampli-
tudes obtained here are in general the same as those
given in Ref. 1.

A. Orbital Factor

The 6rst step is to calculate the amplitude for two
vector mesons and Ã hadrons. We can construct this
amplitude from the amplitude 13& for one vector meson
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and %+2 additional particles. As before, we go to a pole
at o.= 1 and extract the coe%cient of the relative mo-
mentum in the residue. The expression for the resulting
tensor amplitude 8&" is more symmetrical if we sum over
momenta to the right for one meson (q!,V!) and mo-
menta to the left for the other (qs, Vs). We then f!nd (for
the 6xed ordering of the hadrons 1, 2, . . . , E)

B,,&"
(q t,qs)

~+~

ql q2 BN+s ql $2 QL p BN+s(cr &!,v 1)]—
n=j'—1

—
I 2 Z!r P "BN+s(~v, ,« —1)fqs"

tn='4

i—2 j+1—4 Zz Qr, P "P."BNps(~v, , !( —1; ~.(!,v, —1)
tn=i n=j—1

2g&"$8N—~s(ny, , !&; 1; n; r&—!v, —1)

BN+s(o!v—, !& 1;!r'—!&—!,v —1;!rv v —1)$. (3.1)

Comparing (3.1) with (A1) and (A2), one sees that the
only really new feature is the g&' term.

Ke now discuss a few features of this lengthy expres-
sion in order to clarify its structure. The indices i and

j indicate that V& is just to the left ofi and V2 is just to
the left of j.To avoid ambiguities for adjacent mesons
(i =j ), we adopt the convention that B,;""(q!,q.) and

B;;"&( q, sq)!refer to the ordering with qr to the left and
to the right of q2, respectively. If the same trajectory—
which can only be nz, z,—occurs in both sets of argu-
ments in the third term, it is lowered by two units.
The summations and the inequalities for the lowered
trajectories are understood to include the momenta q~
and q2 in the appropriate position. The reader may find
it helpful to draw diagrams such as Fig. 5 in order to
keep track of the lowered trajectories.

The divergences qJ,„B;,I'" and 8;;""q~„behave rather
differently for nonadjacent (iW j) and adjacent (i= j)
vector mesons. For nonadjacent mesons, the conditions
(2.10) for the Reggeized internal-line insertions can be
satis6ed independently for both mesons, and the pres-
ence of a second meson does not affect the vanishing of
the divergence for the Grst. The reader should thus find

F!o.5. The last J3N+s in Eq. (3.1).The trajectories lowered by one
unit have their corresponding subenergies indicated.

very plausible the identities

q!„B,,""=0—, B,,'"q2„=0—(for i4 j), (3.2)

which follow directly from (3.1), (A6), and identities
similar to (A4).

As pointed out in I, the nonadjacent-current terms
cannot contribute to the divergence (i') due to its pole
structure. Hence the orbital factors for nonadjacent-
current terms can be represented by the divergenceless
ten sors

M'~""(qt qs) =F(qt')F (qs')B', ""(qt,q2) (««& j) (3 3)

The justification of this construction is essentially the
same a,s for the single-current amplitude U,"(q). The
adjacent-current terms pose the only essentially new
problem and the remainder of this subsection is devoted
to them.

For adjacent vector mesons, condition (2.10) can also
be satisfied except when the two-vector-meson channel
(designs, ted( channel) is involved. The difhculty arises
because the spins of the mesons are 6xed at 1, while the
qP vary in the off-shell con.tinuation (see Sec. II A).
Therefore a~,~, and ay, ~, depend upon q~' and q~', but
are related by (2.10) to ay, y„which should be inde-
pendent of q~' and q2'. This gives a nonvanishing di-
vergence which we may calculate by using (A9) and
(A10) and assuming ny, y, (t) =n!= 1+t r!sys—

qlpB!~" (qbqs)
qs"[Bus—(n! 1) BN+—s]+—(m y' qs') Cr.",—(3.4)

where

CL,"= (qs"+2q!")LBN+s(rr!—1)—BN~s]

+2 pr. p "(BN+s(o'.&!,v, 1;« —2)—

BN+s(n. &&
—y, —1;n, —1)]. (3.5)

Similar expressions hold for B,,""(q&,qt) and qs
divergences.

%e note that for q» —& 0 one may explicitly verify
that (3.4) reduces to the (correctly normal!zed) contri-
bution from the KI I of U! on p, !.This is expected,
since the 8;,I"" have the correct soft poles even for i= j.

The 8;,"" are useful as basic building blocks even
though they are not divergenceless and hence not pure
spin-1 even for q»' ——q&'=m~'. In a moment we sha11
show how to construct appropriate spin-1 tensors for
q~' or q~' equal to my', but we first discuss the divergence
conditions for the adjacent-current terms.

As we demonstrated in I, the divergence condition
can be applied to a single adjacent-current term. The
divergence condition on M, ,&"(qt, qs) is

q!„M;,""(qt,qs) =F(t)B,"(qt+qs), (3.6)

M, ,'"(qt, qs)qs„——F(i)B,"(qt+q2), — (3.7)

which, by the theorem of I, hold for g&'=0, q2'=t and
g22=0, q~'=t, respectively, or, by current algebra, hold
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for all g~' and q2'. From now on we choose for definite-
ness i=1, corresponding to the ordering qi, q2, pi, p2,
. . ., pN for M""(qi,qm), and drop the subscript labels.

The decomposition of the adjacent-current term into
two "signature" amplitudes is a great simplification in
constructing the Chan-Paton-type solution of this sec-
tion. In such a solution one has degeneracy between
singlet and octet trajectories (for example, fo and p)
and M~~~I'" are the even and odd parts of the same solu-
tion to (3.6) and (3.7). However, more general solutions
can be found by adding any function D&~&"(qi+q. , pi,
. . . , p»&) to the right-hand side of (3.6) and +D&~&" to
(3.7) and then finding separate solutions to these equa-
tions for M(+~&" and M~ ) &". The Pomeranchuk solution
in Sec. IV is an example of such a procedure and it neces-
sarily lies outside Chan-Paton models.

pression for this new function 3f~"", which we call the
hadronic part because it has the correct vector-meson
poles at q =m~' and is purely Regge-behaved:

Mlr&"(qi, q2)

F(q—P)F(q22)BIr~"

= F (qi2) F(q22)B~"

+Dmv'g""+qi"q~"]I:B(« —2) —2B(«—1)+B]
=F(qi)F (q2) B"" F(qi—')qi&CI," F(q2—')Cg"qi"

+(q"q. /-")F(q")F(q: )LB(- -1)-»
+2mv'g""$B( n& 2)—2B(—n& 1)+—B]. (3.10)

In addition to the divergence condition (3.9), we have
used the double divergence

pip~""g av

= —m v'(B (n, —1)—B(n,)]—(m v' —qP) (mv' —q2')

&&PB(n,—2) —2B(n,—1)+B(n,)] (3.11)

to expand (PB6'. Note that the q~&g2" term added to Bf""

precisely cancels the second term in (3.11). This ha-
dronic amplitude has the simple divergence

Z. Hadroeic Part

We now discuss the part of M, ;""(qi,q2) which con-
tains the vector-meson poles (hadronic part). As re-
marked above, F(qi')F(qP)Bii"" has the correct diver-
gences at q~„—+ 0 and q~„—+ 0. However, the residue of
this tensor at qi2=mv' (or q2' ——mv') should yield a
suitable single-current amplitude for a vector meson
and X spinless hadrons by condition (ii). Consequently,
the divergence with respect to qi„(pure spin-1 vector
meson) and q2„(CVC) should be zero at qP =mv' for
all q&', and similarly at q&'=mz' for all qz'. Clearly we
can get zero divergences with the use of the projection
operator &P»' =g""'—q"q"'/q', but this destroys the good
divergence q~„—+0 and q.„—+0 and introduces un-
wanted singularities at g~'=0 and q2'=0, violating
(ii). Fortunately the nonsingular projection operator
&P""'(q) =g»' —q"q"'/m v' yields all these divergence
conditions.

It is easy to show that the divergence of the tensor

F(qi')F (q2')B""(qi,q~)

=F(qi')F(q ')&P(qi)"'B"'"'&P(q )"" (3 g)

qlyMH (ql, q2)

=m, '(q,"+2q,")PB(n, —2) —B(n,—1)]
+2mv QL p "pB(n& 2, n &&,v 1)

B(n& 1, nn«. v—2
—1)]—, (3.12)

as computed by using the identities in Appendix A.
What are the pathologies of this functions It satisfies

conditions (i)—(v) with only two important exceptions:
(1) The symmetric ps,rt of MIi"" is unsuitable for M»"",
since qi„M&+&&"WO(qi2), and (2) the function does not
satisfy quadratic factorization on the trajectories below
the leading trajectory. In view of the theorem in I it is
a little surprising that such a function exists, but we
notice that the divergence does have poles in the over-
lapping variables nv, &, (or nv, &,) on the nonleading tra-
jectories. Clearly the absence of these poles in the di-

vergence, which is a consequence of CVC and quadratic
factorization for all trajectories, plays the crucial role
in forcing the fixed-power behavior into M~ )l"".

with respect to qi„(or q~„) is unchanged at qi„—& 0 (or
q~, ~0). For example, at qi„~0, &P(qi)„I" becomes
g„& and the divergence of 81"" is U", which is unaffected
by &P(q~)„" because of CVC. Moreover, the conditions

qi„B""(q,q2) =0 for q22=mv',

B""(qi,q2)q2„——0 for qi2=mv',

Z. Currerl, t-A/gebra CorIstrgcti oe

Aside from the immediate interest in obtaining a solu-
tion consistent with current algebra (i'), we find that
such a solution gives the simplest and most elegant
means of satisfying properties (i)-(v). We must intro-
duce a axed-pole term Mpp"" to satisfy the divergence
conditions (3.6) and (3.7), which follow from these
properties, so we try an amplitude of the form

required by assumption (ii) and CVC, follow immedi-
ately from the divergence formulas for B"" )see (3.4)
and (3.5)],

M""(q q ) =M~""+Ma""+Mip"",

where the correction term Mgl"" cancels the divergence
introduced by M~"", but'does not affect the poles at
g =my'. Remarkably, we shall discover a correlation

qi„B~"=—q,"I B(n,—1)—B]+(mv' —qg')Cr, ",
(3.9)

B~'q &„—qi"EB(n &
—1) B——]+(mv' qi') C—~". —

To simplify the general divergence equation for Bf"",

we add two terms that give no contributions at the vec-
tor-meson poles Lor to the right-hand sides of (3.6) and
(3.7) for qi„~ 0 and qm„~ 0]. We give an explicit ex-
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between M&t'" and Mpp~" that is necessary to cancel
nonsense poles in o.&. There are two equivalent ap-
proaches. Either one is led to the correlation by insist-
ing that MFp"' obey current algebra, or, by demanding
the correlation, one is led to the current-algebra fixed
pole. Although the latter suggests a derivation of the
current-algebra condition, we remind the reader that it
is possible that the correction M~"" could be made in an
entirely different manner. Also, additional terms as
discussed in Sec. V can be added to the divergence. Only
the imposition of factorization can remove these
ambiguities.

The reader who wishes to follow closely our construc-
tion procedure should expand each of our tensors as
follows:

=Pm Pa Mrna+Pm ql Mm(1)+qs Pa M(2) a

+qs ql M(2) (1)+g Mp+ql pa M(1)a+pm q2 Mm(2)

+ql q2 M(1)(2)+ql ql M(1) (1)+q2 q2 M (2) (2) ) (3 13)

where m is summed over 1, 2, . . ., N —1 and e is sum-
med over E, E—1, . . ., 2. By equating the coefficients
of each tensor (P "P„",ql"P ", etc.) one will discover that
our equations reduce to the identities proved in Appen-
dix A. In the discussion below, for each divergence con-
dition we refer only to appropriate identity for the
coefFicient of p„".

Let us consider constructing the solution to the cur-
rent-algebra condition. In terms of the "physical"
amplitudes (the irst f'ive terms of the expansion), these
conditions become

ql ' PmM am+ ql ' q2M (2}a

=-F(t)B ~ ( - ..-1)+o(q'), (3.14 )

q2 p.M .+ql qsM (1)
=—F(t)B „(,,„„—1)+O(q, ), (3.14b)

Mp=Mp+ql' q2M(2) (1)

q, p~m(, )
—F(t)B~+1+0—(ql') (3 14c)

q2 PaM (~) a —F(t)Bar—~1+0(qs') ) (3.14d)

3f~~~ ~q~ is arbitrary. (3.14e)

The fundamental difhculty is to Gnd a form for the
double-Qip amplitudes' M „ that does not introduce
a kinematical singularity (ql q2) into the single-flip

amplitudes M (2)„and M (1) through (3.14a) and
(3.14b). The unphysical amplitudes are of no help in
this problem, since they are of order q12 (or q2'). We first
consider the divergenceless Regge part (MH""+Ma"")
that satisfies (3.14a)-(3.14e) with F(t) set to zero. We
take the hint from Ref. 1 that the double-Rip amplitudes
might be proportional to F(q12)F(q22) F(t). For the-
single-vector-dominated form factor (2.12) we have the

'One can easily verify that the 3E are double-helicity-Qip
amplitudes in the t-channel c.m. , whereas III~&1) and M(2)» are
single-fiip and 3E(2) (1) and 310 are nonfiip.

expansion

F(ql')F(q2') —F(t)

2lj V2+ F(t)F(q, ')F(q, ') . (3.15)
mv' mv4—

The idea is to let the term in this expansion proportional
to qi q2 satisfy (3.14b) to 0(q12) with a nonsingular
single-Rip amplitude and match the remainder with the
"unphysical" amplitudes to give precisely zero diver-
gence. To carry out these manipulations in a compact
manner we employ the identities (A9)—(A11).

From the divergence (3.12) of the hadronic term
Mrr"" we obtain, from the coefficient of p„",

lql'{F(ql') F(q2')B(n —1)

+F(ql') $B(n, —2) —B(n,—1))}
+ql q2F(ql')F(q2')B(n, —1)

+Q)2 F(qi')F(q2')qi PM(« —2; nv, ,« —1)

= ——'mv'LB(ni —2) —B(ni—1)j, (3 16)

where any number of trajectories n&v, may be displaced.
This formula can also be derived from (A11) with the
aid of the identity

F(q") =I+(q"i ")F(q")
From another form of (A11), obtained by adding
(sqi'+qi. qs)LB(« —2) —B(«—I)] to both sides, we
have (A10):

(2ql'+ql q2)B(ng —2)+Q)2 ql p~(n( 2; nv—, ((„1), —

= —-', mv'F '(t) &B(ne—2) —B(n(—1)j (3 17)

In this form, we can see that F(t)Bo""(ni—2) has the
same divergence as Mrr&", where Bo""(n& 2) is identica—l
to BI"" except that all the nv, v, arguments are set to
o.~

—2 and the g&" term is omitted. Consequently the
difference of these two tensors,

F(qls)F(q22)B)r"" F(t)Boa"(n& 2)—, (3.18)—
is a pure Regge function with no divergence.

The only dBBculty with the correction piece is that it
introduces vector-meson poles at t=mv' into nonsense
amplitudes 3f „."An obvious way to cancel the poles
in the nonsense amplitudes is to add a 6xed-pole term, "
F(t)Boa"( 1).With the ad—ditional term, F(t)B~+lga", —
this Gxed-power contribution yields precisely the di-
vergences required by current algebra P(3.6) and (3.7)
for arbitrary q 2). The reader may verify this by the use
of identity (A12). Consequently a solution to the

"This is just an inversion of the reasoning used by J.3.Bonzan
et al. LPhys. Rev. Letters 18, 32 (1967lg and V. Singh PibQ 18,36.
(1967)g to deduce the existence of singularities in nonsense Regge
residues from current algebra.
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B. Internal Symmetries

From I and Sec. II 8 it is clear that the proper inter-
nal symmetry factor for M;,&"(qi, q2) with the absence of
exotic resonances is

-', TrL)t.," z.. .('2).))., "x.. .('2) b))~., ")t.~$. (3.20)

To illustrate some of the properties of this solution,
we consider the contribution of the adjacent-current
terms to M, b&"(qi, q2):

M ~b""(qi&qs)

2 2 TrL)~»1 ~&&i—1(2)tS)(2~b))ta'' ' ')ta&vJMii (ql&q2)

+g —,
' TrL)... ) .. .(-,'), b)(-,').)) .,

Using the relation

L(l).),(!) )l.=
we easily obtain

M(~).b""=', (M.b""&-Mb,"")

dabc

&fabc

&&M;;"&(qs,qi) .

dabc
P -', Trg. ," )t.. .(-',).)X., ).„J

abc

&&KM"""(qi q2) +M"""(qsqi)j.
From the divergence conditions (3.6) and (3.7) and Eqs.
(2.15) and (2.16) we obtain

qi~M &+i.b""= 2(1~1)sf.b.V

which are precisely the required divergence conditions
of current algebra (i').

The degeneracy of the V and T nonets (forexample
o&, p, fe, As) is crucial for the success of this construc-

"M. Gell-Mann, Phys. Rev. 125, 1069 (1962).

current-algebra problem (i') is the symmetric and anti-
symmetric part of

M"""(qi qs) =F(qi')F(q2')B~, """
—P(t)/Bc ",""(Q&—2) Bp—p, ,""(—''1)$ (3.19)

where Bpp, ;;""( 1)=—Bc,;;""( 1)——Btv+ig"". The ex-
ternal momenta in Bbr+i are pi, . . ., p; i, qi+q2, p;, . . .,
ptv, just as in B;&'(qi+qs).

In addition to (i') this solution satisfies conditions
(ii)—(v), except quadratic factorization (vb) for non-
leading trajectories. That (vb) is satisfied for all reso-
nances on leading trajectories is most easily seen by
examining (3.19) as t —+eo for fixed sv, b. In this Regge
limit, the part proportional to F(t) has one less power of
t than normal and hence contributes only to nonleading
trajectories. Further, from (3.10), one sees that all
terms in BIII"" except Bf"" contribute only to nonleading
trajectories. Since Bf"" factorizes, 3E;;I'" factorizes for
leading trajectories o;y, ~.

tion. In the construction of the orbital factor in Sec.
III A it was necessary to have 1—a&=mz', the mass
occurring in F(q'). Since from two currents in V one
can obtain some configurations with V leading trajec-
tories and some with T leading trajectories, V and T
must be degenerate. In SU(2) this corresponds to

0 (~)0 (~) =o+(fo)
0-( )1 (.) =1-(A.),
1 (p) 1 (p) =0+(fo)+1 (p)+2+

(the numbers are Ig). In other words, a consistent n.onet
of currents can be constructed by our methods (and
perhaps generally) if and only if the V and T nonets
are degenerate.

Nonvanishing current commutators imply nonvanish-
ing divergences for the M( )~".This in turn implies fixed
poles with residues singular in t and the necessity of
Regge trajectories with singular residues to eliminate
these singularities in nonsense amplitudes. Now, if the
solution of the hadron bootstrap has no exotic trajec-
tories, we see immediately that the commutator of two
currents cari only be another current of the same type
(i.e., there is no 10 or 10 part in the octet-octet com-
mutator). The foregoing simple observations point out
some effects of the hadron solution on the currents and
current algebra.

Finally, we mention the duality diagrams for the
adjacent-current amplitudes. As before, the current-
quark-quark vertex is to be regarded as a form factor
F(q'). In Fig. 6 we have represented the current-algebra
solution of the adjacent-current amplitude as the sum
of Regge exchange with form factors LF(qi')P(q2'))
and a fixed-pole piece which has an "exchanged" cur-
rent. As the diagram indicates, there are no form factors
in q, 2 $i.e., F (qi2)F (q22) 7 for the current-exchange piece,
but there is a form factor F(t) where the "exchanged"
current attaches to the quark line.

IV. POMERANCHON SOLUTION

There is a solution for the symmetric amplitude
Mt~i"" that cannot have form factors fF(qi2)F(q22)$
and therefore has no counter part in purely hadronic or
single-current processes. For the Pomeranchuk trajec-
tory such a solution is particularly interesting for several

Cf

~ 2

0 +

P.

Fin. 6. Vector-meson exchange with form factors t F(q&')F (&to') ]
plus a current-algebra 6xed (7=1) singularity with F(t) and no
F(g&') F(it~').
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reasons. (1) It allows a Pomeranchon with np(0) =1 to
couple in double-helicity-fhp (nonsense) amplitudes at
the forward direction (t= 0), as required to yield a con-
stant total photoproduction cross section. (2) The
existence of a Pomeranchon contribution that does not
fall rapidly for q' —+ —oo (i.e., has no form factors) has
some experimental support in recent electroproduction
data. " (3) For nP(0) =1, this solution gives no rigI21-

signature axed poles (e.g. , 7=0, —2, . . .) for physical
(q;2=0) Compton scattering. We remark, however, that
the solution given below can be used for any trajectory
in a symmetric amplitude.

In this solution, the possible kinematical singularity

L(ql q2) j in single-Rip amplitudes is avoided by di-
rectly introducing the factor

2ql q2 ql +q2 tÃp—=1-
et 1

)
t —mp2

(4.1)

where n~ ——t —222P2+1. This is just the term proportional
to q~ g2 in the factor

F(q12)F(q2') —F(t)

F(ql') F(q2')
2gy Into g] g2

ni —1 mp2(n, —1)

ql +q2 222P ql q2 /222P=1— (4.2)

-'2qi'B(n, —2)+ql q28(n, —1)

+Pa ql P &(~1 2, ~p, , « —1)—

(q12+q22 —mp')$8(ni —2) —B(ill —1)j. (4.3)

The resulting parametrization for M(+~&" is the sym-
metric part of Mp, "".'

ql +q2 222P-
~Pom (qlqq2) +Porn

2

where

+Po —L (ql, q2) —ql CL —Cri q2

—Lqloq2" +2g&"(ql'+q22 —222P') ]
)&LB(n,—2) —28(ni —1)+8J, (4.5)

which we introduced in Sec. III. In both cases, the
leading asymptotic behavior is unaffected. In the sym-
metric amplitudes (n& —1) ' is canceled by the signature
factor in leading order, and 6xedpoles at J=0, —2, . . .,
are introduced to cancel the singularity in lower orders.
By comparing the two expansions, one can see how simi-
lar this problem is to the current-algebra problem.

This time, we use the identity (A9) in the form

and as in Sec. III,
&PP""(—1)=&c'"( 1)—J3—x+lg""

The first two terms in 3fp, I"" cancel in the divergence,
and the fixed-pole piece gives a divergence which cancels
in the symmetric amplitude.

From (4.4) and (4.5) one sees that MP. &" has the
same ELI poles as 8"".Therefore, as discussed in I, the
symmetric function

M . "~ & =g 8,,""(q ,q )i'
+g I ~porn, ii (qlyq2)+iaaf porn, ii (q2~qi)] (4 6)

has no ELI poles. Hence the Pomeranchon can be intro-
duced with arbitrary coupling strength Co into I=O
symmetric amplitudes. Ke note that the above ampli-
tude cannot be multiplied by the form factors F(q12)
)&F(q22) because this would introduce an unpermitted
J=O fixed pole (and Kronecker-8 singularities) at a
right-signature point in the purely hadronic process
VU ~S hadrons.

For q~'=q~'=m~'=0, the fixed-pole contribution to
(4.4) vanishes. Further, from (4.5) one sees that only
the "unphysical" terms in 81"" are modified. Therefore
in this case BI"" leads to perfectly acceptable photon
amplitudes. This can also be seen directly from (3.4).
We also note that for X=2, (4.6) is precisely the form of
the Pomeranchon contribution suggested in Ref. 1.

Since one cannot have an I=1 trajectory degenerate
with the Pomeranchon, this solution necessarily lies out-
side the Chan-Paton scheme and involves exotic reso-
nances in cross channels. However, unlike the Pomeran-
chon for purely hadronic amplitudes, we do not require
exotic trajectories entering into the same term as the
Pomeranchon. Such a "hadronic" Pomeranchon con-
tribution may also be present in the two-current ampli-
tude& with form factors F(q12)F(q22), but it will not con-
tr ibute to forward elastic Compton scattering if
nP(0) =1.

A diagrammatic representation of the above Pomer-
anchon solution is given in Fig. 7 (a). The fixed-pole part
of (4.4) is represented by a "contact" term with no form
factors in q, similar to the 6xed-pole piece of the
current-algebra solution. We also see that our Pomeran-
chon (like currents) should be thought of as a no-quark
object. '3 The "hadronic" Pomeranchon contribution
can be represented as in Fig. 7(b)—without ELI terms,
but with form factors F(q12)F(q22) and exotic resonances
(four-quark states) in crossed channels. " The close
analogy between the Porneranchon solution and the
current-algebra solution is apparent both in our con-
struction and in the diagrammatic representations.

~ S.Mandelstam, Phys. Rev. Letters (to be published). Mandel-
stam has shown how to introduce the Pomeranchon as a no-
quark trajectory along with exotic resonances on lower trajectories
in the model of Ref. 10.
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q P.

(a)
P,

P.

q p
i —l

(b) P;

Pro. /. Pomeranchuk as no-quark state: (a) with no form fac-
tors and J=O singularity; (b) with form factors and exotic reso-
nances in the crossed channels but with no ELI poles.

is divergenceless, it can be multiplied by a suitable in-
variant amplitude and added to M&" without affecting
the divergences (i.e., the time-time and time-space com-
mutators). In fact, our basic amplitudes have zero
space-space commutators, and these terms can be used
to make them nonzero. " Any term of the form
qt'(P(qt)"„T"'"'(P„"(qs)qss, or a similar term for single-
current amplitudes, is clearly acceptable and does not
change the divergences (T"" should be chosen so as not
to affect the EI.I poles or leading-order factorization).

The condition (2.10) on the trajectories is crucial to
our construction and has been assumed throughout this
paper. In our simple model it holds, but in more general
models where it may not hold one apparently must re-
sort to brute-force methods of satisfying the divergence
conditions. For example, for single-current amplitudes,
one could add to V& invariant amplitudes parametrized
by beta functions multiplied by tensors L(q p, )p;"
—(q p;)p, "]—note that such terms do not contribute
at q„~0.

There are also terms which affect the divergences.
Terms proportional to q' and qq'q2' can be added to Vl"

and M&", respectively, without violating the require-

V. CONCLUSION

First we would like to mention several ways of
modifying our basic amplitudes L(2.11), (3.3), (3.19),
and (4.4)] by adding additional terms. Since the tensor

ments for physical photons. It is more dificult to modify
the divergences in other ways, but, for. example, terms
proportional to B~+j can be added to, say, M2(~),
where qr+qs, pt, . . . , p~ are the external momenta in
B~+&. This adds a term proportional to g& g& to the q&

divergence. This is completely consistent with the
theorem of I, since it does not introduce poles in vari-
ables overlapping the t channel into the divergence.

More importantly, we should introduce form factors
with arbitrary numbers of vector-meson poles consistent
with the vector mesons on the lower trajectories in the
factorized hadron solution. As we see from Ref. 1, the
problem of arbitrary form factors becomes quite in-
volved due to the necessity of avoiding ancestor trajec-
tories. However, the essential point that F(qt')F(qs')—F(t) can be expanded into two terms, one proportional
to qt qs and another proportional to qt'qss Lsee (3.15)],
still holds, as one can demonstrate by a Taylor-series
expansion. We feel that this will permit general form
factors to be introduced in much the same manner as in
Ref. 1. But this construction procedure should be de-
veloped simultaneously with the implementation of the
correct correspondence to vector-meson processes
Lcondition (iv)] and quadratic factorization (vb) on
lower trajectories.

Work is proceeding on the successive introduction of
higher-mass vector-meson poles and factorization on
lower trajectories. Clearly, at some stage our brute-
force methods must be replaced by a more elegant tech-
nique to obtain a fully factorized solution in the E-point
beta-function model.

The axial-vector currents should also be studied in
this model. In the special case of one axial-vector cur-
rent and three pions (1V=3), PCAC leads to the well-
known condition on the trajectories'' rr, (m ') =n (m ')
+-', . Ke are investigating the problem of introducing
axial-vector currents with pion-pole-dominated diver-
gences into the E-hadron amplitude.

Beyond the scope of the S-point beta-function model
with the Chan-Paton isospin factor are the problems of
baryon trajectories, exotic resonances, and the Pomer-
anchon. Mandelstam has discussed these problems for
the hadronic amplitude from the point of view of a rela-
tivistic quark model. "Here the form of the hadronic
solution is far less clear, and the attempt to introduce
currents may help to develop this more realistic zero-
width model. Clearly, one must replace the SU(6)
symmetry of the present Mandelstam model"" by
a chiral-symmetry scheme that allows the pion mass to
be zero with a 6nite p-meson mass, if there is any hope of
introducing both reasonable vector and axial-vector
currents.

~4 C. Lovelace, Phys. Letters 28B, 204 (1968); M. Ademollo, G.
Veneziano, and S. steinberg, Phys. Rev. Letters 22, 83 (1969);
H. J. Schnitzer, ibid. 22, j.154 (1969);R. Arnowitt et al. , ibid. 22,
1158 (1969).
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APPENDIX A

using the identity

dQy' ' dQ~
0 dQy

X t Ql
—~N v(1 Ql) Nvl(1 Bluo)

X(1 Bl— QN 2) )IN(B2, . . .,QN 2),

e erst give several alternative exPressions for whichistriviallytruewhentheQ~integralisdegnedan
is true by analytic continuation elsewhere. Carrying out

From (2.7) we have the differentiation yields

B;"(q)=q BN+1+2 Qz p "BN+1(nv, l& —1), (A1)
0= dul duN 2

—nNv(1 —Ql)+nvlul

(1—Bl)ulu2 (1 Bl)ul' ' 'BN—2

+~V2 +' ' '+~ Nv—2

Q1Q2 ~ Q1' ' 'QN —2

XIN+1(ul, ..., QN 2). (A6)

corresponding to the ordering of momenta Pl, . . ., P; 1,

q, P;, . . ., PN and the choice of variables similar to Fig.
2. The subscript R of the summation indicates a sum
over momenta to the right of q excluding the momentum
immediately to its left, p; 1. We may obtain directly
a sum L over momenta to the left of q by following the
steps leading to (2.7) but with the anticyclic permuta- From (2.3), (2.4), (2.5), and (2.10) we obtain
tion of the momenta (which leaves BN+2 unchanged):

B; (q) = q"BN+, 2+—z, P BN+—,(n„&1,v 1) . (A2)—
nNv (q+pN) ++Nv 2q'( q2+p )N+ 212N++NN

=2q (-'q+PN) (A78)

Comparing (A1) and (A2) and using momentum con-
servation yields the identity

nva —n12=2q'(2q+pl+' '+pa),

~v2=2q pI, .

(A7b)

(A7c)
BN+1 BN+1(nv 1&——„1)+BN+1(n—„&1,v 1) (A3)—

Blu2' ' 'Qm-1+(1 Blu2' ' 'Qm, —1) ~ (A4)

for all nz. This can also be derived directly from the
integral representation (2.1) and the trivial relation

Notice that (2.10) was crucial in deriving (A7a) and
(Ajb). Substituting (A7) in (A6) and comparing with
(AS) immediately yields q„B;"—=0.

We now discuss identities useful for two-current
amplitudes. Corresponding to the choice of variables of
Fig. 8, we consider

A further expression can be obtained by converting
the integral representation (2.6) into one corresponding
to the multi-Regge diagram with the momenta cyclically
permuted one position to the right. This procedure
yields (for 2=1)

0= ZQO' ' dQ~
dQp

XLuo N v'(1 —so) (1—uou])

X(1—uo BN 2)
—~""-2]IN+1(ul, . . . ,uN 2), (A8)

Bl"(q) = dul duN 2
—(q&+2pN&)(1 —ul)

(1—ul)ulu2+(q"+2p,")Q,+2p2" —+
1—QyQ2

(1—Sl)ul' ' 'QN —2

+2pN —2 IN+1(u, , . . .,BN 2) . (AS)
1—Qy' ' Q~

This expression is actually most easily obtained by be-
ginning anew from 8~+2 cyclically perm@ted one~posi-
tion to the right from Fig. 1. The expression (AS) has
the advantage of exhibiting explicitly both soft-photon
terms.

The result, q+1"=0, may now be easily shown by

where hv, l= (nv, l —nv, l) n, but for typogr—aphical con-
venience we have written Ui for V~. Differentiating and
using equations like (A7) then gives

I

du0
' 'duN 22ql' (2'q1+ pN) (1 B0—)

1—Qo $+ (&
— l+2v sv +v +o )

1—Soul)

(1—uo)Soul (1 Q0)B0' ' 'BN 2—
X— + +2ql pN 2-

1—QOQy 1—Qp Q~

XIN+2(uo, ~ ~,BN—2) ~
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UP Ul

Pi

Up

Pp ~ N-3 ~ N-p

UN-2

N-I

photoproduction amplitude of Ref. 1. For simplicity we
neglect internal symmetries and use the simplified for-
rnalism of I LEqs. (3.4)-(3.7)g for physical photons.

For X=3 there is just one independent hadron order-
ing. We may choose

Q;=-'(e —e 1)+C
and hence

Fro. S. Choice of variables for Eq. (AS).

Comparing with (AS), we obtain

(sql +ql'q2)BNy2(n 1)

+Ell ql pMN+2(n —1; nv, , «m —1)

= sn[BN+2(n —1)—BN+2j

2nBN+2(nl& lvl 1), . —(A9)

Several useful formulas may be obtained from (A9).
For example, choosing

n =nv, v, —1 =av, v, +(ql+q2) '—1 = t mv'—
gives

(2ql'+ql q2)B(nviv, —2)

+Q ql'PmBN+2(nV1V2 2i nvy, 1&m 1)

=2(t —mv )AN+2(nv v —2)

(q) 2(el es)B1 (q)+2(e2 el)B2 (q)

+2(es —e2)B2"(q)+~B""'(q) (81)

We take s=(q+pl)', t=(q+ps)2, and N=(q+p2)' and
compute the s-channel physical helicity-1 amplitude
Hl'. Vsing e(1) q=e(1) Pl=0, we readily find for the
kinematic-singularity-free amplitude

'"H -=~ '".(-1)&"(q)
= —$1/2'19 'I'(s, ml' q')5( 2(el -es)—B(1 n„——nl)

+-;(e2—el)B(—n, 1—n.)
—

2 (es —e2)B(—n~ —n-)+CI:B(1—n —«)
+B(—-, 1—.)—B(—,—-)j) (82)

where P is the usual Kibble function. For q' =0,
l1' '—= Ls' —2(ml'+q') s+ (ml' —q')'j'"

=s—mls=n. = —(nl+n ),
and we find

A =2 '~2L22(el —es)B(—n., —n~)

+2(e2 —el)B(—n-, —n.)+2(es —e2)B(—nl —n )
+Cs(—n. , —n„—n )j, (83)

Rearranging of terms and using t=2ql (2ql+q2)+q2'
gives and

BN+2(nv, v,—1)]. (A10—) where

B(—n„—n„) = r(—n,)I'( —n„)/I'(1 n, n—„)—

(2ql +ql'q2)BN+2(nv&V2 1)

+p ql' pmBN j2(nvlvy 2
q nvl, 1&m 1)

2 (q2 mv')p&N+2(nvlv2 —2)

BN~2(nv v —1—)]. (A11)

Note that for q2'=my' we recover the identity q„BI"=0.
Finally, the current-algebra identity

(sql +ql' q2)BN+2( 1)

+Q ql' pmBN+2( 1 i nvg, 1&m 1) 2BN+1 (A12)

is obtained by taking the limit o. —+ 0. This identity is
particularly interesting because it relates B~+& to 8&+&~

If one returns to (AS), one sees that the right-hand side
of (A12) can be viewed as a surface term at us ——1 oc-
curring for n =0, which is the first nonsense point on the
left-hand side.

APPENDIX 8
We demonstrate here that, for X=3 and q'=0, the

single-current amplitude given here is the same as the

S(—ny) ny, ny)

=B( n„—n„)+—B( n„, —n,)+B(—n—„—n,).
Equation (83) is equivalent to the result of Ref.
written in terms of the charges.

Similarly, for the two-current case we calculate the
helicity amplitudes for X=2 and q&'=q&'=0 and com-

pare our results with the Compton scattering amplitudes
of Ref. 1. The resultant parametrizations for the non-
adjacent-currents term (contributing to I=O and 2 in
the t channel) are

Hl 1'= —Q/t)2e28t —n (s), —n (N)j,
Hll' ——(y/t) 2e2BL —n.(s), —n, (N) $

—2e2B|1—n.(s), 1—.(~)), (84)

which agree with Ref. 1 only for the double-helicity-Gip
amplitude. In Ref. 1, the nonQip amplitude was given

by —2tm se28( —n (s), —n (I) J, which resulted in an
M =1 pion. Here an M =0 pion is obtained, simply be-
cause in the E-point beta function, all leading trajec-
tories are parity singlets and hence M =0 trajectories.
All other aspects of Ref. 1, including the current-algebra
amplitude, are equivalent to the appropriate special
cases of our general solution.


