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at g BeV/c are given in Fig. 3. The density matrix ele-
ments obtained indicate that the typical qualitative
behavior of OPKA calculations are reproduced in all
the reactions mentioned above, but no experimental
data are available for comparison.

It has been observed that the OPE-8 model gives
qualitatively reasonable spin-density matrix elements
for quasi-two-body reactions in which the OPE mecha-
nism is expected to dominate. The agreement between
the OPE-8 model and the OPEA model predictions for
spin-density matrix elements is in general quite good.
However, a significant quantitative difference was ob-
served in the OPEA and OPE-6 predictions for diagonal
density matrix elements p„,o and p1, 1 for the reaction
7r+N +f'+N—at 6 BeV/c. The difference between the
two models in this can can be traced to a large J= ~

Kronecker-6 term in the OPE amplitude t1, y;
~~=~

which is not completely absorbed in the OPKA model
but is completely deleted in the OPE-6 model. That this

term is large is a property of the NEm. vertex. This mech-
nism should be expected to give rise to even larger dis-
crepancies with the OPEA model in reactions where
higher-spin bosons are produced with the final-state
nucleon. This is because the large Kronecker-5 terms
would appear in higher partial waves which are even
less completely absorbed in the OPEA model. Un-

fortunately, no experimental data are available for a
definitive discrimination between the density matrix
elements predicted by the OPK-6 and the OPKA
models.

Finally, it must be emphasized that the OPK-8
model derives its usefulness in terms of being able to
generate OPKA-model-type predictions for spin-density
matrix elements without partial-wave expansion. Hence,
it will be useful as a tool for a quick generation of OPKA-
model-type results as a part of a larger scheme of
calculations.
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On the basis of the current-held-identity relation, a uni6ed treatment and quantitatively successful
calculation of pion production by p mesons and photons is presented. The model, which is independent of free
parameters, explains the empirically established facts about strong mass dependences in the p density
matrix elements (in particular, also in the combination pn+pq q) considered as a function of the mass k

of the p meson. These facts have been the basis for a recent criticism of the vector-meson-dominance hy-
pothesis in pion production. But our results indicate that the current-field-identity relation is not in con-
Qict with experiment. We emphasize in our discussion that no model-independent formulation of vector-
meson dominance is possible in pion production, according to our present knowledge.

I. INTRODUCTION

BASIC ingredient to any concept of p dominance
~

~ ~

~ ~ ~

in electroproduction of pions is the relation

& N'l~. '(0) IN&= —(m.'/f. )& N'I p. (o) IN&

=Pm '/(m s—ks))(1 f/, )( nNIJ„'(0) IN). (1)

Here, k'= (N —N' —sr)s and the momenta and all other
quantum numbers of the pion and nucleons are denoted

by sr, N, and N'. Equation (1) is a direct consequence of
the more general current-field-identity relation'

~.'(x) = (m'/f. )p. (*). — (2)

This equation relates the hadronic isovector part of the
electromagnetic current J'„v(x) to the phenomenological

~ Supported in part by the Once of Naval Research.
$ On leave from Institut fiir Experimentelle Kernphysik,

Kernforschungszentrum Karlsruhe, Germany.' N. M. Kroll, T. D. Lee, and B.Zumino, Phys. Rev. 157, 1376
(1967).

field p„(x) of the p meson Lf„o(x)= —(g+m, ')p„(x)j.
Through charge independence and time-reversal in-
variance of the nuclear forces, Eq. (1) connects specifi-
cally the isovector part of the amplitudes for the pion-
production processes by real or virtual photons

yp —& sr+st and yrt —& 7r p

to the p'-production processes by pions

rr p —+ p'rt.

Strictly speaking, comparison of the reactions (3) and
(4) requires an analytic continuation in k' of the matrix
elements of Eq. (1). To separate the p pole in the
neighborhood of the p resonance, we write (1) in the
form

mp 1—&-N IJ. IN& (»
m ' k' tm, I'—f, —

Here J„f' is defined as the modified current operator in
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the sense of Ref. 1; F is the width of the p meson. The
matrix elements of J„& do not vanish at k'=vs, ' con-
trary to J„&.They are related by time-reversal invari-
ance to the measured p-production amplitudes of the
process (4).

Postulating Eq. (1) is not enough to draw directly
practical advantage in situations where k'&m, ', i.e.,
where the matrix element on the right-hand side of (1)
is not measurable. Equation (1) has then to be supple-
mented by a postulate which specifies the conditions
under which the dependence of ( Nz'~ J„&jN) on the
mass k' can be neglected. So far, the physicists who

applied (1) assumed the existence of such situations;
some attempts to specify them have been made by
BiaI'as and Zalewski. 2 These authors understood p domi-
nance in photoproduction to imply Eq. (1) together
with a postulate on the mass independence of suitably
chosen matrix elements of (7rN'

~
J„&(0)

~
N).

The question of whether or not there exist in electro-
production situations in which one can neglect the
mentioned mass dependences without introducing too
large errors has so far not been settled either theo-
retically or empirically. But one may have serious
doubts about the existence of these happy situations on
the basis of some recent experimental work. ' ' We
therefore propose to study this question theoretically by
investigating a model with no free parameters. This
model is even quantitatively successful enough to relate
photoproduction of pions and p production of pions
using Eq. (1).

We ignore mass dependences in (s.N'~ J„&~N) which

are connected with the unsettled ambiguities in defining
the field operator p„away from the mass shell. Also, we

do not consider mass dependences related to nonreso-
nant background contributions in the p channel of the
x-x system. Instead, we are mainly concerned with
mass dependences which arise, as we shall later see,
from such dynamical concepts as crossing symmetry and
analyticity, or which stem from a violation of the
universality concept for at least some of the effective
coupling constants. To a lesser extent, we are concerned
with kinematic mass dependences enforced, e.g., by
current conservation (k„(f~

J&
~
s) =0), although they

may be important in practice.
The model will be introduced in Sec. II, and the

results will be presented in Sec. III. These results are
further discussed in Sec. IV, where general conclusions
relevant to the definition of vector-meson dominance
are presented. Pion photoproduction in the framework
of vector-meson dominance was first treated by Beder. '

~ A. Bialas and K. Zalewski, Phys. Letters 28B, 436 (1969).
Geweniger, P. Heide, U. Kotz, R. A. Lewis, P. Schmuser, H. J.

Skronn, H. Wahl, and K. Wegener, Phys. Letters 28B, 155 (1968).
4 L. J. Gutay, F. T. Meiere, J. H. Scharenguivel, D. H. Miller,

R. J. Miller, S. Lichtman, and R. B.Willman, Phys. Rev. Letters
22) 424 (1969).

5R. Diebold and J. A. Poirier, Phys. Rev. Letters 22, 906
(1969).' S. Beder, Phys. Rev. 149, 1203 (1966).

II. MODEL FOR AMPLITUDES (mN
I
J vi N)

AT HIGH ENERGIES AND k~&D

To construct a model for the scalar isovector ampli-
tudes A;v(s, t,k') (i=1, . ~, 6) appearing in the co-
variant decomposition" of (7rN'

( J„(0)
~ N), we make use

of our theoretical understanding of the dynamics in
forward m+ photoproduction above E7= j. GeV. At
k =0, this kinematical region —including the by now
famous forward peak'~is dominated by the real part of
the isovector amplitudes A;~. As we have discussed
some years ago, " these amplitudes are reasonably well
predicted by fixed-t dispersion relations if one assumes
that the dispersion integrals are saturated by the low-
energy contributions of the integrand. It is therefore
tempting to assume the same approximation for k'~0.
Thus we obtain the A;~ from the following relations:

lmA;v(s, t,k') =0 (s)s,),
ReA; v(s, ,tk') =A;v (s,t,k') p.t, t,„

tie

+— ds' ImA, v(s', t,k')
(~+a) '

1 1
x

s' —s s' —u)
'

(6)

where s&s„with s, being the cutoff energy. In. order to
be able to use the partial-wave expansions for ImA;~ in
the integrand of (6), we have to restrict t to values not-
much larger than 15m '/c' because of the convergence
of this expansion in the unphysical kinematical region.
To avoid difficulties with anomalous thresholds, we

7 H. Fraas and D. Schildknecht, Nucl. Phys. B6, 395 (1968).
8 F. T. Meiere, Purdue University Report, 1969 (unpublished).
~ M. LeBellac and G. Plaut, Nice Report, 1969 (unpublished).
'o P. Dennery, Phys. Rev. 124, 2000 (1961).For a very efficient

and compact kinematical formalism, which we use, see G. von
Gehlen, Heidelberg Report, 1968 (unpublished).

»In contrast to some popular statements (e.g., F. Gilman,
SLAC Report No. SLAC-Pub-589, 1969 (unpublished)g, this peak
was known prior to experiments. The only surprising feature of
this forward peak was the fact that it is so remarkably well pre-
dicted by 6xed-t dispersion relations in the low-energy approxi-
mation. We pointed this out, for the erst time, in a report to the
Dubna Conference on Electromagnetic Interactions, February
1967 Lsee External Report No. 3/67-1 of the Kernforschungszen-
trum Karlsruhe (unpublished) g."J.Engels, W. Schmidt, and G. Schwiderski, Phys. Rev. 166,
1343 (1968). These results can be translated, of course, into a
t-channel approach at high energies using Qnite-energy sum rules
[see A. Bietti et u/. , Phys. Letters 26B, 457 (1968); P. di Vecchia
et al, , ibid. 27B, 296 (1968); J. D. Jackson et al. , ibid. 29B, 236
(1969)g.

This treatment is in general terms and does not deal in
particular with the question of mass dependences in
detail. This question of mass dependences has been
attacked in a model-independent way by Fraas and
Schildknecht as well as by Meiere and by LeBellac and
Plaut. ' However, our conclusions are different, since our
model contradicts some of their assumptions (see the
discussion in Sec. IV).
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FIG. 1. Density matrix element p;3 in the helicity frame at a pion lab momentum of 4 GeV/c. The letters I and II refer to sets of
coupling constants I and II in Sec. II. Results for k =m, ' and k =0 in the helicity frame are presented; p1 Ijp11{k~= 777, 2) DH is the ratio
taken with respect to the Donohue-Hoegaasen axes, Data are taken from Refs. 3 and 4.

restrict, for the time being, k' to values (4m„'. We will
lift this restriction later. We note that the pole terms in

(6) have as a common factor either the isovector Pauli
form factors FI,2v(ks) or the pion form factor F (k').
These form factors develop the p pole around k'= mp' as
postulated by (5).

For the cutoG energy s„we choose roughly an energy
above the Di3 pion nucleon resonance. Then by far the
largest contribution to the dispersion integrals for k'=0
comes from the magnetic dipole excitation 3II~3/2(W,
k')."This is the only contribution we shall retain in the
dispersion integral even for

~

k'~))0; we postpone to a
more detailed investigation refinements of this model by
the inclusion of further partial amplitudes and the
discussion of their contribution for ~kst))0. I3 For the
dipole excitation &I+3/2(W, k2), we use the ansatz

3/2(W k2) p(W k2)tlIII 3/2, GGLN(W k2) (7a)

"G. F. Chew, M. G. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (j.957).

14 To avoid spurious kinematic singularities in Az, some authors
fvon Gehlen (Ref. 10), and Zagury, Phys. Rev. 165, 1934 (1967)j
introduce a t-dependent subtraction function f(t) following a
suggestion of S. L. Adler, Ann. Phys. (N. Y.) SO, 189 (1968). We
postpone the inclusion of this term to a more refined version of the
present model. See R. Mannweiler and %. Schmidt (to be
published).

where
e k sin833

3/2, cGLN(W k2) =—Gsrv(k') — er3» (7b)
2f 235 q q

F.(k') =F -~, /(~, k 2m, F), — —
FI, 2 (k ) =FI,2'~N2/3 2/(222 ' k' ir/2, F)— —

'~ G. von Gehlen, Nucl. Phys. 59, g7 (]969).

(Sa)

(Sb)

is the old result of the static theory. ' In Eqs. (7), k and It
are the initial and final momenta in the c.m. system; 8»
is the real part of the pion-nucleon scattering phase
shift in the I=J=2, P=+1 state; e'=1/137.04,
f'= 0.0S, and Gsr v(k2) is the magnetic Sachs form factor.
Motivated by the recent work' on the electroproduction
partial amplitudes, we shall assume that P(W, k') = 1 in
this work.

We have formulated the ansatz for the amplitudes
A;v(s, t,k2) for ks(42/2 '. But their analytical continua-
tion to k')4m ' is straightforward. We therefore also
mak. e the assumption that for k'=mp this ansatz for
A;v(s, t, k2) accounts for the main physical effects. In
this approximation, A, v(s, t,ks) becomes complex for
k'))4m ' because of the presence of the form factors
FI,2v(k2) and F (k'). We assume that these are repre-
sented for k'=mp' by a pole representation
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Lnormalization F (0)=Ft (0) = 1, 2MF s(0) =3.70).Note
that in our ansatz, all parts of A; contain the factor
(m, '—k' —ins, I') ', so that it is an over-all factor in

(f~ J'„r~i) and drops out in (5). It remains only to
specify the coupling constants F& and FI ~& . The
Novosibirsk and Orsay experiments on e+e —+ m+~

yield values of F' (F& = 1.06&0.05, Ref. 16) which
deviate not more than 10% from the universality value
F& =1.'r From a recent E/D analysis, "we derive at
k'= rn, s the values Ft&~ /F & = ImF, /ImFr = 0.82
and 2MFs& /F'~~=231 ImFs/ImF~=4. 82. The same
analysis also reveals that the pole representation (Sb)
for the nucleon form factors is actually only a crude
approximation even for k'=m, '. Therefore, the defini-

tion of the constants F~ ~& ~ is to some extent ambigu-

ous, and they represent in any case only the effective

Ft, s'~~. Our choice (Sb) can only be motivated by
simplicity. Finally, taking from Ref. 16 the value

f,s/(4') =1.90&0.25, all parameters are determined,
and we can make an absolute prediction of (7''

~
J„~

~
N)

at k'=0 and k'=m, '. These are the two cases in which

we are interested in this work. We distinguish two sets
of constants in order to identify in the following the
origin of the mass dependence of the matrix elements:

F p 1 06 F pNN 082
2MF, ~~"= 1.38&(3.70;

Set II:F =F ' =1) 2MFg ' =3 70

The first set is the realistic set and is derived from Refs.
16 and 18 as explained previously. The second set is

essentially the universality set."Finally, we would like

to mention that with decreasing values of t, the pole
terms have to be canceled by large dispersion contribu-
tions. The model for the amplitudes is then obtained as a
difference of two comparably large numbers which is,
therefore, very sensitive to the approximations. All

numerical results, in particular the cross section, must
therefore be taken elm grapho saHs at the smallest values

of t (t« —10m ').

III. RESULTS

Using Eq. (1), the model for the electromagnetic
current matrix elements and time-reversal invariance,

we can predict the-, reaction 7r+n ~ pp' or, equivalently,

by charge symmetry 7r p —+ np'. There, the most
interesting question is the prediction of the ratio

pt t/p» of the p-density matrix elements in the helicity
frame. According to experiment' 4 this ratio should

show a large variation when going from k'=mp to
k'=0, in particular for t) rn '/c'. In fact—, our model

reproduces this behavior (Fig. 1).One should note that
the effect of including the dispersion contribution to the
amplitudes is to obtain the right sign of pj ~ at k'= m, '.

"J.E. Augustin et al. , Phys. Letters 28B, 508 (1969).
J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 {1960).
G. Hohler, R. Strauss, and G. H. Wunder, University of

Karlsruhe Report, 1968 (unpublished).
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This follows from the comparison with the pure pole-
term approximation, also cited in Fig. 1. From a
comparison of the other results for (pss —ptt) and Repro
as shown in Fig. 1, one concludes that the model
reproduces the typical behavior of the density matrix
elements at k'= m, ' as well as at k'= 0.

The model is more sensitively checked by comparing
differential cross sections instead of normalized density
matrix elements. We are, in particular, interested in the
cross section dor&/dt for the production of pions by p
mesons which are polarized perpendicular to the reac-
tion plane. This is given in terms of the previous density
matrix elements and the total cross section do'/dt for
p'+ p ~ n+~+ by the relation

dol&/dt= (p»+p, ,)do.~/dt. (9)

In spite of experimental uncertainties, the data at
k =m, and k'=0 reveal the systematic feature that
do i'/dt at k'= 0 is larger than at k'= m, '. Also, this fact
is reproduced by the model (Fig. 2). The comparison of
the two curves for Sets I and II of the coupling con-
stants F& and F1,2& ~ in Fig. 2 reveals that the origin
of the difference is only partly due to the different
couplings at k'=0 and ns, '. The ratio do~&(k'=0)/
do, ~(k'=rn, ') varies from 1.6 to 2.3 (Set I) between

t = 1m '/c' and ——t= 10nt '/c', respectively. In previ-
ous applications of vector-meson dominance, this mass
dependence of do ~/dt has been neglected in the applica-
tion of (1). This neglect leads to an effective f,'/4rr
(= 1.2, Ref. 5), which is much smaller than the value of
f,'/47r (= 1.90, Ref. 16) measured at k'=ns„'.

I.et us also consider the cross section for pion produc-
tion by transverse p mesons, defined by

dg gz dg dg
(p~n~rr p)=p» (s. p~pn), (10—)

dt dt

so that we can discuss some recent predictions by Avni,
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Harari, and Horovitz. "For k'=0 the cross section" is
proportional to the unpolarized photoproduction cross
section and has, therefore, the characteristic forward
peak with a width of m '/c'. It is easy to derive from our
results that this characteristic forward structure sur-
vives if one goes to k'=no, ' and if one takes ptt in the
helicity frame. According to our model, p~~ in the helicity
frame has the following behavior: Starting at t=0 it
decreases rapidly to a minimum near t= —m '/c' and
then increases slowly. Since, according to experiment, "
(da/dt) (~ p ~ pe) is rapidly decreasing with increasing
values of t, the—transverse cross section pttdo/dt has a
forward peak ie the helicity frame similar to the photo-
production case. Obviously, this structure arises from
the peripheral pion exchange contribution. It contains
the scalar product x'. e, where ~& is the polarization
vector of the p meson and ~„ is the four-momentum of
the pion. Since k &=0, it follows that in the rest frame
of the p meson &0=0 and —~ c=x e. If, in contrast to
the helicity axes definition, we choose ~ as the longi-
tudinal axis (Gottfried-Jackson convention), then the
pion exchange does not contribute to the transverse
cross section (10), which then has no forward peaking.
Avni and Harari" have tried to argue that this behavior
of doq, /dt is likely to be independent of the particular
choice of axes, but our results disprove this conjecture. "

In general, one has that only e~ x vanishes, where e~

is the polarization vector perpendicular to the reaction
plane, i.e., t.p,

= 6p, p
~"E&E".Thus, the rapidly varying

part of the pion contribution does not contribute in any
frame to do ddt= (ptt+pt t)do/dt Therefore. , dot/dt is
smooth in the forward direction in any frame as, for
example, in Fig. 2. The same is true for dot, /di LEq. .

(10)$ ordy if ptt is taken with respect to the Gottfried-
Jackson axes.

Finally, we mention in passing some results for the
ratio pt t/ptt evaluated for k'=nz, ' in the Donohue-
Hoegaasen (DH) frame": (pt t/ptt) H. In this frame,
Repyp vanishes for any k', whereas in a general frame,
only for k'= 0. The use of this frame for a vector-meson-
dominance prediction of pt t/ptt at k'=0 has been

suggested, ' since in this frame pt t/ptt becomes maximal.
As we see from Fig. 1, (pt t/ptt) H has only the positive
sign in the t range considered as a common feature with

(p& t/p»)"' —.Consequently, not much is gained by
choosing the DH frame.

' Y. Avni and H. Harari, Phys. Rev. Letters 23, 262 (1969);
H. Harari and B. Horovitz, Phys. Letters 29$, 314 (1969).

"P.B. Johnson et a/. , Phys. Rev. 176, 1651 (1968); W. Selove
et a/. , Phys. Rev. Letters 21, 952 (1968).

"Independent from the argument presented here, one would
expect that do&,idt is a smooth function in the mass k' of the
vector particle. Since the arguments of Avni and Harari (Ref. 19)
are obviously independent of the actual value of the mass k', they
are also true for small values of k'. In such a situation, their
conjecture is quite obviously wrong independent from any model.

~ J. T. Donohue and H. Hoegaasen, Phys. Letters 25B, 554
(1967).

IV. GENERAL DISCUSSION OF RESULTS
AND CONCLUSIONS

A. Meaning of Vector-Meson Dominance

The success of the model presented encourages us to
draw some conclusions about p dominance in m+ photo-
production and vector-meson dominance (VMD) in
general. The results presented may, in particular,
challenge a too naive concept of VMD so that the
question may arise: What does VMD actually mean& A
very simple-minded but safe interpretation of VMD
could be based on the old concept of the isobar model in
dispersion relations, "where we disperse this time in the
mass k' of the ~-~ system. VMD then circumscribes
mainly the empirical evidence that in the I=J=1 m-z

channel, by far the strongest contribution comes from
the p meson. '4 The word "strong" in this context is used
in the sense that in the neighborhood of the p resonance,
possible high-energy contributions summarized in sub-
traction constants can be neglected. Experiment has
still to tell us how far this neighborhood actually reaches.
The results of the model presented indicate that without
introducing excessively large errors, the extrapolation is
justified even for the photon mass k'=0. Thus, so far
VMD is just the same old idea as, for example, the s-
channel isobar model of the 7f-E system. But there is a
particular advantage this time, since the I=J=1 ~-7r
system seems to be a system with much simpler struc-
ture, having one very strong resonance: the p peak.
This peak can attract all the glamor alone, since it does
not have to share it with other competing brothers. A
search for other resonances in the p channel has been
unsuccessful so far"; one may therefore speculate that
they remain of minor importance, in general.

However, there seems to prevail to some extent the
tendency to interpret VMD as a more fundamental,
more powerful dynamical concept. A statement on
VMD in this direction, which does not contradict the
previous statement, is due to Joos,"who says that "the
essence of vector-meson dominance is the current-field
identity relation" which, in our case, is (2). Whereas our
previous characterization of VMD (the isobar analog)
follows also from the current-field-identity relation,
further consequences can be derived from this relation.
Thus one can exploit the fact that the algebra of fields is
now imposed on the components of the electromagnetic
current. Some asymptotic consequences for high-energy
inelastic electron scattering in the limit k' —+~ have
been derived from this fact recently. Those conse-
quences should correspond, in the language of dispersion
relations, to superconvergence relations and have then
to be specified additionally.
"D. Amati and S. Fubini, Ann. Rev. Nucl. Sci. 12, 359 (1962).
24 See, e.g. , the motivation for effective universality by M. Gell-

Mann, Phys. Rev. 125, 1067 (1962)."G. McClellan et a/. , Phys. Rev. Letters 23, 718 (1969)."H. Joos, Acta Phys. Austriaca, Suppl. IV (1967).
2 C. Q. Callan, Jr., and D. J. Gross, Phys. Rev. Letters 22, 156

(1969).
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In pion electroproduction, no direct, practical, model-
independent consequence could be drawn from the
current-field-identity relation (2). As we discussed in the
Introduction, in order to relate m- production by p
mesons and by virtual photons, Eq. (2) has to be
supplemented by a postulate concerning the mass inde-
pendence of certain matrix elements appearing in (1).
Thus Schildknecht —emphasizing the practical point of
view —formulates'8 the following for a general strong-
interaction process V+A ~ 8, which involves the
vector meson V and the particle groups 2 and 8, and
which is compared to y+A —& 8: "The assumption of
VMD is the following one: ei,&T„(V+A —+ It), or rather
the invariant amplitudes appearing therein, are varying
slowly as a function of the mass of the vector meson my
at high energies. "Here e& is the polarization vector, and
the index tr denotes the transverse component. Now, as
has been stressed several times, only the transverse
component of the polarization vector, which is perpen-
dicular to the reaction plane (and thus proportional to
e„„,.7r"E&1V' in our case), seems to have the least un-

ambiguous meaning. But in Sec. III we showed that the
corresponding cross section doi'/dt varies to a large
degree when going from k'= ns, to k2= 0. As we pointed
out, this variation is due to the deviation of the coupling
constants Ill' and Fq 2& ~ from their universality
values given by the Set II in Sec. II and from mass
dependences entering the dispersion relations (6) through
kinematic factors. This fact is a vital blow against any
hope that mass-independent observables formed out of
the matrix elements (7rN'~ J„'(0)~E) may be found at
all. The perpendicular cross section is the only natural
observable which is not affected by the presence of a
large, although not uniquely defined, longitudinal contri-
bution, which has to vanish in the limit k —+ 0.

In passing, we note that because of this experience
with the perpendicular cross section, it is evident that
not much can be gained by the suggestion' to take the
density matrix elements of the DH frame" instead of the
usual helicity density matrix elements. The results
presented in Fig. 1 for the crucial asymmetry coefficient

pi i/pii evaluated in the DH frame show that the

asymmetry has a completely different t dependence
than the asymmetry for k'=0. As we already pointed
out, the only common feature is the same positive sign
for the present range of the t values.

B. General Argument Concerning Mass Deyendences

In order to show that the results in Sec. III on the
mass dependence of the observables may not be acci-
dental, we include here a general argument on the mass
dependence of the scalar amplitudes A;&(s, t,k') ap-
pearing in the decomposition of (7rA'~ J„&(0)

~
1V). These

amplitudes, or an appropriate subset of them, are the
primary quantities which, according to recent sugges-

"D. Sehildknecht, DESY Report Ko. 69ji0, 1969 (un-
published).

tions, ~ ' should be subjected to the VMD hypothesis,
i.e., they should be approximately independent of k'.
We want to demonstrate that appreciable mass de-
pendences in 3;& have to be expected as a consequence
of such general dynamical laws as analyticity, crossing
symmetry, and superconvergence relations. These mass
dependences are in addition to the effects arising from
the variation of the coupling constants with mass
(sets I and II, Sec. II).The amplitudes A;& fulfill fixed-t
dispersion relations which are analogous to (6).For even
symmetry under the exchange of s and u (t fixed), we
can write, using s+t+u= 2M'+k'+m ',

ReA;&(s, t k')

t —m~' —k'
=E,(k') — +—P ds' ImA, '(s', t ks)

(M' —s) (M' —u)

2(s' —Ms)+t —m '—k'X,i=3, 5, 6. (11)
(s' —s) (s' —u)

(E,= residue . of the pole terms. ) For values of s))M' and
~t~ =m ', the k' dependence in u can be completely
neglected. We thus see that the pole term is in these
cases very sensitive to k'. Vhth respect to the dispersion
integrals, we again assume that the main contribution
comes from the low-energy part of the integrand, so that
s' is typically of the order (M+2m )'. the approximate
energy of the first pion nucleon isobar. Then the change
of the kinematical factor in the integrand of (11) is
=(4m M+k')/4m M=2. 1 when one goes from the
mass of the p meson k'= 0.585 GeV' to the photon mass
k'= 0. Thus the individual contributions to ReA,'(s, t,k')
for i=3, 5, 6 may change with k' for s and t fixed, to a
large extent because of the kinematical factors which
are a consequence of crossing symmetry. Now, the net
variation in ReA;~(s, t,k') depends on the relative sign
of the pole-term and dispersion contributions and the
sense of variation in the residues R;(k') and ImA, &(s,t,
k'). Thus, it may happen that in some exceptional cases,
these individual k' dependences cancel out altogether
(e.g. , in certain kinematic regions of the s, t plane). But
it is very unlikely to have mass independence of the
A;&(s,t,k') in general. In fact, our explicit results in
Sec. III show the existence of this type of mass depend-
ence in the kinematical region which is presently under
experimental investigation.

We arrive at a similar conclusion for the amplitudes
which are odd under crossing symmetry if we assume
additionally the validity of certain superconvergence
relations. For odd crossing symmetry, we write
(s=1, 2, 4)

2 1
ReA, &(s, t,k') = ——R;(k')+—P ds' ImA, &(s', t,k')

(s—M') (2Ms+k'+ p' t) —M'(k'+&' ——t)
+R, (k')

s (M' —s) (M' —u)
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1
+—P ds' ImA, &(s', t', k')—

7r s

2s"+ (s —2s') (2~'+k'+ p' —f)
x . (»)

S —S S —Q

We remark here, incidentally, that at t =0 and k'= 0, the
perpendicular cross section (9) is given by

doI da 3

dt dt . 167t-
s))M' (13)

Thus in forward direction, doi/dt is determ. ined by Ai
alone. The validity of the superconvergence relation for
i=1,'9 aed the assumption of saturation of the re-
maining dispersion integrals by low-energy contribu-
tions, are at variance with experiment. Under these
assumptions, the amplitude Ai would behave like 1/s'
for s ~~, whereas experiment shows a 1/s behavior. In
fact, it has been shown by Dietz and Korth30 that high-

energy contributions are vital to guarantee the validity
of the superconvergence relation for A ~. Therefore, low-

energy contributions can saturate only the unsubtracted
dispersion contributions (6) and not the subtracted
dispersion contributions (12). We mention in this con-

"M. B. Halpern, Phys. Rev. 160, 1611 (1967).
"K.Dietz and W. Korth, University of Bonn Report Qo. 2-28,

1967 (unpublished); Phys. Letters 268, 394 (1968).

Superconvergence relations, with the two terms in the
first bracket canceling, have been postulated"" and
could be confirmed at least for k'=0."To obtain some
feeling for possible mass dependences in this case, we
calculate as in the previous case the dependence of the
kinematical factors on k'. Assuming again that the main
contribution to the dispersion integral comes from the
region s'= (&+2m )', we obtain for the pole term a
variation by a factor 1.33, and for the dispersion con-
tribution a factor 1.27 at s= (4M)' when going from
k'=0.585 GeV' (p mass) to k'=0 with s and t fixed.
Thus, this time the dependence of the kinematic factors
on k' is less strong than in the previous case. However,
mass dependences may show up if the term in square
brackets in (12) is canceled by the superconvergence
relation

1
R,(k') = —— ds' IiriA, &(s', t,k') .

text that the variation of doi/d. t in k' at t=0 is mainly an
effect of the variation of the coupling constants, since
the dispersion contribution is small for 3=0. Thus, we
expect this variation even at asymptotic energies s —+~ .

C. Conclusions with Respect to Other Situations

We have shown in the previous discussion how
intimately the question of whether there exists mass
independence of the scalar amplitudes A (s, t,k') de-
pends on further dynamical assumptions such as ana-
lyticity, crossing symmetry, and superconvergence rela-
tions. Further mass dependences in A, l'(s, t,k') arise from
the variation of the pe/ coupling constants F~ 2&~

considered as a function of the mass k' of the p meson.
Therefore, one should not be surprised if mass depend-
ences also show up in other reactions like p production,
where the production mechanism is completely different
(diffraction production) from pion production. It is very
likely that the same dynamical laws and facts again
account for mass dependences of the amplitudes p+cV —+

p'+1V' if one takes the mass of the first p meson to zero
where one then has photoproduction of p mesons. Here,
difficulties in applying VMD in the usual sense have
recently been reported. "

The VMD hypothesis has stimulated much experi-
mental progress and many theoretical efforts. One is
therefore not inclined to give up this idea easily. But we
have learned that a too simple-minded understanding of
the meaning of VMD leads to failure. The mass depend-
ence of the scalar amplitudes A;~ for a process initiated
by real or virtual photons is not just simply given by the
p propagator (nz, '—k') '. Such a simple picture may
evolve for some particular cases like the reaction
e+e —+ x+7t=, which has a very simple structure, but in
general the situation is more complicated. Finally, we
would like to mention that, in general, for masses much
smaller than the photon mass (k'(&0), higher-mass
contributions cannot be neglected. The example of the
nucleon form factors serves as a clear illustration of this
fact."
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